Scheduling Unsplittable Flows Using Parallel
Switches

Saad Mneimneh, Kai-Yeung Siu
Massachusetts Institute of Technology
77 Massachusetts Avenue Room 1-107,

Cambridge, MA 02139

Abstract— We address the problem of scheduling unsplit-

table flows using a number of switches in parallel. This has
applications in optical switching and eliminates the need for
re-sequencing in traditional packet switching. The use of
parallel switches is becoming increasingly popular [1], [2]
since it provides a way of building a high-speed switch while
overcoming the speedup requirement imposed on the switch.
Unlike packet switching however, we will assume that flows
cannot be split across switches. This constraint adds a new
dimention to the problem: various questions such as obtain-
ing the best schedule, i.e. the schedule with the maximum
throughput possible, become NP hard.
Our problem is a special case of the general unsplittable
flow problem, where in a directed capacitated graph con-
taining a number of commodities with demands, the goal is
to obtain a flow that does not violate capacity and in which
all demands are satisfied and every commodity flows along
a single path. In this paper, we are not going to address
the general problem. Rather, we will study the special case
of scheduling unsplittable flows using parallel switches, and
present some simple approximation algorithms to various
aspects of the problem with no speedup. We also define
a speedup version of the problem and discuss under what
speedup we can fully schedule an admissible set of flows.

Keywords — Unsplittable flows, optical switching,
sequencing, approximation algorithms, speedup.

re-

I. INTRODUCTION

HE unsplittable flow problem is studied well in the

literature (see [3] for good references). In this paper,
we study a special case of the unsplittable flow problem,
namely, the problem of scheduling unsplittable flows using
a number of switches in parallel. Before we proceed to the
description of the architecture and the problem statement,
we first motivate our approach and list a number of as-
sumptions. Three main concerns motivated our decision
for not to split the flows:

o Per-flow guarantees: We would be able to achieve per-
flow guarantees since each flow will have a dedicated path
and bandwidth.

o Re-sequencing: Since packets cannot be out-of-order at
the output port anymore, we will eliminate the need for re-
sequencing, which is the main drawback of the architecture
described in [2].

o Optical flows: We would accomodate for optical routers
since optical flows are naturally unsplittable.

In the ideal situation, we would like our scheduling algo-

Emails: saad@mit.edu, siu@perth.mit.edu. This research is done
at the Massachusetts Institute of Technology and is supported by the
Networking Research Program of the National Science Foundation,
NSF Award 9973015.

rithm to be an online algorithm. We also would like it to be
oblivious in the sense that it would be able to schedule the
flows without any knowledge of the remaining capacities
on the links connecting the switches to the output ports,
since this knowledge is probably hard to obtain without any
communication between the input and output ports or be-
tween the input ports themselves. We will prove that with
no speedup (which will be defined later), a fairly general
notion of an online algorithm, that we call greedy, cannot
schedule a subset of the flows in a way to obtain a through-
put that is a positive fraction of the maximum throughput
possible, even if the flows are admissible. Throughout the
paper, we will assume that the algorithm is not oblivious
and has exact knowledge of the remaining capacities on the
links connecting the switches to the output ports. In the
future though, we would like to investigate how to relax
this knowledge requirement.

The switching architecture that we are going to use is
depicted in Fig 1. Each input and output is connected to
all k switches.

output link
S
1@ e
input port i S []
[) (]
[] output port j
[} [}
N ©® LN
input link
&

Fig. 1. The parallel switch architecture

We assume without loss of generality that the number
of inputs and the number of outputs are equal to V. Each
link has capacity 1 and, as a consequence, each switch will
be able to handle N units of bandwidth, where N is the
number of input and output ports. Each flow is at most 1
unit of bandwidth. In the speedup version of the problem,
each link has capacity S (where S > 1), and therefore, each
switch handles SV units of badndwidth. We choose not to
affect the demand (individual flow size) with speedup and
therefore, each flow will still be at most 1 unit of bandwidth
in the speedup version of the problem. Therefore, given a

0-7803-7400-2/02/$17.00 © 2002 |IEEE
2410

set of flows each of which is at most 1, we would like to
unsplittably schedule the flows, which means to assign flows
to the switches such that all link capacities are not exceeded
i.e. each link will handle at most 1 unit of bandwidth (or S
units of bandwidth in the speedup version). A set of flows
is admissible iff the sum of flows at every input and every
output is at most k. We are going to address the following
questions which are generally addressed in the literature:

o Maximization: Given a set of flows, can we unsplit-
tably schedule a subset whose throughput is the maximum
throughput possible?

e Number of rounds: Given a set of flows, what is the
minimum number of rounds that are needed to unsplittably
schedule all the flows?

e Speedup: Given an admissible set of flows, what is the
minimum speedup needed to unsplittably schedule all the
flows in one round? This is known as the congestion factor
in the literature [3].

Note that all the problems stated above are N P-hard.
With regard to the maximization problem, we present some
simple approximations algorithms that guarantee a con-
stant fraction of the maximum throughput possible. As for
the number of rounds, Du et al. shows in [5] that [17£=2]
switches with no speedup are enough to unsplittably sched-
ule an admissible set of flows. Therefore, 3 rounds are
enough to unsplittably schedule an admissible set of flows.
We will provide a 4-approximation algorithm for the num-
ber of rounds when the set of flows is not admissible. Du et
al. shows also in [5] that it is possible to unsplittably sched-
ule an admissible set of flows with a speedup S > 1+ %B,
where k is the number of switches and B is an upper bound
on the size of any flow. Therefore, in our case, a speedup
of 2 will be enough. We will address the same speedup
question for the case of online algorithms.

The rest of the paper is organized as follows. Section
IT establishes a theoretical framework that we are going to
use for answering the various questions above. Section III
addresses the approximability of the maximization prob-
lem, Section IV addresses the number of rounds needed,
and Section V addresses the speedup requirement.

II. THEORETICAL FRAMEWORK

In this section, we define a term that we call blocking
factor. Before we go to the main definition, we need some
preliminary definitions. Assume that we have a set of flows
F and that we schedule a subset of flows G C F. In other
words, G is the set of flows in F' that are passing through
the parellel switch architecture. Let in, s be the input link
connecting the input port of flow f to switch s. Similarly,
let outs ; be the output link connecting the output port of
flow f to switch s. Let u(e) be the amount of flow on link e.
An input link e in switch s is blocking if there exists a flow
f & G such that e = in, s and u(e) > u(out, s). Similarly,
an output link e in switch s is blocking if there exists a flow
f & G such that e = outs r and u(e) > u(ins,s).

Definition 1 (blocking factor) The blocking factor f is
defined as follows:

if B#(
if B=10

where B is the set of all blocking links.

| mineepu(e)
6_{ ~ €B

Note that for any switch s and every flow f € G, at least
one of in, s and out, ¢ is a blocking link, and hence f has
to use at least one blocking link in s in order to be routed
through s. Therefore, every flow f & G has to use at least
one blocking link in order to be routed through the parallel
switch architecture.

The blocking factor is a measure of how large the
throughput of G is, since for every flow f ¢ G, we look
at how much flow in G is going through the switches, ei-
ther from the input port of f or to the output port of f.
A large blocking factor is therefore an indication of a high
utilization of the parallel switch architecture and hence of
a high approximability of the maximization problem.

III. MAXIMIZATION

In this section, we establish a loose connection between
the blocking factor and the approximability of the maxi-
mization problem in scheduling unsplittable flows. More
precisely, we show that a blocking factor § implies a %-
approximation. We first prove that a fairly general notion
of an online algorithm, that we call greedy, cannot achieve
any positive approximation factor.

Definition 2 (greedy) A greedy scheduling algorithm is
an online algorithm that satisfies the following three con-
ditions:

e When a flow arrives, the algorithm has to decide imme-
diately whether to accept or reject the flow.

e If a flow can be scheduled without violating any link ca-
pacity, then the algorithm has to accept the flow and assign
it to one of the parallel switches.

« once a flow is accepted and assigned to a switch, it cannot
be re-routed.

It is worth mentioning that Tsai et. al. proved in [4] that
a multirate clos network is wide-sense non-blocking only if
the number of switches is at least 3k — 2. Since a multirate
clos network is a special case of our architecture, the result
still applies. This is equivalent to the statement that any
greedy algorithm requires at least 3k — 2 switches in order
to unsplittably schedule all flows.

Theorem 1: For any 0 < € < 1, there is no greedy
e-approximation algorithm for the problem of maximizing
the throughput in scheduling unsplittable flows, even with
an admissible set of flows.

Proof: The proof is by construction of a particular in-
stance of the problem where, for a given e, N = (L%J + 1)k.
We divide the input ports into two sets I; and I, where
I; contains the first k£ input ports. Similarly, we divide the
output ports into two sets O and Os, where O; contains

2411

the first k£ output ports. Assume that for every input port
i € I, we schedule an amount of flow equal to 1 from input
port ¢ to output port i in all k switches, except for switch
i where we schedule a flow of size 1 — € from input port
i to output port i, where 0 < € < % Given this setting,
any future flow for output j € O; has to be assigned to
switch j, since all links to output j in all other switches
are fully utilized. We will later describe how we can force
such a setting. Next, from every input port ¢ € I, we re-
ceive k flows of size €¢” for all the output ports in O;. Note
that for the admissibility condition to hold at an output
port j € O1, we require that L%j ke < €; we can assume
equality. The greedy algorithm will have to schedule these
flows and, as argued above, will assign flows for output j
to switch j. For all ¢ € I, this will make all k links from
input port ¢ partially utilized. Next, for each i € I, we
receive k — 1 flows of size 1 and one flow of size 1 — ke”,
all from input port ¢ to output port ¢. Note that the ad-
missibility condition at input ports ¢ € I, still holds since
"x(k)+1x(k—1)+1— ke’ = k. For each i € I,
the greedy algorithm can only schedule the last flow of size
1 — k€’ from input port ¢ to output port 7, since every
link from input port 7 is now partially utilized. So far, the
sum of all flows is kN — ke’. So we can still have ke’ addi-
tional amount of flow (¢’ from each input port ¢ € I), and
without loss of generality, we can assume that the greedy
algorithm is able to schedule them. Note that the maxi-
mum throughput possible is at least k% — ke’ + |1 |k(k — 1)
which consists of the initial setting of the switches in ad-
dition to assigning to each of the first k — 1 switches a
flow of size 1 from input port ¢ to output port ¢, for all
i € Is. Therefore, the maximum throughput possible is
O((1 + [1])k?). The throughput achieved by the greedy
algorithm is k2 + (1 — ke”)[]k, which is O(k?). Therefore,
the approximation factor is at most
O(k?)
O((1+ (1))

which goes to < € when k grows large enough. Now

[1)+1 J+1
we illustrate how we can force the setting described at the

beginning of this proof, namely, for a given i, scheduling an
amount of flow equal to 1 from input port i to output port
1 in all k switches, except for switch ¢ where we schedule
a flow of size 1 — ¢/. We begin by receiving flows, all of
which are greater than %, from input port ¢ to output port 4
while increasing the size of the flow in every time by a small
amount. In every time, the greedy algorithm will choose a
different switch to schedule the flow, since two flows cannot
be assigned to the same switch without exceeding the link
capacities. After the greedy algorithm chooses switch i,
which has to happen at some point, we start fully utilizing
links from input port 7 to all the switches that have not
been chosen yet by the greedy algorithm, by receiving a
sufficient number of flows of size 1 from input port i to
output port ¢. After that, among all the switches which
can take more flows from input port i to output port i,
switch ¢ will have the largest amount of flow going through
it from input port ¢ to output port i. We start receiving

flows in such a way to cause the greedy algorithm to choose
switches in the same order it had before, by receiving the
flows in decreasing size this time and fully utilizing every
link from input port i, except the one going to switch 3.
For instance, if the amount of flow going from input port i
to output port 7 through switch s is b, we receive a flow of
size 1 — b from input port i to output port 7, which has to
be assigned to switch s. We stop just after fully utilizing all
the links from input port i except the one going to switch
i. Hence switch 4 will have 1 — ¢’ amount of flow going from
input port 7 to output port ¢, where 0 < € < % |

Note that it is possible to prove Theorem 1 using a sim-
pler instance with two switches. In that case however, the
total amount of flow presented to the switches will be less
than the total capacity of the two switches. The instance
used in the proof above has the special property that the
total amount of flow received is C' = kN, where C' is the
full capacity of the switches. This implies that the low
approximation factor is not due to the abscence of flows,
and in other words, adding more flows cannot enhance the
approximation factor. So even with enough flow equal to
C, for any €, a greedy algorithm will not be able to achieve
a total throughput greater or equal to €C.

We now prove that a blocking factor 8 implies an ap-
proximation factor 5

Lemma 1: If the blockmg factor is 3, then the through-
put is at least a fraction of the maximum throughput
possible.

2+

Proof: If B = 0o, then there are no blocking links and
hence no flows are left out. Therefore, a fraction equal to
s = 1 of the maximum throughput possible is sched-
uled. If 3 is finite, then let L be the number of blocking
links. Let F be the set of all flows, and G C F be the
set of flows that are scheduled. Let G’ be the set of flows
in F' — G that are scheduled in the optimal solution. We
know that every flow in F — G, and hence in G’, has to
use at least one blocking link in order to be scheduled in
one of the switches. This means that the sum of flows in
G’ cannot be more than L since every blocking link has
capacity 1. Moreover, for every blocking link e, u(e) >
by definition. This means that the sum of flows in G that
are passing through blocking links is at least L3/2, since a
flow can pass through at most two blocking links. This im-
plies that the sum of flows in G is at least /2 that of G.
The throughput of the optimal solution cannot be more

than the sum of flows in G UG’ by definition of G and G'.
Lg/2 _ B
L+LB/2 — 248
of the maximum throughput possible. |

Therefore the sum of flows in G is at least

Note that the fraction stated in Lemma 1 is also true if
we consider the maximum amount of flow going through
an ideal switch, where splitting of flows is permissible.
Throughout the analysis, we did not rely on the fact that
the optimal solution does not allow for flow splitting. The
same analysis applies if we compare the throughput to any

2412

other throughput even when splitting occurs.
Using the result above, we can obtain a %—approximation
algorithm for the problem of maximizing the throughput.

The algorithm is described below:

Algorithm A:

We divide the flows into two groups: large flows and small
flows. Flows that are greater than % are considered large,
all other flows are considered small. The algorithm starts
by scheduling large flows first, in an arbitrary way, until
no more large flows can be assigned to the switches. Then
it schedules small flows, in an arbitrary way, until no more

small flows can be assigned to the switches.

Lemma 2: Algorithm A guarantees a blocking factor
B> 1.

Proof: To prove that the blocking factor g > %, as-
sume the opposite. This implies that there is a blocking
link e in some switch s such that u(e) < 1. By the def-
inition of a blocking link, there exists flow f that is left
out, such that either e = ins or e = outy . As a conse-
quence, u(iny,s) < 3 and u(outy,) < 3. This means that
flow f cannot be a small flow, since otherwise, it could
have been assigned to switch s before the algorithm had
stopped. So f must be a large flow. But since u(ins) < %
and u(outys) < %, only small flows are passing through
ing s and outy s, which contradicts the way the algorithm
favors large flows first. Therefore, § > % |

Theorem 2: There exists a %—approximation algorithm
for the problem of maximizing the throughput in schedul-

ing unsplittable flows.

Proof: Algorithm A is a polynomial time algorithm.
By Lemma 2, Algorithm A guarantees a blocking factor of
8> %, which by Lemma 1, implies a %-approximation for

the problem of maximizing throughput. |

In the following section, we will describe a %—
approximation algorithm for the problem of maximizing
throughput, when the set of flows is admissible.

IV. NUMBER OF ROUNDS

The fact that it might be unfeasible to schedule all flows
unsplittably, even if the admissibility condition holds, moti-
vates the idea of rounds. In this section, we ask how many
rounds are needed to unsplittably schedule all the flows.
The authors in [3] provide an algorithm that schedules all
flows unsplittably in a general graph with a single source
in 5 rounds, given that the cut condition holds. They also
show that this leads to a 5-approximation algorithm for the
problem of minimizing the number of rounds when the cut
condition is not satisfied. The cut condition is a general
admissibility condition.

In our case, we provide a 4-approximation algorithm to
the minimum number of rounds needed to schedule all flows
unsplittably.

When the set of flows is admissible, Du et al. proved
in [5] that [12=5] switches are sufficient to unsplittably
schedule all flows. This implies that 3 rounds are also suf-
ficient since 3 rounds are equivalent to 3k switches. For the
sake of completeness, we provide a simple polynomial time
algorithm that unsplittably schedules an admissible set of
flows using 3k switches. Note that when the set of flows is
admissible, a polynomial time algorithm that schedules all
flows in r rounds implies a %—approximation algorithm for
the problem of maximizing throughput, simply by choos-
ing the round with the maximum throughput, which has
to be at least % of the sum of all flows. As a consequence,
we have a %—approximation for the problem of maximizing
throughput when the set of flows is admissible.

We first describe a 4-approximation algorithm to the
minimum number of rounds needed to schedule any set
of flows:

Algorithm B:

This algorithm consists of a number of rounds. In each
round we run Algorithm A on the remaining flows. We
stop when all flows have been scheduled.

First we prove a simple lemma.

Lemma 3: If a and b are two integers greater than 0 then
5t +1= 4.

Proof: a—1 can be written as ¢ X b+ r where both ¢

and 7 are non-negative integers and r < b. Then L‘IEIJ =q.
ebirtl — gt < g4 1 n

Finally, § =

Theorem 3: There exists a 4-approximation algorithm
for the problem of minimizing the number of rounds in
scheduling unsplittable flows.

Proof: Assume that Algorithm B stops after r rounds.

Let f be a flow that is scheduled in the 7** round. Then
we know that in the first » — 1 rounds, flow f could not
be scheduled, and as a consequence, it has a blocking link
in every switch during all » — 1 rounds. Since algorithm B
runs algorithm A in every round, then the blocking factor
0 is greater than % as argued in the proof of Lemma 2.
This implies that the total amount of flow coming from
the input port of f or going to the output port of f is more
than § x k x (r — 1) = (“1) x 2k during the first r — 1
rounds. In one round however, we cannot schedule more
than 2k amount of flow for any pair of input and output
ports. This means that we cannot optimally have less than
|22] 4 1 rounds to schedule all the flows including flow
f. By Lemma 3, this is at least 7. Therefore, we have the
result since Algorithm B is a polynomial time algorithm.
|

Next, we present an algorithm that unsplittably sched-
ules an admissible set of flows in 3 rounds. As in the previ-
ous algorithms, this algorithm relies on the idea of dividing
the flows into two groups.

2413

Algorithm C:

We divide the flows into two groups: large flows and small
flows. Flows that are greater than % are considered large,
all other flows are considered small. The algorithm starts
by scheduling large flows first using the rearrangeability
property of a clos network (Slepian-Duguid theorem [6]):
Since at most 3k — 1 large flows can exist at any port (and
each is at most 1), we can unsplittably schedule the large
flows using at most 3k — 1 switches, or alternatively 3k
switches. Then the small flows are scheduled in an arbi-

trary way. The 3k switches correspond to the 3 rounds.

Lemma 4: Let F be a set of flows. If no flow f € F
can be scheduled and each flow f € F' is at most B, then
the blocking factor § satisfies 8 > S — B, where S is the
speedup.

Proof: ~ Assume the opposite. By definition of the
blocking factor, there exists a flow f € F and a switch
s such that u(inss) < S — B and u(outss) < S — B.
Therefore, we can assign f to switch s without violating
any link capacity (recall that any flow in F, in particular
flow f, is at most B). This is clearly a contradiction since
flow f cannot be scheduled. Therefore, the blocking facor
0 satisfies 8 > S — B. |

Theorem 4: Algorithm C unsplittably schedules any ad-
missible set of flows in at most 3 rounds.

Proof: 1Tt is enough to show that with Algorithm C, no
small flows can be left out. To prove this fact, let F' be the
set of small flows that cannot be scheduled with Algorithm
C. Applying Lemma 4 to F, B = %, and S = 1, we obtain
that the blocking factor § satisfies § > % in all 3 rounds.
Consider a flow f € F. Since f has a blocking link in every
switch in all 3 rounds, and the blocking factor is more than
%, the amount of flow coming from the input port of f or
going to the output port of f is more than % x k x 3 = 2k.
From the admissibility condition however, we know that at
most 2k amount of flow can exist for any 2 ports. This is
a contradiction. Therefore, the set F' has to be empty. B

Corollary 1: There exists a %—approximation algorithm
for the problem of maximizing the throughput in schedul-
ing unsplittable flows when the set of flows is admissible.

Proof: By Theorem 4, Algorithm C schedules an ad-
missible set of flows in 3 rounds. The Corollary is true
since Algorithm C'is a polynomial time algorithm and the
round with the maximum throughput among all rounds

1

has to have at least 3 of the total amount of flows in the

admissible set. [

In comparision with the work in 3], a ﬁ—approximation
algorithm is obtained for the problem of maximizing
throughput in a general graph with a single source, when
the cut condition is satisfied.

Theorem 4 also implies that a speedup of 3 is sufficient
to unsplittably schedule an admissible set of flows. This

can be achieved by superposing all 3 rounds together to
get the effect of one round where each link has capacity
3. In the following section, we prove a stronger result,
namely that any greedy algorithm can unsplittably schedule
an admissible set of flows with a speedup of 3.

V. SPEEDUP

As mentioned before, Du et al. proved in [5] that a
speedup of 2 is enough to schedule an admissible set of
flows. Note that 2 is also a lower bound on the speedup
required to unsplittably schedule an admissible set of flows.
To see this, consider k + 1 flows from input port i to out-
put port j, each of size ﬁ Since there are k switched
only, at least 2 flows must be assigned to the same switch.

Therefore, the minimum speedup required is % For any
€, by choosing a large enough k, we can make % =2—¢
Therefore, 2 is a tight lower bound on the speedup required
to unsplittably schedule an admissible set of flows. In this
section, we concentrate on greedy algorithms. We prove
that any greedy algorithm can schedule an admissible set

of flows when the speedup is at least 3.

Theorem 5: Any greedy algorithm can unsplittably
schedule an admissible set of flows with a speedup S > 3.

Proof: Let F be the set of flow that cannot be sched-
uled using the greedy algorithm. Applying Lemma 4 to F,
B =1, and S = 3, we obtain that the blocking factor 3
satisfies B > 2. Consider a flow f € F. Since f has a
blocking link in every switch, and the blocking factor is
more than 2, the amount of flow coming from the input
port of f or going to the output port of f is more than 2k.
From the admissibility condition however, we know that at
most 2k amount of flow can exist for any 2 ports. This is
a contradiction. Therefore, the set F' has to be empty. H

The implication of Theorem 5 is that, with flows ap-
pearing and disappearing, a simple online algorithm can
continue to schedule all flows, provided that at any time,
the set of existing flows is admissible. Note that the on-
line algorithm has to be non oblivious (see Section I for the
definition of oblivious).

We can prove that 3 is actually a lower bound for two
natural classes of greedy algorithms. We call these two
classes packing and load balancing.

We begin by defining a packing algorithm:

Definition 8 (packing) A packing algorithm is a greedy
algorithm by which, whenever possible, a new flow f is
assigned to a switch s such that either u(ins) # 0 or

u(outs) # 0.

For instance, a greedy algorithm that, whenever pos-
sible, does not utilize a link that is so far unutilized,
is a packing algorithm. Similarly, the greedy algorithm
that assigns a flow f to a switch s that maximizes
max(u(ins,), u(outs ¢)) is a packing algorithm.

Next, we define a load balancing algorithm:

2414

Definition 4 (load balancing) A load balancing algo-
rithm is a greedy algorithm by which, whenever possible, a
new flow f is assigned to a switch s such that u(in, s) =0
and u(outs s) = 0. If this is not possible, then f is sched-
uled in such a way to keep the maximum used link capacity,
over all links, at a minimum.

For instance, the greedy algorithm that assigns a flow f
to a switch s that minimizes max(u(ins,), u(outs r)) is a
load balancing algorithm.

We have the following results:

Theorem 6: There is no packing algorithm that can
schedule any admissible set of flows with a speedup S < 3.

Proof: The proof is by choosing a speedup S =3 —¢
for any ¢ > 0 and constructing an admissible set of flows
that will cause the packing algorithm to fail in scheduling
all the flows. We will assume that k is even and that k?fl >
S = 3 — ¢, which can be obtained with a large enough k.
We also require a large enough number N of input and
output ports such that N > k x C]’j/z + 2. Let i1, 19,
..., iy denote the input ports. Similarly let 71, jo, ..., jn
denote the output ports. For each ! = 1..N —1, we receive k
ﬂows of size ¢ _kH from input port ¢; to output port j;. Since

k+1 > 3—¢, at most 2 flows from 4; to j; can be assigned to
a single switch. Moreover, since the algorithm is a packing
algorithm, once a flow from 4; to 7; is assigned to a switch
s, the next scheduled flow from 4; to j; will be assigned to
switch s as well. Therefore, exactly g switches will be used
to schedule the k flows from ; to j; for [=1..N — 1. C,’j/Q

represents all possible ways of choosing g switches among k
switches. Since we have N —1 = k x C,’j/2 +1, at least k41

(i1, ji) pairs will utilize the same g switches s1, 82, ..., 5p /2.
Let p1, p2, pr+1 be the input ports of these k + 1 pairs.
Now for [= 1..k 4+ 1, we receive a flow of size k— from
p; to jn. Note that the adm1s51b1hty condition still holds
because (k+ 1) x k+1 = k. Since 2£ > 3 — ¢, switches sy,
82, .., Sg/2 cannot be used to schedule any of the new k41
ﬂows Hence, exactly = switches are avaialable to schedule
the k + 1 flows. Each of the avallable % switches can hold
at most 2 of the k + 1 flows since k +1 > 3 — €. Therefore,
one of the k + 1 flows cannot be scheduled. |

Theorem 7: There is no load balancing algorithm that
can schedule any admissible set of flows with a speedup
S < 3.

Proof: The proof is similar to the one for packing
algorithms. We assume that the number of ports is this
time N = 2Ny + 1, where Ny = (k x C,’j/Q +1). So for
each | = 1..Ny, we can define the input ports 4; and ;4 n,,
and the output ports j; and ji4n,. The idea is to make the
load balancing algorithm utilize g switches in the same way
presented in the previous proof. We will illustrate how this

can be done for one input-output pair (i, ji,). We first

receive 5 flows of sise k 7 from 4y, to ji,. By the definition
of the operation of a load balancing algorithm, these flows
will be assigned to % different switches, say s1, s2, ..., Sg/2-
Now we receive % flows of size € < %_H from input port
11,4+N, to ouput port j;,. The load balancing algorithm

will schedule these flows using the other % switches, say

Sk/24+1s Sk/242> -+ Sk- Next we receive % flows of size k%-l
from input port 4;,4+n, to output port ji,+n,. The load
balncing algorithm will schedule the new flows using the
switches s1, s2, ..., sp/2. Next, we receive g flows of size 1
from input port i;,4n, to output port jj,4+n,. If the load
balancing algorithms assigns any of these new flows to any
of the switches sy, $so, - k2, then the maximum used
link capacity will be 1+ = +1 Therefore, the load balancing
algorithm will schedule the new flows using switches sy /241,
Sk/2+42, -+, Sk, making the max1mum used link capamty
1+e< 1—1—%“. Finally, we recieve 5 k flows of size P +1 from
input port 7;, to output port ji,+n,. The load balancing
algorithm will schedule these flows using the switches si,

82, ..., Sk /2, making the maximum used link capacity 2%

as opposed to kiﬂ + 1 in case it assigns any of these flows
to any of the switches s;,/211, Sg/242, ..., 5. We can repeat
this process for all | = 1..Ny yielding to a situation similar
to the one described in the previous proof. Note that the
admissibility condition holds everywhere.

|

Future work will consider finding either a tight lower
bound or a lower bound greater than 2 on the speedup re-
quired for any greedy algorithm to schedule any admissible
set of flows.

REFERENCES

[1] S. Mneimneh et. al., On Scheduling Using parallel Input-Output
Queued Crossbar Switches With No Speedup. IEEE Workshop on
High Performance Switching and Routing, HPSR 2001.

[2] S. Iyer et. al.,, Making Parallel Packet Switches Practical.
IEEE/ACM INFOCOM 2001.

[3] Y. Dinitz et. al., On The Single Source Unsplittable Flow Prob-
lem. Combinatorica 19 (1) 1999.

[4] K-H. Tsai et. al., Lower Bounds For Wide-sense Nonblocking
Clos Network. Theoretical Computer Science 261, 2001.

[5] D. Z. Du, et. al., On Multirate Rearrangeable Clos Networks.
Siam Journal of Computing Vol. 28, No.2, 1998.

[6] Slepian, unpublished manuscript. 1958.

2415

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

