Introduction to the Theory of Computation Homework 1
 Due 9/8/2017
 These are practice exercises

Saad Mneimneh
Computer Science
Hunter College of CUNY

Problem 0: Readings
(a) Read Chapter 0 in Sipser's book.
(b) Read Chapter 1 in Sipser's book.

Problem 1

The formal definition of a DFA M is $\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{u, d\}, \delta, q_{3},\left\{q_{3}\right\}\right)$, where δ is given by the following table:

	u	d
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}	q_{2}	q_{4}
q_{4}	q_{3}	q_{5}
q_{5}	q_{4}	q_{5}

Give the state diagram of this machine.

Problem 2 (do as many as you want)
For each of the following languages, construct a DFA that accepts the language. Assume $\sum=\{0,1\}$.

- $\{w \mid$ the length of w is divisible by three $\}$
- $\{w \mid w$ contains at least five $1 s\}$
- $\{w \mid w$ contains the substring 1011$\}$
- $\{w \mid w$ contains at least two $1 s$ and at most two $0 s\}$
- $\{w \mid w$ contains an odd number of $1 s$ or exactly two $0 s\}$
- $\{w \mid w$ begins with 1 and ends with 0$\}$
- $\{w \mid$ every odd position in w is 1$\}$
- $\{w \mid w$ has length at least 3 and its third symbol is 0$\}$
- $\{\epsilon, 0\}$

Problem 3 (do as many as you want)
For each of the following languages, construct an NFA, with the specified number of states, that accepts the language. Again, $\sum=\{0,1\}$.

- $\{w \mid w$ ends with 10$\}$ with 3 states
- $\{w \mid w$ contains the substring 1011$\}$ with five states
- $\{w \mid w$ contains an odd number of $1 s$ or exactly two $0 s\}$ with six states
- $\{w \mid w$ contains the substring 11001$\}$ with any number of states
- $\{w \mid w$ contains at least two $1 s$ and does not end with 10$\}$ with any number of states
- $\{w \mid w$ begins with 1 or ends with 0$\}$ with any number of states

Problem 4

(a) Show that if M is a DFA that accepts language B, exchanging the accept and non-accept states in M yields a new DFA that accepts the complement of B, and conclude that the class of regular languages is closed under complement.
(b) Show, by giving a counter example, that if M is an NFA that accepts language C, exchanging the accept and non-accepts states of M does not necessarily yield a new NFA that accepts the complement of C. Is the class of languages accepted by NFAs closed under complement? Explain your answer.

Problem 5

Convert the following NFAs to equivalent DFAs.

Problem 6

Convert the following regular expressions to NFAs.

- $(0 \cup 1)^{*} 000(0 \cup 1) *$
- $\left(\left((00)^{*}(11)\right) \cup 01\right) *$
- \emptyset^{*}

Problem 7

Convert the following finite automata to regular expressions.

Problem 8

Use the pumping lemma to show that the following languages are not regular:

- $\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
- $\left\{w w \mid w \in\{a, b\}^{*}\right\}$
- $\left\{1^{2^{n}} \mid n \geq 0\right\}$

