
Data Communication Networks

Lecture 8

Saad Mneimneh
Computer Science

Hunter College of CUNY
New York

Congestion control . 2
Example . 3
Source based congestion control - Tail drop FIFO router, the TCP way . 4
How much increase/decrease? . 5
Why AIMD ? . 6
AIMD illustrated . 7
Slow start. 8
Effect of slow start. 9
Fast retransmit . 10
Effect of fast retransmit . 11
Fast recovery . 12
Effect of fast retransmit/fast recovery. 13
TCP throughput as function of loss rate . 14
What’s not so good? . 15
Router participation and congestion avoidance . 16
Random Early Detection (RED)(drop packets before you really have to) . 17
Why average? . 18
What does RED achieve? . 19
Misbehaving flows . 20
Fair queueing . 21
Track the ideal bit-by-bit system . 22
But.... 23
Ordering. 24
Guarantees(we will not show the math) . 25
Implementation . 26
Time in rounds . 27
Computing F k

i . 28
Computing ak

i . 29
Finally... 30
Weighted fair queueing. 31

1

Congestion control

We would like a congestion control algorithm that is:

■ Efficient

delay

stay here

th
ro

ug
hp

ut

(combining results seen in previous lectures)

◆ lost packets ⇒ retransmissions
◆ long delays ⇒ timeouts and retransmis-

sions
◆ packets consume resources and then

dropped
◆ throughput drops tremendously

■ Fair

◆ make
(
∑

i
ri)

2

n
∑

i
r2
i

≈ 1 for sources sharing a common bottleneck

■ Distributed

◆ sources are not aware of each other
◆ sources are not aware what resrouces (e.g. links) they are using

Example

S1

S2

R D

100 Mpbs

10 Mpbs

2 Mpbs

■ S1 and S2 are not aware of each other
■ S1 and S2 don’t know that link (R, D) is

slow
■ Efficiency: r1 + r2 ≈ 2 Mbps
■ Fairness: r1 = r1

■ R could actively participate in the congestion control algorithm

◆ make S1 and S2 aware of each other
◆ convey state of link (R, D)

■ But we will assume that

◆ router is dummy
◆ router is FIFO with tail drop strategy (as we have seen before)
◆ sources are entirely responsible for congestion control

Source based congestion control - Tail drop FIFO router, the TCP way
■ TCP controls congestion using the following periodic behavior

1. create congestion
2. detect the point at which congestion occurs
3. back off

■ This can be achieved by sending a number of packets, and then

◆ if some packets are dropped, decrease the rate
◆ if no drops, increase the rate
◆ (how does TCP detect a drop?)

■ This can be integrated in the sliding window algorithm, i.e. a source can change its sending rate
by controlling its window size cwnd

◆ decrease rate ⇒ make cwnd smaller
◆ increase rate ⇒ make cwnd larger

■ Why not control rate directly?

◆ already have window algorithm in place
◆ if rate increases but window remains small ⇒ not much achieved
◆ recall, cwnd = throughput.RTT

How much increase/decrease?

Additive increase multiplicative decrease AIMD

■ Given the window size (every 1 RTT)

◆ if no loss (entire window is delivered), cwnd = cwnd + 1
◆ if there is a loss, cwnd = cwnd/2

A

B

cwnd = 1
cwnd = cwnd + 1

cwnd = 2 cwnd = 3 cwnd = 4

■ Actually, TCP does the following:

◆ on ACK: cwnd = cwnd + 1/cwnd ∗ (in packets)
◆ on timeout: cwnd = cwnd/2

(*) if bytes: cwnd = cwnd + MSS2/cwnd

Why AIMD ?

■ Theoretically, it can be shown that AIMD converges to a point where the system is both efficient
and fair.

■ Intuitive illustration

(r1, r2)

(br1, br2)

(br1+a, br2+a)

r1

r2

Fairness line (r1=r2)

Efficiency line (r1+r2=c)

c

c

additive increase

multiplicative decrease

additive increase

multiplicative decrease

■ Both sources share a common bottlenck

◆ they are likely to experience similar drops

■ Both sources have same RTT

◆ r1 = r2 = cwnd/RTT

■ Dashed lines keep
(
∑

i
ri)

2∑
i
r2
i

constant

■ Bottleneck and RTT assumptions are important

AIMD illustrated

correct
cwnd

timeout due to packet loss

grab back
bandwidth

halve cwnd

■ TCP with AIMD takes a long time to reach the desired bandwidth
■ At start up, increase exponentially (multiplicative increase)

Slow start

A

B

cwnd = 1 cwnd = 4 cwnd = 8cwnd = 2

■ on ACK:

◆ if cwnd = threshold, cwnd = cwnd + 1/cwnd (additive)
◆ else cwnd = min(cwnd + 1, threshold)

■ on timeout:

◆ threshold = cwnd/2
◆ cwnd = 0

■ The term slow “slow” start will be put in context shortly

Effect of slow start

correct
cwnd

timeout due to packet loss

grab BW
faster

threshold

slow start

■ Slow start allows to reach the desired bandwidth faster
■ But causes many losses to occur at the beginning
■ Why the term slow start ?

◆ drops cwnd to zero, requires some time to reach back the desired threshold (instead of
immediately starting at the threshold)

◆ precaution after timeout (available bandwidth is now possibly less)

Fast retransmit

■ Timeouts are too slow
■ Receiver sends ACK upon receipt of each packet (even if out of order)

◆ send ACK for the last in-order packet (previously ACKed)
◆ sender will obtain a duplicate ACK (dupack)

cannot ACK this
send ACK to that (dupack)

■ Sender interprets a duplicate ACK as a sign of drop, but since packets may be reordered in the
network, the sender waits for 3 dupacks

■ This technique of waiting for 3 dupacks instead of a timeout is called fast retransmit

Effect of fast retransmit

correct
cwnd

3 dupacks (fast retransmit)

slow start

timeout

Fast recovery

■ If there are still ACKs coming in, then do not slow start

■ Let cwnd = cwnd/2 after fast retransmit

■ On ACK or dupack, cwnd = cwnd + 1/cwnd (packets)

■ This technique of not slow starting on dupacks is called fast recovery

■ Slow start is used only at the beginning of the connection and after a timeout

Effect of fast retransmit/fast recovery

correct
cwnd

3 dupacks (fast retransmit)

fast recovery

timeout

slow start

TCP throughput as function of loss rate

W/2

W

W/2 time in RTTs

cwnd

■ Every W/2 RTTs, we deliver (W/2)2 + 1/2(W/2)2 = 3/8W 2 packets
■ If drop rate is p, then 3/8W 2 ≈ 1/p

W =
4√
3p

■ The throughput is
3/8W 2

RTT.W/2
=

√
3/2

RTT
√

p
∝ 1√

p

packets/sec

What’s not so good?

■ TCP is based on causing congestion then detecting it
■ Assumes flows are long enough for window to stablize
■ Assumes all sources cooperate, no pretection against misbehaving sources
■ Large average queue size (wait until queue is full to drop)
■ Too bursty

◆ Window based, packets are dropped in bursts
◆ can’t use 3 dupacks
◆ wait for timeout (less efficient)

■ Synchronization and oscillation

◆ all losses occur together
◆ sources decrease rates together (underutilization)
◆ source increase rates together (overflow)

■ Vulnerable to non-congestion related drops (e.g. errors)
■ Not really fair to flows with large RTT

Router participation and congestion avoidance

delay

stay here

th
ro

ug
hp

ut

congestion
avoidance

(router)

congestion
control

(source)

■ Let router participate to avoid congestion before it happens
■ Pros

◆ a router could better control the resource it owns
◆ can do many useful things e.g. fairness (later)

■ Cons

◆ makes router more complicated (we would like it dummy)
◆ deplyment, hard to change existing routers

Random Early Detection (RED)
(drop packets before you really have to)

■ RED keeps two thresholds: Qmin and Qmax

◆ try to keep the queue length Q betweeh these two thresholds

■ How? When a packet arrives:

◆ compute Qavg = (1− w)Qavg + wQ, where 0 < w < 1 (a weight factor)
◆ drop the packet with probability p = f(Qavg)

Qavg

QmaxQmin

pmax

1

p(drop)

■ Originally, p = Qavg−Qmin

Qmax−Qmin
pmax

■ Actually, pcount = p
1−p×count , where count is the number of packets that have been queued while

Qmin ≤ Qavg ≤ Qmax (better avoids clustered drops)

Why average?

Why does RED compute a running average instead of using the instantaneous queue length

■ it captures better the notion of congestion
■ bursty nature of traffic ⇒ queue becomes full quickly and become empty again
■ if queue spends most time empty, it is not appropriate to conclude that the network is congested

time

instantaneous

average

What does RED achieve?

■ Less bias against bursty traffic

◆ a drop does not necessarily imply a successive drop

■ Smaller average queue length

◆ starts dropping early when Qmin ≤ Qavg ≤ Qmax

■ Reduces likelihood of bursty drops

◆ every packet is dropped independently with a certain probability (original definition of p)
◆ closely spaced drops less likely than widely spaced drops (pcount)

■ Reduces likelihood of synchronization

◆ drops do not occur simultaneously for all flows (e.g. when queue is full)

Misbehaving flows

■ RED does not provide a protection against misbehaving flows
■ Consider a UDP flow sending at 10 Mpbs and sharing a 10 Mbps link with many TCP flows

1

2

3

4

5

6

7

8

9

10 UDP

■ UDP does not interprest drops as a sign to decrease its rate ⇒ TCP flows will starve
■ Need router intervention to enforce fairness

Fair queueing
■ Router keeps a queue for each flow
■ Queues are served in round robin order

round robin

■ The round robin service at the router does not replace congestion control

◆ it does not limit how fast a source is sending packets
◆ it is used to enforce fairness

■ But is it really fair?

◆ if S1 has 1000 byte packets on average, and S2 has 500 byte packets on average, then
r1 = 2/3 and r2 = 1/3 (unfair)

◆ to be really fair, we need a bit-by-bit round robin
◆ but we must deal with packets (and packet do not come in one size)

Track the ideal bit-by-bit system

Ideal system

0
1
2
3

4
5
6

7
8
9

■ We think of the traffic as being infinitely di-
visible

■ Queues with packets are served simultane-
souly

■ ak
i (arrival time): time kth packet of flow i

arrives
■ Sk

i (start time): time kth packet of flow i
starts service

■ F k
i (finish time): time kth packet of flow i

finishes service, i.e. departs

Fair Queueing

■ Run the ideal system in the backgroud
■ Upon a packet arrival, compute its finish time
■ Serve packets in order of their finish times

But...

Although the Fair Queueing statement seems innocent, there are few subtleties we need to consider

■ Ordering

◆ does Fair Queueing mean that packets leave in the same order in both systems?

■ Guarantees

◆ What does Fair Queueing really achieve?

■ Implementation issues

◆ how do we run the ideal system in the background

Ordering
■ Intuitively, smaller packets are served first

◆ smaller finish times

■ But longer packets are not pre-empted

◆ once a packet start service, it must finish

■ In the ideal system, however, a packet can arrive and depart before an existing packet that is
being served

1

2

in service

Ideal system: packet 2 will depart before packet 1
FQ system: packet 1 will depart before packet 2

■ Packets do not leave in the same order in both systems

Guarantees
(we will not show the math)

■ Let Fp be the finish time of packet p (in the ideal system)
■ Let F̂p be the time packet p departs the FQ system

F̂p ≤ Fp +
Lmax

r

where Lmax is the length of the largest packet, and r is the service rate

■ Let Qi be the length of the queue for flow i in the ideal system
■ Let Q̂i be the length of the queue in the FQ system

Q̂i ≤ Qi + Lmax

■ Therefore, the FQ system tracks the ideal system closely (up to one packet of largest length),
provided that we can run the ideal system in the background to compute finish times

Implementation

0
1
2
3

4
5
6

7
8
9

■ Flows are served simultanesouly at equal rate

◆ rate of serving a packet varies with number of flows
◆ more flows ⇒ slower
◆ less flows ⇒ faster
◆ rate not constant during lifetime of a packet

■ How to compute finish time of packet?

◆ cannot predict future!
◆ compute finish times in terms of rounds
◆ simulate time in an intelligent way (variable speed clock)

Time in rounds

0
1
2
3

4
5
6

7
8
9

■ p1 will finish in the 3rd round
■ p3 will finish in the 6th round
■ p2 will finish in the 9th round
■ Rounds have different speeds, if server has a rate of c bps then:

◆ rounds 1-3 take 3/c sec each
◆ rounds 4-6 take 2/c sec each
◆ rounds 7-9 take 1/c sec each

■ In general, given a ∆t and n flows, the number of rounds is

c∆t

n

Computing F k
i

0
1
2
3

4
5
6

7
8
9

■ The finish time of a packet (in rounds) can be computed as

F k
i = Sk

i + Lk
i

where Lk
i is the length of the packet

■ The start time of a packet (in rounds) can be computed as

Sk
i =

{
ak

i queue is empty
F k−1

i otherwise

therefore, Sk
i = max(F k−1

i , ak
i)

■ But ak
i must be in rounds!

Computing ak
i■ When a packet arrives at time t, we need to compute ak

i in terms of rounds
■ Let the virtual time V (t) be the time in rounds corresponding to the real time t, i.e. ak

i = V (t)
■ if V (t′) for some t′ ≤ t is known, and the number of flows n remains the same during (t′, t), then

V (t) = V (t′) +
c∆t

n
= V (t′) +

c(t− t′)
n

■ Denote by event either an arrival or departure (in the ideal system), then n is constant during an
interval of time with no events

real time t
virtual time V(t)

system
empty

t1

V(t1)=0

tj-1
tj

V(tj-1) V(tj)

number of flows nj is
constant in (tj-1, tj)

V (tj) = V (tj−1) +
c(tj − tj−1)

nj

where nj is the number of flows in (tj−1, tj)

Finally...
We only need to compute V (t) for times t where an event occurs

■ Arrivals

◆ they are the same in both systems
◆ if event is arrival at time t, then ak

i = V (t)

■ Departures

◆ they are not the same in both systems
◆ how to detect a departure in the ideal system?
◆ the next packet p to leave the ideal system (say at time tnext) is the one that has the smallest

finish time Fp > V (t) (this does not mean that p is the one to leave next in the FQ system)
◆ Let t be the time of the last event, then

Fp = V (t) +
c(tnext − t)

n

tnext = [Fp − V (t)]n + t

■ Upon arrival at time t, compute ak
i = V (t) and the next time tnext when V (tnext) must be

recomputed

Weighted fair queueing

Each flow i has a weight φi and flows get service proportional to their weights

F k
i = max(F k−1

i , ak
i) +

Lk
i

φi

V (tj) = V (tj−1) +
c(tj − tj−1)∑

i∈Bj
φi

where Bj is the set of flows during (tj−1, tj)

