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Abstraction
■ Customers arrive at random times to obtain service

system

customers

◆ e.g. customers are packets assigned to a communication link
◆ service time =L/C

■ Questions of interest

◆ what is the average number of customers in the system (typical number waiting in queue or
undergoing service)?

◆ what is the average delay per customer (typical time a customer waits in queue + service
time)?

■ These quantities are often obtained in terms of known information such as

◆ customer arrival rate (typical number of customers entering the system per unit time)
◆ customer service rate (typical number of customers the system serves per unit time when it’s

constantly busy)

Definitions
Let’s work out what we mean by average or typical.

Define:

■ N(t) = number of customers in the system at time t

■ A(t) = number of customers who arrives in [0, t]

■ Ti = time spent in the system by customer ith customer



Averages

■ A notion of “typical” number of customers observed up to time t is the time average

Nt =
1

t

∫ t

0
N(τ)dτ

In many systems of interest Nt converges to a steady state

N = lim
t→∞

Nt

■ Similarly, we define λt = A(t)
t

and and the time average arrival rate λ = limt→∞ λt (assuming
limit exists)

■ We also define

Tt =

∑A(t)
i=1 Ti

A(t)

and the time average customer delay (assuming limit exists)

T = lim
t→∞

Tt

Little’s theorem

N = λT

Little’s theorem expresses the natural idea that crowded systems are associated with long delays

■ Rainy day

◆ traffic moves slower (large T )
◆ streets are more crowded (large N)

■ Fast food restaurant

◆ fast service (small T )
◆ requires small waiting area, e.g. drive through (small N)



Proof of Little’s theorem
We will prove it under some simplifying assumptions:

■ System is initially empty, i.e. N(0) = 0
■ System is FIFO
■ System becomes empty infinitely many times

Let A(t) and D(t) be the arrivals and departures respectively, then:
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System empty at t:
∫ t
0 N(τ)dτ =

∑A(t)
i=1 Ti =

A(t)
∑

A(t)

i=1
Ti

A(t) . Dividing by t, we get Nt = λtTt. Taking

the limt→∞ (assuming steady state), we get N = λT .

Relaxing third assumption

Assuming that the system does not necessarily become empty infinitely many times, we can always
write:

D(t)∑
i=1

Ti ≤

∫ t

0
N(τ)dτ ≤

A(t)∑
i=0

Ti

Therefore,

D(t)

t

∑D(t)
i=1 Ti

D(t)
≤

1

t

∫ t

0
N(τ)dτ ≤

A(t)

t

∑A(t)
i=1 Ti

A(t)

If we only assume that λ = limt→∞
A(t)

t
= limt→∞

D(t)
t

(arrival rate is equal to departure rate), and
limt→ Tt = T then

λT ≤ lim
t→∞

1

t

∫ t

0
N(τ)dτ ≤ λT

N = λT

We can also relax the initially empty and FIFO assumptions.



Probabilistic Little’s

■ In our analysis, we relied on a single sample function and computed averages over time (time
averages)

■ For almost every system of interest, we can replace time averages with ensemble averages, i.e.

◆ N is replaced by N̄ = expected number of customers in the system

◆ T is replaced by T̄ = expected delay per customer

◆ λ is replaced by limt→∞
expected number of arrivals in [0,T ]

t

■ Usually λ is given as a property of arrivals, and N̄ can be obtained by some simple analysis of pn,
the probability of having n customers in the system (later).

Example 1Consider the following node where the arrival rate is λ packets per second and the link bandwidth is µ bps:

 λ λ λ λ  µ µ µ µ

Little’s theorem can be applied to any system or part of it.

■ Looking at the node: N = λT , where N is the average number of packets in the node and T is the average
delay per packet

■ Looking at the queue: NQ = λW , where NQ is the number of packets in the queue and W is the average
waiting time per packet

■ Looking at the link: ρ = λL 1

µ
, where:

◆ ρ is the number of bits currently being transmitted (served), also known as link utilization, efficiency, or
throughput

◆ L is the average packet length, and hence λL is the rate in bits (even this is an application of Little’s
theorem, multiply N = λT by L)

◆ note that N = NQ + ρ

■ Looking at the link: B = λLD, where B is the number of bits in transit and D is the propagation delay of
the link



Example 2

λ1

λ1

λ2

λ2

λ3

λ3

■ For each subsystem, Ni = λiTi

■ For the whole system, N = λT , where N =∑
i Ni and λ =

∑
i λi

■ Therefore

T =

∑
i λiTi∑
i λi

(weighted average by λ′
is)

Arrivals and Departures

■ Packets arrive according to a random process typically modeled as Poisson
■ A Poisson process is characterized by that interarrival times are independent and exponentially

distributed

t1

T1

T2

T3

A(t)

t2 t3

Ti = ti − ti−1

is exponentially distributed, i.e.
Pr(T ≤ t) = 1 − e−λt

■ Probability density function is λe−λt (derivative of 1 − e−λt), i.e.

Pr(t1 ≤ T ≤ t2) =

∫ t2

t1

λe−λt



E[T ] and E[T 2]

■ Expected value of T

E[T ] =

∫ ∞

0
tλe−λtdt =

1

λ

Therefore, λ is interpreted as the rate of arrivals

■ Expected value of T 2

E[T 2] =

∫ ∞

0
λe−λtdt =

2

λ2

Therefore, the variance is

σ2(T ) = E[(T −
1

λ
)2] = E[T 2] + E[(

1

λ
)2] − E[2T

1

λ
] =

1

λ2

(linearity of expectation)

Poisson is memoryless

Given that I have waited for sometime t0 and no arrival occurred, what is the probability that I have
to wait for another t?

Pr(T ≤ t0 + t|T > t0) =?

Pr(T ≤ t0 + t|T > t0) = Pr(T≤t0+t,T>t0)
Pr(T>t0)

= Pr(t0<T≤t0+t)
1−Pr(T≤t0)

=

∫
t0+t

t0
λe−λτ dτ

1−(1−e−λt0 )

Pr(T ≤ t0 + t|T > t0) =
−e−λτ |

t0+t

t0

e−λt0
= −e−λ(t0+t)+e−λt0

e−λt0
= 1 − e−λt = Pr(T ≤ t)

■ Previous history does not help predicting the future

■ Distribution of time until next arrival is independent of when last arrival occurred



Example

Suppose a bus arrives at a station according to a Poisson process with average interarrival time of 20
min (i.e. 1/λ = 20)

■ When a customer arrives at a station, what is the average amount of time until next bus?

◆ 20 min, regardless of when previous bus arrived (memoryless)

■ When a customer arrives at a station, what is the average amount of time since last bus departure?

◆ 20 min, looking at the time in reverse, we will also see a Poisson process

■ PARADOX: If an average of 20 min passed since last bus, and there is an average of 20 min until
next bus, then we have an average of 40 min between buses! (how did that happen?)

◆ there is conditioning on your arrival, you are likely to fall in a long interval

Intuition
Imagine throwing a ball at random

1 – ε ε

■ The average bin size is
(1 − ε) + ε

2
=

1

2
■ The ball falling at random,

◆ with probability 1 − ε will see a bin of size 1 − ε
◆ with probability ε will see a bin of size ε

The expected bin size observed by the ball is

(1 − ε)(1 − ε) + ε.ε = (1 − ε)2 + ε2 ≈ 1 − 2ε

■ Large intervals have more weight



Mathematical interpretation
■ Let Y (t) be the time until next arrival

■ Let Z(t) be the time since last departure

■ Their sum is below

average =
sum of areas

length
=

∑n

i=1
T 2

i∑n

i=1
Ti

=

∑n

i=1
T 2

i /n∑n

i=1
Ti/n

But
∑n

i=1
T 2

i /n → E[T 2] and
∑n

i=1
Ti/n → E[T ]

E[T 2]

E[T ]
=

2/λ2

1/λ
=

2

λ

Another characterization of Poisson

t1

T1

T2

T3

A(t)

t2 t3

tn =
n∑

i=1

Ti = T1 + T2 + . . . + Tn

■ It can be shown that tn has the following probability density function

tn ∼
λntn−1e−λt

(n − 1)!

■ We are interested in obtaining the probability mass function for A(t), i.e., what is Pr(A(t) = n)
for some integer n?

Pr(tn ∈ (t, t + δ]) = Pr(A(t) = n − 1).P r(Tn ≤ δ)

(we have used the memoryless property)



Another characterization of Poisson (cont.)

Pr(tn ∈ (t, t + δ]) = Pr(A(t) = n − 1).P r(Tn ≤ δ)

Pr(tn ∈ (t, t + δ]) =

∫ t+δ

t

λnτn−1e−λτ

(n − 1)!
dτ ≈

λntn−1e−λt

(n − 1)!
δ

t t + δ(n – 1)/λ

Pr(T ≤ δ) = 1 − e−λδ = 1 − (1 − λδ +
(λδ)2

2!
− . . .) = λδ + o(δ)

where limδ→0
o(δ)

δ
= 0

Another characterization of Poisson (cont.)

Pr(A(t) = n − 1) =
λntn−1e−λtδ

(n − 1)!(λδ + o(δ))
=

λntn−1e−λt

(n − 1)!(λ + o(δ)/δ)

Taking limδ→0, we get

Pr(A(t) = n − 1) =
λn−1tn−1e−λt

(n − 1)!

Poisson as a counting process A(t):

Pr(A(t) = n) =
(λt)ne−λt

n!

Pr(A(t′) − A(t) = n) =
[λ(t′ − t)]ne−λ(t′−t)

n!
(stationary increment property)

E[A(t)] = λt

E[A2(t)] = λt + (λt)2

σ2(A(t)) = λt



Yet another characterization...

Consider a small interval of time δ and define Ã(δ) = A(t + δ) − A(t), then a Poisson process is
defined as small increments:

■ Pr(Ã(δ) = 0) = e−λδ = 1 − λδ + o(δ) ≈ 1 − λδ

■ Pr(Ã(δ) = 1) = λδe−λδ = λδ + o(δ) ≈ λδ

■ Pr(Ã(δ) ≥ 2) = o(δ) ≈ 0

where limδ→0
o(δ)

δ
= 0

This characterization allows us to merge and split Poisson processes:

Merging

The sum of two Poisson processes with rates λ and µ is a Poisson process with rate λ + µ

Pr(Ã(δ) = 0) ≈ (1 − λδ)(1 − λµ) ≈ 1 − (λ + µ)δ

Pr(Ã(δ) = 1) ≈ λδ(1 − λµ) + λµ(1 − λδ) ≈ (λ + µ)δ

Pr(Ã(δ) ≥ 2) ≈ 0

λ

µ

λ + µ



Splitting
A Poisson process with rate λ can be split into two independent Poisson as follows: Each arrival is
independently sent to process 1 with probability p and to process 2 with probability 1 − p.

Pr(Ã1(δ) = 1) ≈ pλδ = (pλ)δ

Pr(Ã1(δ) ≥ 2) ≈ 0

Pr(Ã1(δ) = 0) =≈ 1 − (pλ)δ

Similarly,
Pr(Ã2(δ) = 1) ≈ (1 − p)λδ = ((1 − p)λ)δ

Pr(Ã2(δ) ≥ 2) ≈ 0

Pr(Ã2(δ) = 0) =≈ 1 − ((1 − p)λ)δ

pλ

(1 – p)λ

λ
p

1 – p
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