Computer Networks
Link initialization
Saad Mneimneh
Computer Science

Hunter College of CUNY
New York

M\

s -

1NN
- hello
- hello/ack
- ack

three-way handshake

1 Introduction

All ARQ algorithms assume some sort of initialization of the DLC link. We did not
explicitly emphasize this fact before to keep the illustration simple. However, for the
ARQ to operate correctly, we require that initially:

e no frames are traveling on the link

e SN and RN are both equal to 0 at both ends of the link

One might think that this problem of initialization is trivial: simply initialize the
DLC at each end of the link when the link is first physically placed, and then use an
ARQ algorithm forever. Unfortunately, the link can fail.

e good news (link view): the ARQ algorithm guarantees that frames not received
correctly before the failure would be received after the failure.

e bad news (network view): when a link fails for a long period of time, it be-
comes necessary for the transport and/or network layers to take over and set
up alternative paths for packets that were not delivered. When the failed link
eventually returns to operation, the higher layers restore the path through the
link, thus causing the DLCs at both ends to possibly deliver duplicate packets.

Therefore, both DLCs should view the link as being segmented into an alternation
of up and down periods. The DLCs must then be properly initialized at the beginning
of each up period. At the end of an up period, however, there may be frames in



the process of being communicated that are not received. These frames will not be
received upon the start of another up period because the DLCs will be reinitialized.
But that’s ok.

There is a problem in the definition of an up period. In particular, the DLCs at
opposite ends of the link must agree at any given instant whether the link is up or
down. But we have seen that such an agreement is theoretically impossible to achieve.
Therefore, instead of resolving this issue in the abstract, we present simple protocols
for initializing and disconnecting the link simple to ARQ in concept.

1.1 Master-slave link initialization

With the Master-slave protocol, one DLC, say A, is in charge of determining whether
the link is up or down. A then informs B at the other end of the link whether the link
has changed from down to up or up to down. The sequence of messages that go from
A to B is simply an alternating sequence of initialize and disconnect messages, as seen
in the figure below. For each such message, B responds with the appropriate ack.

L J_ data J_ J_ B - Alink free of data
\ \ ” \ \ 4

data ‘ A~ B link free of data ‘
Figure 1: Master-slave link initialization

Conceptually, this can be interpreted as a stop and wait algorithm modulo 2. An
initialize message (denoted by INIT) corresponds to a frame with SN = 1, and a
disconnect message (denoted by DISC) corresponds to a frame with SN = 0. The
corresponding acks of B are denoted by ACKI and ACKD, respectively. ACKI cor-
responds to RN = 0 (i.e. acknowledging the INIT message SN = 1), and ACKD
corresponds to RN =1 (i.e. acknowledging the DISC message SN = 0).

Note that the decisions to initialize and disconnect (made at A) are not part of
the DLC, and should be viewed as coming from a higher layer, possibly by making
measurements of the link. The decisions to send DISC or INIT messages are part of the
DLC, however, and rely on having already received an ack for the previous message.
For instance, there is no way for A to abort the initialization before receiving ACKI
from B. Naturally, A can start to disconnect as soon as ACKI is received, but must
continue to send INIT until receiving ACKI.

1.2 Balanced link initialization

It is more desirable if both A and B can initialize/disconnect the link because either
one (at some higher layer) can be monitoring the link. At the very least, there is a
conceptual simplification in not having to decide which one is master. The essential
idea of a balanced initialization protocol is to use two master-slave protocols with A
playing the master for one, and B playing the master for the other.



For simplicity, we assume that each INIT or DISC message from a master (on one
side of the link) also contains a piggybacked ACKI or ACKD for the slave (on the
other side of the link), but we regard the acks as being acted on first. ACKI and
ACKD messages can also be sent as stand alone message upon receiving an INIT or
a DISC message respectively. As the following figure shows, each side in its role as a
slave acks each INIT and DISC message from the other side; also each side in its role
as a master continues to transmit INIT and DISC messages until acked.

}-— up —-‘ }-— down —-‘
INIT pisC INIT
ACKD ACKI ACKI ACKD ACKD ACKI
A

@

INIT DISC INIT ACKI
ACKI up ACKD F_ down ACKD

Figure 2: Balanced link initialization

The initialization part of this balanced protocol, i.e. sending INIT, waiting for INIT
and ACKI from the other side, and responding to INIT with ACKI, is often called the
three-way handshake. The reason for this terminology is that the ACKI from the
other side is usually piggybacked on the INIT, making a three-message interchange.
It is possible, however, that both sides start to initialize independently, and then all
four messages must be sent separately as seen on the right side of Figure 2. In any
case, either one can decide to initialize or disconnect the link.

e As a master: To initialize the link: send INIT4+ACKD, wait for ACKI, send
ACKI. To disconnect the link: send DISC+ACKI, wait for ACKD, send ACKD.
e As a slave: Upon receiving INIT+ACKD, send INIT+ACKI or simply ACKI
if sent INITH+ACKD already as a master. Upon receiving DISC+ACKI, send
DISC+ACKD or simply ACKD if sent DISC+ACKI already a as master.
Here’s a state diagram for initializing the link in the form of event/action (¢ means
empty event or empty action):

e/INIT + Last ACK INIT / INIT + ACKI

INIT + ACKD / ACKI

connect accept

INIT + ACKI / ACKI

Figure 3: Initializing the link

From the above diagram, we can see that if the last ACKI was lost, A thinks
the link is up but B thinks it is not up yet. In this case, B will eventually resent



INIT+ACKI. But what if A disconnects the link before B knows it went up? In this
case, the last ack (ACKI) with DISC will tell (acks are acted upon first).

Here’s a state diagram for disconnecting the link in the form of event/action (e
means empty event or empty action):

€/DISC + Last ACK DISC / DISC + ACKD

DISC + ACKI/ACKD |

>

disconnect

DISC + ACKD / ACKD

Figure 4: Initializing the link

From the above diagram, we can see that if the last ACKD was lost, A thinks the
link is down but B thinks it is not down yet. In this case, B will eventually resend
DISC+ACKD. But what if A initializes the link before B knows it went dow? In this
case, the last ack (ACKD) with INIT will tell (acks are acted upon first).

References

Dimitri Bertsekas and Robert Gallager, Data Networks
Larry Peterson and Bruce Davie, Computer Networks: A Systems Approach



