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1 Introduction

We have seen that at the conceptual level, TCP uses the same sliding window algorithm
used by the DLC layer. However, while DLCs can be matched for speed, the sender
and receiver on each side of a TCP connection may have different speeds. This is
determined by the application programs communicating over TCP. If the receiver is
slower than the sender, bytes will have to be dropped from the receiver’s sliding window
buffer. TCP deals with this issue using what is known as flow control.

2 Flow control with advertised window

With TCP, a slow receiver can limit how much data a sender can transmit. This is
integrated within the sliding window algorithm, so the receiver can control how large
the sender’s window can be. The receiver advertises a window size in bytes to the
sender through a 16 bit number in the TCP header (the advertised window field).
Upon receipt of a TCP segment from the receiver, the sender adjusts its window size
accordingly.

Let LR be the last byte read by the receiver (delivered to the application program).
Ideally, LR = RN−1 if the receiver is fast enough. In general, however, LR ≤ RN−1
(with LR < RN − 1 when the receiver is slow).
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If the current window size at the receiver is m bytes, the receiver will advertise a
window size of advw = m− [(RN − 1)− LR] bytes.
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Figure 1: Receiver’s window

Upon the receipt of a segment from the receiver, the sender sets its window size n
to the advertised window field advw. If the sender wants to be more conservative, it
will set its window size to n = max(0, advw− (LS − SN + 1)) bytes, where LS is the
last byte transmitted by the sender over the network (but may not have reached the
receiver yet).
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Figure 2: Sender’s window

If the sender’s window size becomes zero, the sender stops sending immediately
(and TCP blocks the corresponding application program).

How does the sender know that the advertised window is no longer zero? Because
the sender is not permitted to send any more data, and the receiver sends acks only in
response to received data, there is no way for the sender to discover that the receiver
has opened up the window. One can imagine the receiver sending some control infor-
mation telling the sender that the window has opened. This, however, will complicate
the receiver. The solution to this problem follows the following paradigm:

smart sender/dump receiver

The receiver simply responds to segments from the sender and never initiates
activity on its own. In fact, the replacement of acks and naks with RN follows the
same paradigm.

Whenever the receiver advertises a window size of zero, the sender persists in
sending a segment with one byte of data every so often. These segments will probably
not be accepted at the receiver (window size is zero), but eventually one of them will
trigger a response that reports a non-zero advertised window. This technique is called
probing.



3 Segmentation and Nagling

Recall that TCP is a byte oriented protocol, in the sense that every byte has its
own SN . However, TCP sends bytes in segments. A related issue to flow control is
how TCP decides when to send. Ideally, TCP uses a Maximum Segment Size (MSS)
for its segments imposed by the Maximum Transmission Unit (MTU) allowed by the
underlying network. Therefore, MSS < MTU, which prevents additional segmentation
at the network level. But should TCP wait to accumulate enough bytes to fill an
MSS-sized segment? Or should it send data immediately in a smaller segment of few
bytes? The latter case implies inefficient use of bandwidth by sending high overhead
“tinygrams” with the TCP (and IP) headers consuming most of the bytes. However,
this issue is not relevant unless TCP actually has few bytes to send. But why would
that be the case? The answer to this lies in three similar yet different problems:

• Small ack problem: A receiver’s application program with no response to the
sender causes the receiver to send empty TCP segments (acks) to ack.

• Silly window syndrome (SWS): A receiver’s slow application program causes the
receiver to advertise a small window size.

• Small segment problem: A sender’s slow application program provides the sender
with only few bytes per second.

To solve the small ack problem, the TCP specification says that TCP should
implement a delayed ack strategy. This means is that TCP should delay the ack until
the receiver has a response to the sender, and piggybacks the ack on the response
segment. Such a response may not be available, so the delay must be less than 0.5
seconds, typically 200 ms. Moreover, in a stream of MSS-sized segments there should
be an ack for at least every second segment.

The problem of SWS is easily avoided by making the receiver resist advertising
a window size greater than zero unless it is at least min(MSS, L/2), where L is the
receiver’s available buffer space (suggested by David Clark).

Unlike the previous two problems, a solution to the small segment problem must
be placed at the sender, but the solution is more complicated as illustrated by the
following example.

A user on a telnet application types 25 characters, one character every 200 ms

If TCP sends data immediately, then each byte of data (character) will generate
20 bytes of TCP header and 20 bytes of IP header (we will see this when we study the
IP packet format), resulting in a 40 to 1 overhead (a total of 1000 bytes). While this is
acceptable on a LAN like Ethernet, it is not acceptable on highly congested WANs. If
on the other hand, TCP waits to fill an MSS-sized segment, the question is then how
long should the wait be? This will affect the responsiveness of the application. For
instance, imagine the user hits return and nothing happens because TCP is waiting
for more characters!

An engineering solution would be to wait for a predetermined amount of time before
sending a small segment (less than MSS bytes). Therefore, TCP can use a timer that
fires, say, every 500 ms. When the timer fires, TCP fills the largest possible segment
and sends it. Unfortunately, this approach is not satisfactory on most networks.



3.1 Example 1: LAN with 50 ms RTT

Figure 3: Timer solution on LAN

As illustrated in the above figure, the user gets a response every 2 or 3 characters.
The overhead is 16 to 1 (a total of 400 bytes). This is not a good compromise.

3.2 Example 2: WAN with 5 sec RTT

In this case, the responsiveness is not that bad since the user has to wait 5 sec for the
first response anyway. But the overhead is still high; we still have too many segments
injected into the WAN (10 segments). What this means is that TCP should have
waited longer before sending each segment. But this will only make it worse for the
LAN situation of Example 1.

3.3 Nagle’s algorithm

What we conclude from the above two examples is that we need a timer that is adaptive
to the network, e.g. fast for LAN and slow for WAN. John Nagle suggested a self-
clocking algorithm for the sender that uses the ack as the firing of a timer. The sender
delays a segment until all outstanding data has been acknowledged (stop and wait) or
until TCP has an MSS-sized segment.

while more data
if both available data and the window ≥ MSS

send a full segment
else

// stop and wait
if there is unACKed data in transit

buffer the new data
else

send data in a small segment

Therefore, on fast LANs, Nagle’s algorithm behaves like stop and wait for small
segments, but has high overhead. On slow WANs, Nagle’s algorithm implies more
wait but is more efficient. Let’s revisit the two examples above. For the LAN example
with a 50 ms RTT, every character will see no data in transit (50 ms < 200 ms)
and, therefore, is sent immediately. The response is fast, but the overhead is 40 to 1
again (a total of 1000 bytes for 25 characters). This is appropriate for a LAN. For the
WAN example with a 5 sec RTT, the first character will see no data in transit and,
therefore, will be sent immediately. The rest of the characters will wait for the ack
(5 sec = 25×200 ms). When the ack arrives, the 24 remaining characters are sent in
one segment. The overhead is 3.2 to 1 (a total of 80 bytes). Only two segments are
injected into the WAN. This is appropriate for a WAN.



3.4 To Nagle or not to Nagle

It turns out that Nagle’s algorithm performs badly when combined with delayed acks.
This is best exemplified when we have a repeated pattern of communication involving
small messages in a sequence of write, write, and read operations. The receiver must
wait for the second write to issue a response. Therefore, every read operation is
delayed. The following figure illustrates the idea:
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Figure 4: Nalge combined with delayed ack

For this reason, the TCP specification says that there must be a way for an
application to disable the Nagle algorithm on an individual connection. The socket
API provides a way to do this by setting the socket option TCP NODELAY.

socklen_t i=1;

setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &i, sizeof(i));
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