
Computer Networks

UDP and TCP

Saad Mneimneh

Computer Science

Hunter College of CUNY

New York

“I’m a system programmer specializing
in TCP/IP communication protocol on
UNIX systems. How can I explain a
thing like that to a seven-year-old?”

1 Introduction

So far, we have studied the DLC layer. The next layer up is the network layer, upon
which the transport layer operates.

InternetInternet

DLC

transport

Figure 1: DLC, network, transport

While it may be natural to discuss the network layer next, DLC and the transport
layer share many features in terms of reliable communication (but one is on a single
link and the other is over a network). Many of the algorithms and protocols that we
have seen for DLC apply for the transport layer. For this reason, we will consider the
transport layer next.

1



From the viewpoint of the transport layer, the underlying network has certain
limitations in the level of service it can provide. Some of the more typical limitations
are:

• loss, reordering, and duplicate delivery of packets

• limited packet size (MTU, Maximum Transmission Unit)

• arbitrary long delays

• host to host communication

Such a network is said to provide best-effort level of service, as exemplified by the
Internet. Therefore, it is the role of the transport layer to turn the unreliable host
based communication of the underlying network into a reliable communication among
application programs. The following list shows some of the common properties that a
transport protocol can be expected to provide:

• reliable message delivery: once, only once, and in order

• support for arbitrarily large messages

• synchronization between sender and receiver through flow control

• support for multiple application processes on each host

Two transport protocols are particularly famous for the Internet: User Datagram
Protocol (UDP) and Transmission Control Protocol (TCP).

2 User Datagram Protocol (UDP)

UDP is a simple transport protocol that extends the host-to-host delivery of packets
of the underlying network into a process-to-process communication. Since there are
many processes running on a given host (e.g. multiple Internet browsers), UDP needs
to add a level of demultiplexing, allowing multiple application processes on each host
to share the network. Therefore, the only interesting issue in UDP is the form of
address used to identify a process. Although it is possible to directly identify a process
with the operating system (OS) assigned id (pid), such an approach is only practical in
a close distributed system with one OS that assigns unique ids to all processes (does
not work for the entire world!). Instead, a process is indirectly identified using an
abstract locator, often called a port. A source process sends a message to a port, and
a destination process receives a message from a port. The UDP header contains a 16
bit port number for both the sender (source) and the receiver (destination).

source port destination port

length checksum

data

0 16 31

Figure 2: UDP header



• source port: 16 bit port number of the source

• destination port: 16 bit port number of the destination

• length: 16 bit number representing the length in bytes of the UDP datagram
(including the header)

• checksum: 16 bit checksum used for error detection (later)

• data: the message

The 16 bit port number means that there are up to 64K possible ports, clearly not
enough to identify all the processes on all hosts in the Internet. For this reason, ports
are not interpreted across the entire Internet, but only within a single host. Therefore,
a process is really identified by a port on some particular host, i.e. a < port, host >
pair. This pair constitutes the demultiplexing key for the UDP protocol.

The port number of a process is automatically assigned by the operating system
through the socket API, i.e. the socket API provides an implementation of ports.
But how does a process learn the port number for the process to which it wants to
send a message? Typically, a client process initiates a message exchange with a server
process (recall from the socket API that a server listens and a client connects). Once
the client has contacted the server, the server knows the client’s port number from the
UDP header and can reply to it. The real problem, therefore, is how the client learns
the server’s port number in the first place. The common approach is for the server to
listen on a well-known port that is widely published, much like the emergency service
available at the well-known telephone number 911. For example, an http server listens
on port 80. The telnet port is 23. The Domain Name Service (DNS) port is 53. The
mail port is 25.

In the socket API, each port is typically implemented as a message queue.

UDP

application
process

application
process

application
process

ports

queues

packet 
demultiplexing

packet arrives

Figure 3: Ports as message queues

When a message arrives, UDP appends it to the end of the queue. If the queue
is full, the message is dropped (unlike TCP, there is no flow control to instruct the
sender to slow down). When the application process wants to receive a message, one
is removed from the head of the queue. If the queue is empty, the application process
blocks until a message becomes available.



Another equally important question is how does UDP obtain the host address to
form the < port, host > demultiplexing key? This information is available in the IP
header of the network layer. Recall, however, that the basic tenets of layering is that
the header (and trailer if any) of a packet at a given layer contains all the information
necessary for that layer to do its job.

• the header of a given layer is stripped off when the packet is passed to an upper
layer

• the body of the packet at a given layer (which contains the headers for the higher
layers) should not be consulted by the module at the given layer

Here’s a figure from before as a reminder:

packet

packet

packet

packet

packet

packet

Transport

Network

DLC

service 
interface

peer-to-peer 
interface

Figure 4: Headers and trailers

Nevertheless, when a packet is passed from the transport layer to the network
layer, there are extra parameters passed along with the packet to provide the net-
work layer with addressing information. Similarly, when the datagram arrives at its
destination, the IP header is stripped off, but the addressing information and other
header information can be passed up as parameters. That’s how UDP obtains such
information. In fact, three fields from the IP header - protocol number, source IP
address, destination IP address - plus the UDP length field, form what is known as
the pseudoheader.

Finally, although UDP does not implement flow control or reliable/ordered deliv-
ery of messages, it does a little more work than to simply demultiplex messages to
some application process. As a last line of defense, it ensures the correctness of the
message by the use of a checksum. The checksum is computed over the UDP header,
the data, and the pseudoheader (so the UDP length field is included twice in the check-
sum calculation). The checksum algorithm is the following: think of the data to be
checksummed as a sequence of 16 bit integers, add them (that’s why it’s a checksum)
using ones complement arithmetic, and compute the ones complement of the result.
The pseudoheader is included in the checksum to verify that the message has been de-
livered between the correct two endpoints. For example, if the destination IP address
was modified while the packet was in transit, causing the packet to be misdelivered,
this fact would be detected by the UDP checksum. The reason why the checksum is
obtained using ones complement arithmetic will be explored in a homework. But this
has mainly two advantages: (1) easy to update if the packet undergoes small changes,
and (2) independent of how the machine represents bytes in memory.



In ones complement arithmetic, a negative number −x is represented as the com-
plement of x, i.e. each bit of x is inverted. When adding two numbers in ones
complement arithmetic, a carryout from the most significant bit needs to be added
to the result. Consider, for example, the addition of −5 and −2 in ones complement
arithmetic using 4 bits. +5 is 0101, so −5 is 1010; +2 is 0010, so −2 is 1101. If we
add 1010 and 1101 ignoring the carry, we get 0111. In ones complement arithmetic,
the fact that this operation caused a carry from the most significant bit causes us to
increment the result by 1, giving 1000, which is the ones complement representation of
−7, as we would expect. The following routine gives a straightforward implementation
of the checksum algorithm:

checksum(short * buf, int count) {
int sum = 0;
while (count--) {

sum += *buf++;
if (sum & 0xFFFF0000) {

sum &= 0xFFFF;
sum ++;

}
}
return ~(sum & 0xFFFF);

}

Figure 5: The Internet checksum (also used in IP at network layer)

3 Transmission Control Protocol (TCP)

In contrast to a simple demultiplexing protocol like UDP, a more sophisticated trans-
port protocol in one that offers reliable communication. The Internet’s Transmission
Control Protocol (TCP) is probably the most widely used protocol of this type. As a
transport protocol, TCP provides reliable, in order delivery of messages. It is a full du-
plex protocol, meaning that each TCP connection supports a pair of streams, one flow-
ing in each direction. It also includes a flow control mechanism for each of these streams
that allows the receiver (on both ends) to limit how much data the sender can transmit
at a given time (we will look at this feature later). Of course, TCP supports the demul-
tiplexing mechanism of UDP to allow multiple application programs on a given host to
simultaneously communicate over the Internet. However, the demultiplexing key used
by TCP is the 4-tuple < source port, source host, destination port, destination host >
to identify the particular TCP connection.

At the heart of TCP is the sliding window algorithm. Even though this is the same
basic algorithm we have seen before for DLC, because TCP runs over the network
rather than a single link, there are many important differences that complicate TCP.

3.1 Added complications of TCP

Here’s a list of the most relevant complications added by TCP to the sliding window
algorithm.



3.1.1 Out of order packets

One important aspect of the sliding window algorithm is the choice of a modulus to
impose an upper bound on the sequence numbers. In our treatment of the DLC, we
used the FIFO property of the link to obtain an appropriate modulus. Unlike the
case of a single link, however, packets may be reordered as they cross the Internet.
Therefore, TCP has to be prepared to deal with an old packet that suddenly shows
up at the receiver with both SN and RN being in the appropriate windows, hence
potentially confusing the sliding window algorithm.

3.1.2 Initialization and disconnection

Recall that for the DLC, whether the link is up or down is maintained by an alternating
sequence of INIT and DISC messages (each side of the DLC remembers the last ack,
whether ACKI or ACKD). A similar mechanism is required for TCP to initialize the
sliding window algorithm. Unlike the link initialization of DLC, however, what makes
the initialization and disconnection of TCP sessions tricky is that one does not want to
save information about connections after they have been torn down (may connections
may exist). In other words, while DLC initialization runs indefinitely, after the last
ack is sent by TCP, no more data is sent! Therefore, TCP must use an additional
mechanism to avoid the confusion between old and new connections.

3.1.3 Window size

Parameters of a link such as RTT and bandwidth are fixed and known. Therefore,
a window size can be computed (recall that a window size of ≈ 1 + RTT×bandwidth

frame size

frames is appropriate). TCP has no idea what links will be traversed by the packets.
Moreover, RTT may change depending on different times of the day even if the same set
of links are used. This information is also relevant to determine appropriate time-outs.
Finally, the sender and the receiver communicating over TCP might have different
speeds; therefore, the receiver must be able to limit how much data the sender can
transmit (window size). This is done through flow control, which we will study later.

3.1.4 Retransmission time-outs and congestion

At the DLC layer, the issue of retransmission time-outs is not very critical (besides the
correctness of the distributed algorithms). At the transport layer, the issue is quite
serious. Retransmissions from the transport layer causes congestion in the network
(a link is shared by many TCP connections). This will cause large delays. When
congestion becomes bad enough, packets will be discarded in the network. This triggers
even more retransmissions, and eventually throughput is reduced to almost zero. TCP
must deal with this issue, and we will study TCP congestion control later.

3.2 TCP speaks bytes

TCP is a byte oriented protocol. The sender writes bytes into a TCP connection, and
the receiver reads bytes out of the TCP connection. TCP does not, itself, transmit
individual bytes. That would be too much overhead (why?). Instead, the sender
generates bytes into the TCP buffer (sliding window), and TCP collects enough bytes
from this buffer to fill a reasonably sized packet called segment (one that is appropriate
for the underlying network to prevent further segmentation at the network layer).



TCP

sender buffer

TCP

receiver buffer

application process application process

segment segment segment

write
bytes

read
bytes

Figure 6: TCP segments

The segment contains a sequence number SN and a request number RN as usual.
However, those numbers are used in a rather peculiar way in TCP. SN represents the
sequence number of the first byte of data in the segment. Thus if a segment has a
sequence number SN = m and contains n bytes of data, then the next segment for
that TCP session has SN = m + n. There appears to be no good reason for this, but
it does not do any harm, other than adding complexity and overhead. TCP at the
receiving side empties the content of the segment into the TCP buffer (sliding window),
and the receiver read bytes from this buffer. As one might expect, RN denotes the
next desired segment by giving the number of the first byte of data of that segment,
usually piggybacked on segments going in the opposite direction. The following figure
shows the segment format for TCP.

source port

hdrLen advertised window

data

0 16 31

sequence number

request number (acknowledgement)

flags

destination port

0

4 10

checksum urgent pointer

options (variable)

Figure 7: TCP segment format

• source port: 16 bit port number of the source

• destination port: 16 bit port number of the destination

• sequence number: 32 bit SN

• request number: 32 bit RN

• HdrLen: length of header in 32 bit words, needed because of options, also known
as offset field

• flags: 6 bits for SYN, FIN, RESET, PUSH, URG, and ACK

– SYN and FIN are used to establish and terminate a TCP connection (see
next section)



– RESET is set by the receiver to abort the connection, e.g. when the
receiver is confused upon the receipt of an unexpected segment

– ACK is set by the receiver whenever an acknowledgment must be read

– PUSH is set by the sender to instruct TCP to flush the sending buffer,
also used by the receiver to break the TCP byte stream into records (not
supported by socket API)

– URG is set by the sender to signify that the segment contains urgent data

• advertised window: 16 bit number used for flow control (later)

• checksum: 16 bit checksum computed over the TCP header, the TCP data, and
the pseudoheader (same algorithm as for UDP)

• urgent pointer: when URG flag is set, urgent pointer indicates where the urgent
data ends (it starts at the first byte of data)

• option: variable

• data: the message

3.3 Connection establishment and termination

TCP uses a three-way handshake similar to that of the DLC link initialization to
establish a connection and initialize the sliding window algorithm. During this three-
way handshake, the SYN flag is used in an analogous way to INIT. However, the
main difference is that TCP does not start with SN = 0 (and RN = 0). The reason
for this, as motivated in Sections 3.1.1, is to protect two incarnations of the same
connection from using the same sequence numbers too soon. For instance, assume
that a connection is aborted by the receiver after exchanging few segments. Assume
also that some of these segments are still in the network. If the connection is re-
established (with SN = 0 and RN = 0), some of these segments will qualify as
legitimate segments by the sliding window algorithm because their SNs and RNs are
still within the expected range.

Therefore, TCP requires that each side select an initial SN at random (well, in
practice SN is initialized by the value of an internal clock counter that increments
once every 4 µsec). The sequence numbers are then exchanged while establishing the
connection using a three-way handshake.

A

B

SYN
 

SN
=x

SY
N

+A
C

K
 

SN
=y

 R
N

=x
+1 A

C
K

R
N

=y+1

Figure 8: TCP three-way handshake



Here’s a simplified state diagram for establishing a TCP connection in the form of
event/action (ε means empty event or empty action):

down

connect accept

up

εεεε / SYN SN=x SYN SN=x / SYN+ACK SN=y RN=x+1

SYN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1 / εεεε

(usually client) (usually server)

Figure 9: Establishing a TCP connection

From the above diagram, we can see that if the last ack was lost, the client thinks
the connection is established but the server thinks it is not established yet. In this
case, the client starts to send data, and the ack will eventually get to the server. But
what if the client terminates the connection before the server knows it was established?
In this case, the last ack with FIN (see below) will tell (acks are acted upon first).

To terminate a connection, another three-way handshake is done where the FIN
flag is used in an analogous way to DISC. Here’s a simplified equivalent (but wrong)
state diagram for terminating a TCP connection in the form of event/action (ε means
empty event or empty action).

up

disconnect close

down

εεεε / FIN SN=x FIN SN=x / FIN+ACK SN=y RN=x+1

FIN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1 / εεεε

(usually client) (usually server)

Figure 10: Terminating a TCP connection (wrong)

From the above diagram, we can see that if the last ack was lost, the client thinks
the connection is terminated but the server thinks it is not terminated yet. As de-
scribed in Section 3.1.2, the client is sending no more data! If another client with the
same port and host establishes a connection with the server, the new connection will
be confused with the old one. As a result, a delayed FIN+ACK from the server might
cause the new connection to be terminated. While the use of 32 bit sequence numbers
generated by a fast internal clock counter makes this possibility remote, TCP spec-
ification requires the client to wait before terminating the connection. A Maximum
Segment Lifetime (MSL) is imposed on the segments, i.e. a segment cannot survive in
the Internet for more than MSL, which is 120 seconds. The client waits for twice the
MSL before assuming the connection is terminated.



Here’s the updated simplified diagram for terminating a TCP connection in the
form of event/action (ε means empty event or empty action).

up

disconnect close

wait

εεεε / FIN SN=x FIN SN=x / FIN+ACK SN=y RN=x+1

FIN+ACK SN=y RN=x+1 / ACK RN=y+1 ACK RN=y+1 / εεεε

down

two segment
lifetimes

(usually client) (usually server)

Figure 11: Terminating a TCP connection

3.4 Sequence numbers wrap around

The use of randomly initialized sequence numbers SN when establishing a connection,
and the wait for twice the MSL when terminating a connection, make the possibility
of error due to multiple TCP connections very small. However, even with one TCP
connection, sequence numbers will eventually wrap around (SN is finite) if the con-
nection remains active for a long time. Without the FIFO property, a delayed segment
that suddenly shows up will cause the sliding window algorithm to make a mistake in
accepting it. The way TCP fights against this possibility is through an appropriate
choice of MSL (hence a segment cannot be delayed indefinitely). Currently, MSL is
120 seconds. Let’s see how much time is needed for the sequence numbers to wrap
around. This depends on the speed of the network. We have 232 possible sequence
numbers. On Ethernet networks, for instance, the bandwidth is 10 Mbps; therefore,

we need 232×8
10×106 seconds to transmit 232 bytes (to wrap around). This is 57 min >>

MSL. On faster networks (e.g. 622 Mbps and 1.2 Gbps), the time to wrap around is
much smaller than 120 seconds.

3.5 Effective window size

The window size W (in bits) must be large enough to use the full capacity of the
network. Let MSS be the Maximum Segment Size. If the bandwidth is B, then the
sender transmits W bits every RTT + MSS/B ≈ RTT (usually RTT >> MSS/B).
Of course one of the difficulties in determining W is to obtain accurate measurements of
RTT and B. But assuming these are known, the sender is limited to min(B, W/RTT )
bps.



B

W / RTT

RTT

W / B

tr
an

sm
is

si
on

 r
at

e
Figure 12: Window size

Therefore, we need W ≥ RTT ×B. TCP can support windows up to 216−1 bytes
(≈ 64 KB), as we will see next.

References

Dimitri Bertsekas and Robert Gallager, Data Networks
Larry Peterson and Bruce Davie, Computer Networks: A Systems Approach


