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Switching Using Parallel Input—Output
Queued Switches With No Speedup

Saad Mneimneh, Vishal Sharpfaenior Member, IEEEand Kai-Yeung Siu

Abstract—\We propose an efficient parallel switching archi- A v/\‘liglu:pgﬁmrtts
tecture that requires no speedup and guarantees bounded delay. each queue each
Our architecture consists ofk input—output-queued switches with
first-in-first-out queues, operating at the line speed in parallel —TT
under the control of a single scheduler, with & being independent ;
of the number IN of inputs and outputs. Arriving traffic is C> C> —I0
demultiplexed (spread) over thek identical switches, switched to —TImiv

the correct output, and multiplexed (combined) before departing
from the parallel switch.

We show that by using an appropriate demultiplexing strategy at s )
the inputs and by applying thesame matchingt each of thek par- C) () IO
allel switches during each cell slot, our scheme guarantees a way
for cells of a flow to be read in order from the output queues of
the switches, thus, eliminating the need for cell resequencing. Fur-
ther, by allowing the scheduler to examine the state of only the first
of the k parallel switches, our scheme also reduces considerably
the amount of state information required by the scheduler. The
switching algorithms that we develop are based on existing prac- T
tical switching algorithms for input-queued switches, and have an C) (I) —1

additional communication complexity that is optimal up to a con-
stant factor. —TDN

Index Terms—Pelay guarantee, parallel switches, speedup,
switching. Fig. 1. Input—output-queued switch.

For instance, traditional switching algorithms that achieve
100% throughput in an input-queued switch do not provide
RADITIONAL output-queued or shared memory archidelay guarantees, and are based on computing a maximum
tectures are becoming increasingly inadequate to meg@éighted matching that requires a running timexgv?) [10],
high-bandwidth requirements, because having to accoymi], or O(N?) [12], making them impractical to implement
for multiple arrivals to the same output requires their switchn high-speed switches. Some recent work has, therefore,
memories to operate av¥ times the line speed, whe® is  focused on asking whether an input-queued switch can be made
the number of inputs. Although input-queued switches providg emulate an output-queued switch, and has demonstrated
an attractive alternative since their memory and switch fabriggat this can be achieved by a combination of a speedup in
may operate at only the line speed, they present a challengetf@¥ fabric (of2 — (1/N)) and a special switching algorithm
providing quality-of-service (QoS) guarantees comparable fased on computing a stable marriage matching. Such emu-
those provided by output-queued switches, and require a ggjon involves substantial bookkeeping and communication
phisticated scheduler or arbiter, making it a critical componegyerhead at the scheduler, however, and despite its theoretical
of the switch. significance, is not yet practical at high speeds. Most practical
switching algorithms for input-queued switches (see, for
Manuscri . o _ ingtance, [3], [9]), therefore, require a speedup of between 2
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combined with efficient switching algorithms, is both feasibl¢four of them). As a consequence, each input—output-queued
and practical, and that operating the switches in parallel incugwitch will then have to emulate an output-queued switch.

only a small additional computational and communication coshile such an emulation is possible as demonstrated in [4],
We show how to guarantee a bounded cell delay with this archiis not yet practical due to the excessive bookkeeping and
tecture. communication needed between the switching algorithm and

The remainder of this paper is organized as follows. litne switches. Moreover, the emulation makes use of non-FIFO
Section Il, we motivate the rationale behind the parallel switajueues. Nevertheless, the emulation algorithm provided in
approach, while in Section Ill, we describe the parallel archi4] is practical at low speeds, suggesting that increasing the
tecture, and outline some of the issues that arise when usmgnber of parallel input—output-queued switches renders the
switches in parallel. We also describe in Section Il the bas&gorithm practical. This, however, implies that the number of
idea that motivates our design of a switching algorithm fqrarallel switches needed has a dependence on the line speed,
this parallel switching architecture. In Section IV, we provideven if switches operating at the line speed are available. By
a general framework for a switching algorithm that guaranteesntrast, to eliminate speedup, our architecture uses a constant
bounded cell delay. We conclude in Section V. number of layers that is independent/gf

e The bandwidth of the architecture in [6]23V R where R
is the line speed. The bandwidth of our architecturéi&R.
[I. M OTIVATION Therefore, fork = 2, which is sufficient to provide delay
guarantees, as will be seen later, both architectures have the

As discussed above, most practical switching algorithms r€ame bandwidth. A more recent work [7] by the same authors
quire a speedup of at least 2. This poses two nontrivial difficult [6] illustrates an output queueing emulation up to an additive
ties in moving toward higher speed switches. constant factorD using N output queues with no speedup.

e The memory within the switch must run at a speed fastefence, they reduce the bandwidth required\t& only. This,
than that of the external lines. This reduces memory accefswever, requires resequencing of cells at the output. But
times, and makes it difficult to build practically usable memsince there is a bouné# on the time a cell will be delayed
ories, especially with continuously increasing line speeds.  from its output queueing time, resequencing can be eliminated

e With speedup, the time available to obtain a matchingy waiting a timeD before delivering any cell at the output.
(by execution of the switching algorithm) is also reducedhe remaining disadvantage is that= 2kN wherek is the
This is particularly problematic for some of the more complexumber of switches, and, hence, the delag@{sv?).
switching algorithms needed to provide guarantees. Specifi-Our main goal is not to emulate output queueing, as was done
cally, with a speedup of, a switching algorithm has only/S  in[6] and [7]. Rather, it is to obtain an efficient and practical way
time units to compute a matching. of achieving basic guarantees, such as bounded delay on every

Our approach, therefore, is to eliminate the need for speedtgll, with a constant number of parallel layers, no speedup, and
by using input-output-queued switches in parallel. It should kdthout the need to resequence cells at the output.
noted that a previous work that addresses the use of parallel
switches appears in [6]. Below, we briefly point out some dif-
ferences between our approach and [6].

e In [6], the authors use parallel output-queued switches,
while we use parallel input—output-queued switches, thus, of-We use an architecture similar to the architecture described
fering a different theoretical framework for the problem. in [6]. The only difference between the architecture presented

o The objective in [6] is to emulate output queueing for &ere and that of [6] is that we use input—output-queued switches
switch operating at a high line speed by using a number while the authors in [6] use output-queued switches. The archi-
output-queued switches operating in parallel at some submigeture is depicted in Fig. 2.
tiple of the line speed. Our objective is to provide basic guaran-The architecture consists of thé input ports having a de-
tees, such as bounded delay on every cell, without requiring anyltiplexer each, and th& output ports having a multiplexer
speedup in the system. each. The middle stage consistsko$witches in parallel, with

o The algorithm in [6] relies on simulating an output-queuedach switch being an input—output-queued switch, like the one
switch in the background, which requires the maintenance otiapicted in Fig. 1. At each input paita demultiplexer sends a
large amount of state information. Our switching algorithms, atell arriving on that input to one of tHeparallel switches. Like-
the other hand, are based on existing switching algorithms fwise, at every output port, a multiplexer accesses the output
an input—output-queued switch that do not require an excessiueeue for that port (i.e., thggh output queue) in each of the
amount of state information. switches. Since no speedup is to be used, we define a cell slot

e The architecture in [6] naturally requiresN parallel to be the time needed for a cell to be read from or stored into
layers (whereN is the size of the switch) of output-queuedh queue. Therefore, the switches operate in cell slots where in
switches to fully eliminate memory speedup in the system. Thégach cell slot, each switch can forward at most one cell from an
is because the qgueue memory of each switch is required to apput port and at most one cell to an output port. Although we
erate at a speed equal2&N/k, whereR is the line speed and assume that no speedup is being used, the switches of Fig. 2 are
k is the number of parallel switches. This dependenc&aan input—output-queued switches for the following reason: Since
be removed if input—output-queued switches are used instéhdre is no speedup, an output port can deliver at most one cell

Il. PARALLEL ARCHITECTURE
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Unlike what one might think, however, this approach does not
eliminate the need for speedup. This is because each segment
will now require(1/%)th the time of a complete cell, so a cell

will have to be forwarded across the parallel switches in only
(1/k)th of a cell slot. Thus, the time available for the switching

Sk

/ Parallel
Input Switches

Output
Demultiplexers Multiplexers algorithm also reduces by a factor bf and & matchings will

have to be computed per cell slot.

Fig. 2. Parallel switches.

B. Rate Splitting

per cell slot; h_oweve_r, multiple_ cells can be forwarded to that vat another approach could be to split a flow among the par-
output by multiple switches during a single cell slot. Hence, fol e switches to divide its rate equally among them. If the par-
warded cells need to be stored. _ allel switches are allowed to forward cells independently, how-
During each cell slot, multiple cells may arrive at an input eyer, itis difficult to control the order in which cells of the same
provided each is destined to a different outpuThe actual ar- fioy emerge at the outputs of the switches. This can lead to
rival pattern, of course, depends on the traffic model and @fher deadlock or output overloading with FIFO output queues,
the specific implementation of the demultiplexers (for examplgg gescribed below. For example, two cells that arrive at a given
each demultiplexer in Fig. 2 can represévitactual demulti- iyt and are sent to two different switches may experience dif-

plexers for the differentv flows at the input). ferent delays depending on the state of each switch and, thus,
To proceed further, we define the following notation: may arrive at the output in the wrong order. Even though it ap-
(¢, 4) flow (of cells) from input: to output;. pears that this could be circumvented by controlling the order
C(i,j)  acell from input: to output;. in which the output queues are read (that is, by determining at
P(i, j)  acell from input: to output;. each cell slot the output queue containing the oldest cell of a
VOQi; VOQi; in switchl. flow and reading that cell), there could still be situations, such
oQh Output queug in switch!. as the one depicted in Fig. 3, where no output queue can be read

Unless otherwise mentioned, in the proofs that follow, Wgithout violating the order of cells.
neither require any synchronization between cell arrivals andin Fig. 3, the cells at the head of output qugtrboth parallel
the operation of the parallel switches, nor do we require agwitches are the second cells of their respective flows. Thus,
synchronization between the switches themselves, excepiyith FIFO output queues, it is not possible to deliver any cell
that they all perform a matching by the end of a cell slot. Ot output;j without violating the order of cells in a flow. An-
problem is to find a switching algorithm that provides delagther solution could be to read the head-of-line (HOL) cells and
guarantees while being efficient and practical to implemenbemporarily store them to be delivered later. When the multi-
The architecture in Fig. 2 suggests the following naturglexer has read deep enough into the output queues to be able

decomposition of the switching algorithm: to reconstruct the correct order of cells in a flow, the HOL cells
o demultiplexing: at every input, deciding where to send stored earlier can be released in the correct order. Clearly, if this
each incoming cell. happens often, cell slots will be wasted without delivering cells

¢ switching: for each of thé parallel switches, deciding on at outputj, causing the FIFO output queues to become over-
a matching, i.e., which cells to forward across the switch.  loaded and to grow indefinitely (see the Appendix). Of course,
e multiplexing: at every outpuf, deciding which switch to the above statement assumes that the output queues are FIFO

read a cell from. and that a multiplexer cannot access more than one cell per cell
Before discussing the operation of this architecture, we dgot. The choice of the FIFO restriction is based on the ease of
scribe why some simple approaches do not work. implementation of FIFO queues. Restricting the multiplexer to

at most one access per cell slot emanates from the need to have

no speedup in any part of the parallel architecture. Both of these

restrictions are reinforced by the fact the we do not allow for
The simplest approach one may consider is to segment eael resequencing at the output.

incoming cell intok segments, forward the segments in parallel Therefore, while on one hand our goal is to enable the

across the switches, and reassemble the segments at the ouptitches to operate in a coordinated fashion, on the other it is

A. Segmentation
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to avoid excessive bookkeeping of the type needed in [6] €4, j), which is a contradiction. Next, we prove that:, j)

emulate output queueing. is the oldest cell of flow(¢, j). If this is not so, note that by the
per-flow orderproperty, the oldest cell of flowt, ), P(¢, j),
C. Basic Idea must be at the output side, and in the worst case, must have been

o , _ _ forwarded by the end of the cell slot during whi€l{s, j) was

The key idea is to first avoid the type of deadlock depicted i\ arded. By the definition o&rrro and sinceP(4, 7) is older

Fig. 3. Having achieved that, we focus later on how to prOVid[ﬂanO(i, ), PG, §) <rmro C(i, 4), and we reach a contradic-
the delay guarantees. We say that a €&i$ older than a celP tion again. m
if C arrives before”. In order to avoid the type of deadlock in 114 above lemma implies that for every fid 7), when-
Fig. 3, we consider the following two properties. ever there are cells in the output queues for outpua cell

Definition 1 (Output Contention)in a single switch, two can be delivered at outpytwithout violating the order of cells

cells coming from different inputs and destined to the samg aining to flow(s, j). Therefore, this eliminates the dead-

output cannot be forwarded during the same cell slot (by th&.y sjtuation described earlier and prevents the output queues
property of a matching, this is trivial when the switch has "Bom being overloaded. Theutput contentiorproperty is triv-
speedup). ially satisfied when the switches have no speedup. Therefore,

Definition 2 (Per-Flow Order): For any two cellsC’ andl> eyl design our switching algorithm to satisfy tiper-flow
of the same flow, ifC is older thanP, then by the end of the order property.

cell slot during whichP was forwarded( would have been
forwarded.

We will show that the two properties above are sufficient to
ensure that, at an outpyf the cells of any flow(z, j) can be  To specify our approach, we will describe how we carry
read in order. We begin by defining this order more formally. Iout the three steps outlined in Section Il (demultiplexing,
doing so, we define a partial order relation that we denote kyitching, and multiplexing). As motivated earlier, we will
<rrro. The partial order relatiorrrro is defined over all the design our switching algorithm to satisfy tiper-flow order
cells that are residing at the output side of the switches. Hoproperty. We state the following definition which is needed in
ever, as it will be seen later from the definition-efro, some the rest of the paper.
cells might be left unordered byriro. These are cells thatare  Definition 4 (:-Parallel Switching): k-parallel switching
destined to different outputs or cells of different flows that arg that where, during each cell slot, the switching algorithm
forwarded during the same cell slot. We will define the order reomputes only one matchingy and applies it in alk parallel
lation <prro in such a way that, if theer-flow orderproperty switches.
is satisfied, it will induce the standard FIFO order on all cells We start by describing the demultiplexer operation.
pertaining to a single flow.

Definition 3 (<riro): Forany two cellso'(¢, j) andP(k, j)  A. Demultiplexer Operation

at the output SldeC('L., J) =<FIFO .P(.k’ J)if To distribute the incoming cells among the parallel
* the cell slot during whicl€(i, j) was forwarded precedesgyiiches, the demultiplexer follows a special demultiplexing
the cell slot during whictP(k, j) was forwarded, o girategy, which we calminimum lengthdemultiplexing, as
* ¢ =k, C(1, j) is older thanP(k, j), and both were for- yafined below:
warded during the same cell slot. Definition 5 (Minimum Length Demulti-
Note that ifC(4, j) <rwro P(4, j) and theper-flow order plexing): DemultiplexerD; sends a cell destined for outpjt
property is satisfied, thet'(¢, j) is older thanP(i, j). More  to a switch/ with a minimum number of cells il¥ OQ!; at the
precisely, we have the following lemma. end of the cell slot preceding the current cell slot.
Lemma 1: If the output contentiomndper-flow orderprop- We now prove that this strategy together witkparallel
erties are both satisfied, the following is true for every ougput switching ensures that theoldest cells for each flow:, ;) are
At the end of a cell slot, eitheD@’ is empty for alll or there always in distinct switches. We start with a simple lemma.
exists a flow(, j) such that its oldest cefl (¢, j) isatthe head  Lemma 2: If minimum lengtidemultiplexing andk-parallel
of 0Q’, for somel. switching are used, then at the end of a cell slot, the lengths of
Proof: If at the end of a cell slo)Q’, is empty for alll, VOQ!; andVOQ;; differ by at most 1 for any two switchds
the lemma is true. So assume that, at the end of a cell slot, therel s.

IV. APPROACH

is anl such thaOQé» is not empty. Sinc&rrro is an order re- Proof: The proof is by induction on the number of cell
lation, there must exist ahand an: such thaOQj contains a slots.
cell C(4, j) with the following property: there is no celt(k, j) Base Case: The lemmais trivially true at a fictitious cell slot

at the output side satisfying(k, j) <rro C(4, 5). We will  before the beginning of the first cell slot.

prove thatC(i, j) is at the head oOQj and thatC(i, j) is Inductive Step: Assuming that the lemma is true at the end
the oldest cell of flow(i, 7). We first prove thatC'(i, j) is at  of cell slot7’, we will prove that it holds at the end of cell slot
the head oDQ’. If a cell P(k, j) is ahead of0(i, j) in OQ%, T + 1. We focus on any twd’0Qs,VOQ!;, andV0Q;;, and
then by theoutput contentioproperty,P(k, 7) was forwarded we consider two cases:

during a cell slot prior to the cell slot during whigfi(%, 4) Case 1: Atthe end of cell sl@t, bothV O@Qs were nonempty.
was forwarded. By the definition okrrro, P(k, j) <rro  k-parallel switching during time slof” + 1 will decrease the



MNEIMNEH et al: SWITCHING USING PARALLEL INPUT-OUTPUT QUEUED SWITCHES WITH NO SPEEDUP 657

length of bothV” O@s by the same amount (by either 0 or 1). If Corollary 1: If minimum lengtldemultiplexing and:-par-
no cell is sent to either one of théOQs during cell slofl”+ 1,  allel switching are used, then for every outgutt the end of a
then the lemma holds at the end of cell slot+ 1. Otherwise, cell slot, eithe|OQ§ is empty for alll or there exists a flow such
a cell is sent to one of thEOQs sayVOQﬁj. By theminimum that its oldest cell is at the head OQi for somel.
lengthdemultiplexing, we know that at the end of cell sibt Proof: Since theoutput contentiorproperty is trivially
the length ofVOQ}; was at most that o’ OQ;;. Therefore, satisfied, the corollary is immediate from Lemma 1 and
adding one cell td/OQﬁj will not violate the lemma. Theorem 1. ]
Case 2: At the end of cell sldf, at least oné’OQ, say  The demultiplexers do not have to explicitly identify the
VOQ!;, was empty. Then we know by the lemma tha®Q;; Vv OQ with the minimum number of cells, as we can prove
must contain at most one cell. If a céll4, j) is sentduring cell that each of the following strategies, when combined with
slot 7' + 1 to eitherVOQ!; or VOQs;, then by theminimum  k-parallel switching, is aminimum lengtfdemultiplexing.
lengthdemultiplexing it must be sent ﬂszQﬁj. Therefore, at  Round Robin:In this strategy, each demultiplexer keelgs
the end of cell slofl” + 1, the length of botVOQs is at most counters, one for each output. Each counter stores the identity
1, and the lemma holds. m  of the switch to which a new cell for that output should be sent,
Using Lemma 2, we can now prove the following lemma: and all counters start initially at 0. Every time the demultiplexer
Lemma 3: If minimum lengtldemultiplexing and:-parallel sends a cell for a particular output to the switch specified by
switching are used, then for any flow, at the end of a cell slahe corresponding counter, it increments that counter maddulo
either all cells at the input side are in distinct switches oritheThis has the nice property of dividing the rate of a flow equally
oldest cells at the input side are in distinct switches. among thek parallel switches. Moreover, as we will illustrate
Proof: If at the end of a cell slof’, there is som& OQ;; later in Section IV-D, this strategy will be useful for building a
that is empty, then by Lemma ZV,OQﬁj has length at most 1 switch that supports a line speed thatitmes the line speed
for all I, and, hence, all cells at the input side are in distinef the individual switches.
switches. If at the end of a cell sl@, no VOQ@;; is empty, Round-Robin ResetThis strategy is theRound-Robin
then for thek oldest cells at the input side not to be in distincstrategy with a slight variation. For every flog, j), the
switches, it must be that soné0Q;;, say VOQ!;, contains system keeps track of the number of cells of that flow that
two of thek oldest cellsC; andC>, and anothet’ OQ;;, say are still residing at the input side of the switches. Whenever
VOQ;;, contains a cell’s that is not among thg oldest cells. this number becomes 0, the counter at demultipléXethat
Without loss of generality’s is the head ot OQ; by the end corresponds to output is reset to 0. This strategy requires
of cell slotT". Let T, be the cell slot during which’; arrived to  some extra information (to be kept either by the switching
VoaQ;;. algorithm or by the demultiplexers) to correctly reset the
Consider the end of cell sldfy — 1. Since only one cell counters of the demultiplexers. Moreover, it might require
C(i, j), in this case’s, can arrive during cell sldfy, we know  some synchronization between cell arrivals and the cell slots
that at the end of cell sldf, — 1, bothC, andC, were inV OQ%;.  of the switch. As will be seen later, however, this strategy will
Therefore, from the end of cell sl@, — 1 until the end of cell actually allow the switching algorithm to keep less information
slot 7", VOQ!; was nonempty. Thereforé:parallel switching for coordinating the operation of multiplexers at the output
implies that every timé’OQ;; was served by a matching, soports, and, in some cases, it also helps to reduce the amount of
wasV OQ};. Since at the end of cell slat, Cs is at the head of state information that the switching algorithm must consider
VOQ3;, all the cells that were il OQ;; at the end of cell slot for computing a matching.
1o — 1 must have been forwarded by the end of cell $loThis ~ Lemma 4: If k-parallel switching is used, theRound-Robin
means that at least that many cells, excludihgandC>, were  demultiplexing is aminimum lengttdemultiplexing.
also forwarded fronVOQﬁj. Therefore, at the end of cell slot Proof: We will prove that for any flow(i, 5), by the end
Tp — 1, the lengths o OQ; andV OQ;; differed by at least of a cell slotT’, eitherVOQ;;s in all switches have the same

two, which contradicts Lemma 2. _ B |ength, or starting from a switch, we can find a round-robin order
~ Using Lemmas 2 and 3, we prove the main result of this segn the switchesS; to Sy, such that there exists< ! < k, such
tion. that VOQﬁj is the lastV’ 0Q);; that received a cel’(¢, j) by

Theorem 1:If minimum lengthdemultiplexing andk-par-  the end of cell slofl’, the length of anyoQ;; forl < s <k
allel switching are used, then tiper-flow orderproperty is sat- is L, and the length of anyoqQ;; for0 < s < lis L + 1.
isfied. Note that proving the above claim proves the lemma since the

Proof: Consider a flow(i, j) and a cell slofl". If no cell next cell slot a cellC(¢, 5) arrives, it will be sent to & OQ;;
C(t, j) is forwarded during cell sldf’, then theper-flow order  with the minimum number of cells, either becads@q);;s in
property for flow(é, j) cannot be violated during cell slét As-  all switches had the same length at the end of cell loor
sume a cell’(z, 5) is forwarded during cell sldf’. By Lemma because the cell is senttﬁOQ%*l) by Round-Robirdemulti-

3, atthe end of cell sldf’ — 1, either all cells of flow(¢, j) were plexing, which has a minimum number of cells. We prove the
in distinct switches or thé oldest cells of flow(¢, j) were in above claim by induction on the number of cell slots.

distinct switches. Thereforg;parallelswitching cannotviolate  Base Case: The claim is trivially true at a fictitious cell slot
the per-flow orderproperty during cell slof". m before the beginning of the first cell slot sink8OQ;;s in all

As a consequence, we can now prove that usimigimum switches have the same length.
length demultiplexing andk-parallel switching cannot create  Inductive Step: The claim is true up to cell siBt We will
the deadlock situation illustrated in Section IlI. prove that it remains true for cell sl@t+ 1. We are not going
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to consider the interleaving in the operations of applying the In what follows, we will assume that cells arrive only at the

matching and sending a cell to so&Q), but one can show beginning of a cell slot. This requirement can be realized by

that this interleaving has no effect on the reasoning below. delaying an incoming cell until the beginning of the next cell
If VOQ;;s in all switches had the same length by the end sfot, which increases the cell delay by at most one cell slot.

time slot7’ (or after the arrival of a cell during cell sl@t + 1), We first state the following simple lemma.

k-parallel switching implies that they will have the same length Lemma 5: For any real numbeg, if minimum lengthde-

by the end of cell slof’+ 1. Moreover, byk-parallel switching, multiplexing and[S-parallel switching are used, and cell ar-

if a cell is forwarded from &’ OQ?. for s > 1, a cell will be rivals occur only at the beginning of a cell slot, thedifis the

) . . R .
forwarded from &’ OQ; for s < I. Therefore, the above claim matching computed in cell sI& and (¢, j) € M, then either

will still be true after applying the matching. all the cells of flow(i, j) or the[S] oldest cells of flow(¢, )
If a cell C(i, 5) arrives during cell slof” + 1 andVOQ;;s are forwarded by the end of cell slét
in all switches had the same length by the end of cell %lot Proof: If at the end of cell slof” — 1, at leas{ ST cells of

(or after applying the matching during cell sft+ 1), then if flow (¢, j) are atthe input side, then the resultis true by Lemma
P(i, j) is sent to som& OQ;; (which will have the maximum 3 applied at the end of cell sld’ib— '1. If at the gnd of 9el| slot
number of cells by the end of cell sl#t+ 1), we set the order 7'—1, lesstharj57] cells of flow(:, j) are atthe input side, then
S, to Sy such thatS; = S, and we maké = 1. assume, without loss of generality, that a &, j) arrives at

If a cell C(4, 4) arrives during cell slof” + 1 and by the end th€ beginning of cell slaf’. By Lemma 3 applied at the end of
of cell slot 7" (or after applying the matching during cell sloc€!l SlotZ"— 1, and byminimum lengttdemultiplexing C'(¢, ;)
T + 1), we had the ordes; to S, with somel < k — 1, then will be sent to an empty’ OQ);;. Thus, at the beginning _of cell
we keep the same order and incremieny one. Ifl = k — 1, Siot7’ there are at mosiST cells of flow (z, j) at the input
then by the end of time sI&t + 1, VOQ;;s in all switches will side, each being in a separdte) by Lemma 3. Therefore,
have the same length sin€&, j) will be sent toS;. [ S-parallel switching implies that all cells of flowg:, j) will

A similar proof can be constructed fétound-Robin Reset P€ forwarded by the end of cell sigt _ u
sinceRound-Robin Resetts exactly likeRound Robingxcept ~ USINg Lemma 5, we can prove the following theorem.
that it resets the round-robin order for a flow whenever all cells 1 n€orem 2:1f cell arrivals occur only at the beginning of a
of that flow have been forwarded. In the interval between twiE!l SIOt then anyk-serial switching algorithm under a frac-
successive resets, therefdReund-Robin Resbehaves exactly 10nal Speedup’ = k/c can be emulated usimginimum length

like Round Robirand, hence, satisfigsinimum lengtidemul- demultiplexing and af.s-parallel switching algorithm.
tiplexing. Proof. Everyc cell slots, the:-serial switching algorithm

has exactlyt matching phases, during all of which a matching
M is kept constant. ThgS]-parallel switching algorithm will
B. Switching Operation run thek-serial algorithm in the background, and in doing so, it
will compute the same matchiny everyc cell slots. We will
We showed howminimum lengthdemultiplexing together prove the theorem by induction on the number of cell slots.
with k-parallel switching can satisfy theper-flow order Base Case: The theorem is trivially true at a fictitious cell
property, which (with theoutput contentiorproperty) ensures slot before the beginning of the first cell slot.
that, for every outpuy, it is possible to read a cell (if one is Inductive Step: By the end of cell sl@t, all cells that were
available) without violating the order of cells within a flow.forwarded by thé:-serialalgorithm were also forwarded by the
In Section IV-C, we explain how, during each time slot, théS|-parallel algorithm. Consider cell sI&+ 1. Since the:-se-
multiplexer may identify the appropriate queue to read fromial switching algorithm can have at mdsf] matching phases
Our focus here is to consider how a matchiff) may be in every cell slot (speedup &), this implies that if(i, j) € M,
computed to achieve a bounded delay on every cell. We tuhen the number of cells of flo, j) that are going to be for-
our attention first to a class of switching algorithms for thevarded during cell slof” + 1 by thek-serial algorithm cannot
single switch setting that we caltserial switching. be more tharfS7. By Lemma 5, if(<, j) € M, then either all
Definition 6 (:-Serial Switching): In a single switch setting, the cells of flow(z, ) or the[S] oldest cells of flow(, ) are
k-serial switching is one in which the switching algorithm apforwarded during cell sloT’ + 1 by the[.S]-parallel algorithm.
plies a given matching/ consecutivelyt times before com- Therefore, if a cellC(¢, j) is forwarded during cell sldl” + 1
puting and applying a new matching. by the k-serial algorithm, and had not been forwarded by the
Our intention is then to show that akyserial switching al- [S]-parallel algorithm by the end of cell sI&, then it must be
gorithm with a particular speedup can be emulated by a combmong the cells that will be forwarded during cell slot 1.m
nation ofminimum lengtldemultiplexing and somk’-parallel Note that ifS is an integer (which we can always assume to
switching algorithm, where we define emulation as follows. be true), then theS]-parallel switching algorithm is &-par-
Definition 7 (Emulation): If, using ak-serial switching al- allel switching algorithm becausg = [S] = k. In this case,
gorithm, a cellC is forwarded across the single switch during as a practical consideration, theparallel switching algorithm
cell slotT’, then usingninimum lengtldemultiplexing and some does not need to run thie-serial switching algorithm in the
k’-parallel switching algorithm, the same cell would also haveackground. Instead, it reconstructs the state of the single switch
been forwarded across one of ttigparallel switches by the end from thek parallel switches. This is possible since in every cell
of cell slot?". slot both switching algorithms apply the same matchifigan
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equal number of timek (one in parallel and the other sequenqueue of pory is at most[.S1D 4 + ¢+ B; since at most + B
tially); therefore, by the end of a cell slot, the same cells whidells destined to outpuyt could have arrived during thecell
remain at the input side in the single switch also remain at thkots, by the property of the constant burst traffic. This means
input side in thek parallel switches. This reconstruction of theéhat the total number of cells that remain in the output queues
exact state of the single switch requires also that the same cefiport j after thec cell slots is at mosfS|D4 + B. This is
are being read from the output queues in every cell slot by bdthie for anye; therefore, at the end of a cell slot, the nhumber
algorithms (FIFO order). We know from Lemma 1 that this isf cells in all output queues of pojtis at most[S]D 4 + B.
possible (since:-parallel switching means that cells that areAs a result, since the output emulates a FIFO queue (with an
forwarded to the same output during a single cell slot pertain f&-parallel switching algorithm, all cells at a particular output
the same flow, and, hence, all cells at an output are ordereddrg ordered by<rrro), Once a cell arrives at the output side, it
the< 1o relation). Reconstructing the single switch from khe will be delivered within at mosfS1D 4 + B cell slots, hence,
parallel switches, however, implies that the switching algorithachieving a bounded delay @fS7+1)D.4 + B on every cellm
has to look at a large amount of state. At the end of this sectionJf Round-Robindemultiplexing is used, then to achieve a
we will suggest a way to reduce the amount of state informatitwounded delay on every cell, we need not restrict the output
that thek-parallel switching algorithm has to look at; namelyto read cells in a global FIFO order. We only require that
we will consider looking only at the state of the first switch. the output read cells of the same flow in order, which is a
Note also that since thgS]-parallel switching can exactly requirement we have imposed throughout the paper.
mimic thek-serial (S = k&) algorithm whenS is an integer, it  Theorem 4:If a k-serial switching algorithm under a con-
can provide the same guarantees ag:tiserial switching algo- stant burst traffic and a fractional speedfip= k/c guaran-
rithm. tees a cell arbitration delay 4, then emulating that switching
Below, we state some loose delay bounds that the emulategorithm usingRound-Robirdemultiplexing and ahS]-par-
guarantees for every cell under a constant burst traffic [3]. &llel switching algorithm achieves a bounded delay [ +
a constant burst traffic, the number of cells arriving at a give D,y + B + ([S] — 1)(IV — 1) on every cell, wheré3 is the
input port or destined to a given output port during an intervaédaffic burst constant and’ is the size of the switch, provided
of time 7" is bounded byxT’ + B where B is a constant inde- every output reads cells of the same flow in order.
pendent of time and: < 1 is the loading of the switch. We Proof: The proof is similar to the proof of Theorem 3. We
define the arbitration delay of a cell as the time the cell remainse the fact that at the end of a cell slot, the number of cells in
in its VOQ. The following theorem states that if each outpuall output queues of port is at most[S]D.4 + B. Assume a
emulates a global FIFO queue, emulating-gerial switching cell C(¢, j) remains inOQ". for at leastS1D4 + B + ([S] —
algorithm that guarantees a cell arbitration delay will also resulj(~¥ — 1) + 1 cell slots. By the end of the cell slot during
in guaranteeing a total cell delay. whichC(i, j) was forwarded(Q@Q". contained at mogtSD 4+
Theorem 3: If a k-serial switching algorithm under a con- B cells includingC(%, j). Therefore, at leagt{S] — 1)(N —
stant burst traffic and a fractional speedtip= % /c guarantees 1) + 1 cells, that were forwarded aftér(¢, j), were delivered
a cell arbitration delayD .1, then emulating that switching al- at output; beforeC(, j). These cells cannot pertain to flow
gorithm usingminimum lengtldemultiplexing and afS|-par- (¢, j) since cells of a flow are delivered in order. Therefore, at
allel switching algorithm achieves a bounded delay [f] + mostN—1 flows can contribute to these cells. As a consequence,
1)D 4 + B on every cell, where3 is the traffic burst constant, there exists a flow for which at leagf cells were forwarded
provided that every output reads the cells in tharo order.  after C(4, j) and delivered at output before C(4, j). Since
Proof: By Theorem 2, we know that thgS]-parallel Round-Robidemultiplexing is used and the output reads cells
switching algorithm will guarantee a cell arbitration del2y. of the same flow in order, it must be that one of these cells, say,
Therefore, at the end of a cell slot, the number of cells destinéj was inOQj». ButOQj is a FIFO queue anff was forwarded
to an outputj that are still at the input side cannot excded to it after C(¢, j). Therefore P could not have been delivered
in any of the[ S| switches. Otherwise, at least one cell will bet outputj while C(¢, ) remains mOQﬁ ]
delayed for more tha® 4 cell slots at its input, implying that It remains for us to show the existenceke$erial switching
its arbitration delay will be greater tha,,. Consequently, at algorithms that guarantee a cell arbitration delay under some
the end of a cell slot, the number of cells destined to outpsipeedupS = k/c. We will modify some existing switching
j that are still at the input side in afl5] switches is at most algorithms that guarantee cell arbitration delay under some
[S1D.4. By Corollary 1, if there are cells waiting in somespeedugs to make thenk-serial switching algorithms, for any
output queu®@, then itis possible to deliver a cell at outgut integerk.
without violating the cell order of any flow. Therefore, as long 1) Somek-Serial Switching Algorithms:in order to obtain
as someOQ§ is not empty, outpuf delivers a cell. Consider k-serial switching algorithms, we convert existing switching
a cell slotT" in which someOQg» becomes nonempty. At thealgorithms for a single switch int&-serial switching algo-
end of cell slotl’ — 1, the number of cells destined to outgut rithms, by simply modifying the existing algorithms to hold the
that reside at the input side is at msf| D 4, as argued above. matching that they compute constant fotimes! Our motiva-
If during c cell slots starting from cell slof’, someOQ is
nonempty, then by the end of teeell slots, outpug will have 1A similar idea was suggested in which a random matching is computed in
. . every matching phase, but the matching is used only if itis better (in some sense)
delivered ¢ cells. However, during the cell slots, the total

than the last used matching. Therefore, a matching might be held for a while
number of cells that could have been forwarded to some outpetore applying another matching.
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tion is that the state of the switch cannot change substantialiy)Q;; with a large credit suddenly becomes empty. In that
within a constant timé:/S. Thus, holding the same matchingcase, (¢, ) is still considered part of the matching, while the
for k times should possibly still be able to guarantee a cetiatching is being held constant, and is contributing a large
arbitration delay. weight to the matching. However, that weight should not be
We were able to prove this fact for several existing switchingpunted in the matching because flgé j) is idle and no
algorithms, such as the Oldest Cell First (OCF) algorithm [3ells of flow (¢, j) are being forwarded. Therefore, the weight
the Central Queue algorithm [8], and the Delayed Maximal the real maximum weighted matching at that time might
Matching algorithm, an algorithm that we describe here idiffer from the weight of the maximum weighted matching
order to illustrate the point further. when our matching was computed, by as much as the credit
Oldest Cell First: This algorithm is due to Charngt al. of VO@,,. If flow (¢, j) is constantly backlogged, however,
[3] and is a priority switching algorithm. The priority schemavhen it becomes idle, the credit 8f0OQ;; can be bounded.
used by this algorithm assigns higher priority to th&@Qs As a consequence, when all flows are constantly backlogged,
holding older cells. Therefore, in every matching phase, thiee difference between the weight of the matching and the half
oldest cell that can still be forwarded is chosen. This is rereight of the maximum weighted matching is bounded at all
peated until a maximal matching is obtained. This algorithtimes [the bound ig)(kN)], and this is all what we need to
guarantees a bounded delay on every cell ite= 2 when keep the proof working (see [8]). Therefore, tHé&)(Q length
« < 1 under a constant burst traffic (see [3]), wherés the will still be bounded and a delay guarantee will be achieved
loading of the switch. The priority scheme of this algorithmvhen all flows are constantly backlogged. Note that in order to
guarantees that if a cell(z, j) is not forwarded, then either ansatisfy the requirement of Theorem 2, namely, that a cell arrival
older cell P(¢, k) is forwarded, or an older celP(k, j) is for- occurs only at the beginning of a cell slot, delaying an incoming
warded. Holding a matching/ for k& times starts to violate the cell until the next cell slot does not violate the condition that a
above property fot’ OQ;; only when somd’OQ;; (or some flow is constantly backlogged.
VOQy;) becomes empty while being served by the matching Delayed Maximal Matching:This is a simple algorithm that
M. The above property will be violated at most— 1 times we present to illustrate further the idea of holding the matching
by aVOQ; (or aVOQy;) while VOQ,,; remains nonempty, for a constant number of times. The switching algorithm waits
since once/ OQ;, (or VOQy;) becomes empty, its incomingfor a time” until enough cells have accumulated in h&Qs.
cells will definitely be more recent that that Bi0Q;; and this Then it forwards those cells in an interval of tirfieusing suc-
will be reflected by the priority scheme when the matching isessive arbitrary maximal matchings. During that interval of
recomputed aftek cell slots. Therefore, holding the matchingime, another set of cells would have accumulated, and the al-
constant fort; times will violate the above property f6fO();;  gorithm repeats. Therefore, the arbitration delayi©One way
atmost2(k —1)(N —1) times whileV OQ);; is nonempty (there of achieving this with a constant burst traffic is the following.
are2(N — 1) VOQs that share either an input or an output witfThe switching algorithm builds atv x N matrix A where
V0OQ;;). This is enough for the algorithm to still provide a delay:;; represents the number of cells that arrived from inptat
guarantee (see [3]). The additional delay to the original delaytput;. The algorithm waits a tim& > B/(1 — «) wherea
will be (2(k — 1)(N — 1))/(S — 2a). is the loading of the switch anB is the traffic burst constant.
Central Queue: This algorithm is due to Karet al.[8]. The Since the number of cells that arrive from an input or to an output
algorithm works by assigning credits to eaklQ;; based of during an interval of tim&” is at mostwI’ + B (property of the
the rate of flow(4, j). A cell is admitted if it has credit. The constant burst traffic), the sum of entries of any row and any
credit is decremented by 1 whenever a cell is forwarded. Thelon in the matrix4 will be at mostZ'. In that case, it can be
credit of a nonempty’ OQ;; represent the weight @£, j). In  shown that the switching algorithm can forward those cells in
every matching phase, the algorithm computes a 1/2-apprex-most27” maximal matchings. Therefore, with a speedup of
imation of the maximum weighted matching, by repeatedl§y = 2, this is done in at mogt’ cell slots. By that time, another
picking (4, 7) with the largest weight until a maximal matchingmatrix would have been computed and the same process is re-
is obtained. This was proved to guarantee a bounded leng#ated again.
of every VOQ under no speedup when the credit rate at eachlf we hold the matching fok times, everyV? OQ;; will be
input and output is less then 1/2. As argued in [8], when a flogerved at most — 1 times while itsa;; = 0. We can show that
(¢, j) is constantly backlogged, a bound&t@ length L this implies that the algorithm will need an ex@rg: — 1)(N —
implies a bounded cell arbitration deldy ¢;;, whereg,; is the 1) matchings (or, equivalentlyt — 1)(N — 1) cell slots with
credit rate of flow(Z, 7). Using the same techniques in [8], one speedus = 2) to forward the cells during the interval of
can prove that, with a speedup of 2 and a credit rate less thane 7. For the process to work as before, we require tat-
one, this algorithm also guarantees bounded queues. BLT—(k—1)(N-1)orT > (B+(k—1)(N-1))/(1—a),
During a constant time, the change in the credit assignedvihich adds an extra delay 6fk — 1)(N —1))/(1 — «).
a VoqQ is bounded. Therefore, the change in the total weight2) Birkhoff-von Neumann Decomposition: &Parallel
of the maximum weighted matching is also bounded. O@witching Algorithm: Changet al. [1] (see also [2]) have
matching, being a 1/2 approximation of the maximum weightgatoposed an algorithm that is capable of providing delay
matching when first computed, when held fotimes, cannot guarantees for input-queued switches with no speedup. The
differ from the half weight of the maximum weighted matchinglgorithm consists of taking a static rate matrix and computing
by more than a certain bound. A problem arises, however, ibaly once a static schedule in timi¥ N*-%), based on a decom-
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position result of Birkhoff and von Neumann. The schedule ism@oximation fora;;, will result in serving av’OQ at most an
static list of matchings, corresponding to permutation matricaglditional bounded number of times while it is empty; a phe-
obtained from the decomposition of the rate matrix, and appli@edmenon that can be accommodated for in the same way de-
according to certain weights. In our context, we may utilize thicribed earlier for thé-serial version of theDelayed Maximal
algorithm in conjunction withRound-Robindemultiplexing Matchingalgorithm, i.e., by increasing the delay after which the
which ensures identical rate matrices for all switches. Usirgggorithm obtains a new matrix. The upper boung;; + % — 1

this algorithm, & static schedules can be obtained based @mused here because the algorithm needs to make sure that it is
the individual rate matrices. These static schedules will leenptying all the matrix as described earlier.

identical since all switches will have the same rate matrix. Observe that state reduction is not an issue for the
Thus, as a natural consequence of this approach, the sa@irghoff-von Neumann decomposition algorithm, because it
matching will be applied in every cell slot in all of the parallebnly stores a precomputed schedule and so does not require
switches. For each individual switch, this provides comparakd@y state information from the switches for its operation.
arbitration delay guarantees as the original algorithm of Chang,

with the added advantage, that we can sustain a line spéedMultiplexer Operation

that is nowk times the speed at which the parallel switches we have already shown that when usmmimum lengthde-
operate. Note, however, that since each switch is now runniggyltiplexing and-parallel switching, it is possible for the mul-
at a slower speed, it is not possible to transmit cells at the lifiglexer at an output port to always deliver a cell from the output
speed between the inputs and the switches and betweendtigues of the: parallel switches in a way not to violate the
switches and the outputs. However, the technique describedider of cells pertaining to the same flow. The only question
of buffering cells at the demultiplexers and multiplexers cagat remains is how a multiplexéd; determines which output
be utilized, causing only a small additive delay. This will b@]ueueOQj to read the next cell from. This can be done in dif-
discussed with more detail in Section IV-D. ferent ways. One way is to use a standard resequencing tech-
3) Reducing State Informationit can be shown that when nique. Cells are tagged upon arrival to the switch with their
the speedup’ = £ is an integer, the:-parallel switching arrival times. At the output side, the multiplexer incrementally
algorithm can reconstruct, from the state of all th@arallel sorts the tags of the HOL cells and chooses to read the one with
switches, the state of the single switch running theerial the smallest tag. This requires additional access to the output
switching algorithm. This requires, however, that the schedulglieues which we assume not possible given that no speedup is
examine the state of each of thie parallel switches, and available, especially since the tag value itself can grow as large
maintain a global state. It turns out that this global statgs the total delay of a cell.
requirement can actually be relaxed. For the single switchan alternative is for the switching algorithm to store this in-
switching algorithms discussed above, only two kinds of stafgrmation and sort the HOL cells of all the queues. This, how-
information are used: the oldest cell of eakl®@ for OCF, ever, requires the communication of tags between the demul-
and the length of eac O for Central QueueandDelayed tiplexers and the switching algorithm every time cells arrive.
Maximal Matching In addition, to avoid the use of unbounded tags, both of these
By usingRound-Robin Reselemultiplexing, the amount of gpproaches must address the issue of tag reuse.
state information needed can be greatly reduced for the OCFa/e would like to avoid the use of the above resequencing
For instance, it ensures that the oldest cell of every flow is akchniques. A more efficient approach that uResind Robin
ways in the first switch. Thus, when using OCF aRdund- or Round-Robin Resalemultiplexing is the following. For
Robin Resethe algorithm needs only look at the state of theach outputj, the switching algorithm maintains a FIFO list
first switch to compute a matching. L; of tuples of the form(p, s) pertaining to successive cell
For the Central Queue algorithm, the use of amyimum sjots during which a cell was forwarded to outputHence,
length demultiplexing ensures that, for every floli, j), the for every such cell slotp is the number of cells switched to
numberL of all the cells at the input side is related to the numbejutput j during that cell slot, and is the index of the switch
of cells L, in VOQ}; in the following way: that forwarded the oldest cell to outpgitduring that cell slot
kL, — k< L < kL, +k. (note that all cells switched to outpytduring that cell slot
pertain to the same flow).
Therefore, during each cell slot for which sofgy) belongs
the matching, the algorithm add§a s) to L;. The algorithm

Thus, ifkL; is used as an approximation g the computation
of the 1/2-approximation of the maximum weighted matchinl%
will be affected by at most a certain bound, which, as argued . . . . .

X . may easily obtain the information to do so from the demulti-
previously, will not hurt the delay guarantees for the Centra

. . p‘exers. Each demultiplexép; stores the number of cells for a
(a?sufhuee\,?ggﬁttggﬁmi :Eit(\:,\rls dailtrse (r;(;v;/ ;J;é?r?olteeng)thﬁﬁ@s particular output that have arrived up to the current cell slot and

. . : . . are still remaining at the input side.
For theDelayed Maximal Matchinglgorithm, defining sim- Upon applying a matching/, the switching algorithm com-
llarly a;;1 and using the upper bourith;; + k asanap- o inicates to demultiplexeb; the index; of the output for
2Here, we say that the length ofi@0(Q instead of its credit because when awhich (¢, j) € M. The demultiplexer responds with the number
constant burst traffic where each flow has a rate and is constantly backlogggflcells that will be forwarded to outpyitas a result of applying
the length of 87O differs from its credit by at most a constant. Alternatively, his i d . . SO h Il th I
the Central Queue algorithm can use the credit 8f@Q and no other state 2 (this is easy to determine since it is either all the cells or

information will be needed. But then, explicit knowledge of the rates is requiredells by Lemma 5), and the index of the switch that contains
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the oldest such cell (also easy to determine with any of the tWée will describe how we can use the links that are running at
round-robin demultiplexing strategies described earlier). Thgm the original line speed.
total communication required between the demultiplexers andWe will usem FIFO buffers running at the line speed in each
the switching algorithm is therefol®(N log N + 2N logk).  demultiplexer and multiplexer. Each of theFIFO buffers cor-
Following this, demultiplexeiD; updates for every outpyt responds to one of the switches. When a cell needs to be sent
the number of cells of flow:, 7) remaining on the input side asby demultiplexerD; from input to a switch, it is stored in a
well as the index of the switch that now contains the oldest céllffer of D; corresponding to that switch. The cell at the head of
of flow (¢, j). the buffer is sent to the switch when the link is available. When
Atthe output side, each multiplexéf; periodically retrieves only one cell can arrive at an input during a single external cell
from the switching algorithm a tupl@, s) from which itlearns  slot, an analysis of this technique appears in and illustrates that a
the number of cells that must be read and the identityf buffer size of/V is enough for each buffer of the demultiplexer.
the switch from whose output queue the multiplexer must stioreover, each cell will be delayed at mastcell slots (i.e.,
reading the first cell of this round, and continues in a roundr.V external cell slots) at the input. Therefore, we can consider
robin fashion (as a consequence of the round-robin demuRinew arrival pattern of cells at the input, where at a given time
plexing). Therefore, the communication between the switchiis¢pt, only cells that arrivedv cell slots prior to the current cell
algorithm and the multiplexers 8(2N log k). Hence, the total slot are considered present. This produces the original arrival
communication with the switching algorithm #(V log k), pattern of cells delayed by.lV external cell slots.
which is within a constant factor of tHe(/N log N) amount of ~ Similarly, when a cell needs to be delivered at outpitty
communication needed for the switching algorithm to specifyraultiplexeri/;, itis stored, when the link is available, in a buffer
matching in a single switch. in M; corresponding to the switch being used to deliver that
If we useRound-Robin Reseiemultiplexing, then we know cell. The cell remains in that buffer until it can be delivered.
that the oldest cell of a flow is always in the first switch andlherefore, then buffers of the multiplexer act as a resequencing
therefore s is not needed. buffer. As before, the analysis described in [7] yields a buffer
Instead of requiring additional memory for the switching alsize of V for each of them buffers of ;. Moreover, each cell
gorithm, we can use the memory of the switch itself, i.e., thill be delayed at mosV cell slots (i.e.mV external cell slots)
output queues, in order to store the required information. Tragthe output. Therefore, by waiting/V external cell slots at the
works for the case dRound-Robin Reseemultiplexing in the output, the same techniques for delivering cells described in the
following way: Since the oldest cell of a flow is in the firstprevious section are still valid, hence, making resequencing a
switch, we only need to tag a cefl(i, j) that is forwarded Simple operation.
across the first switch with the numbgof cells of flow (i, j)  In general, for a constant burst traffic with burst constant
that are going to be forwarded during the current cell slot. Alie buffer size willbeV+-[B/m] and the delay oV external
the output, the multiplexer retrieves this number when readiggll slots will be replaced byn.V + B.
the cell in the first switch, and, hence, it knows how many cells The above buffering technique solves the problem of slow
to read before coming back to the first switch. This is efficiedinks with an additive delay o2(mN + B). We now illustrate
in terms of space since the tag lengtii€og k) and only cells that with thesen slow switches, we can still somehow emu-
in the first switch need to be tagged. A difficulty with this aplate anm-serial switching algorithm running at the original line
proach is that we must tag cells upon forwarding them, whigpeed.
might not be straightforward to realize. We consider the new arrival pattern at the input, which is the
exact original arrival pattern delayed byN + B external cell
slots.

The idea is similar to what Lemma 5 and Theorem 2 achieve.
We now briefly describe how we can use parallel switchess before, then-serial switching algorithm holds a matching
that run at a speed slower than the line speed. For this purpasefor m external cell slots, which is equal to one cell slot

we assume that the line speed is some integer multipledf of the m-parallel switching algorithm. First we note thatin-
the speed of a single switch. imum lengttdemultiplexing operates in every external cell slot
The first thing to note is that each cell slot of a switch is nowow as opposed to every cell slot. Therefore, the number of
m times the original cell slot of the traffic (since the switches argells in aV’O(Q at the end of an external cell slot might not
m times slower). Thus, we will refer to the cell slots of the traffibe accurately defined since a matching requiresxternal cell
by external cell slots, reserving the term time slots to denote tsiets (one cell slot) to complete. Conceptually, however, we can
internal cell slots of the switches. think of the matching taking effect only during the last external
The second thing to note is that now a demultiplexer will natell slot of a cell slot. Henceninimum lengtidemultiplexing
be able to send cells to a single switch in successive external ceflects the correct number of cells in th&OQs as viewed
slots, since each link can be accessed only once every cell stgt,the demultiplexers in each external cell slot. Since in our
i.e., once everyn external cell slots. Similarly, a multiplexer cansetting, Round-Robirdemultiplexing is aminimum lengtide-
access outputquemeQé for outputj once everyn external cell multiplexing as proved earlier, and sinBeund-Robirdemul-
slots. tiplexing does not rely on the number of cells in theQs,
We will assume the use of tHRound-Robirdemultiplexing regardless of how the matching is carried during a cell slot, we
strategy. Assume also that the number of parallel switches is will still have the same results as before. Namely, Lemma 5 will

D. Supporting Higher Line Speeds
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still be true, and, hence, {i, 5) is in the matching!/, then ei- Flows that stat in the first switch
ther all cells of flow(z, 5) or them oldest cells of flow(z, j) an [ T Te[e] T Te] T ]me=3mo0
will be forwarded by the end of a cell slot. With a proof sim-
ilar to the one for Theorem 2, and since theserial algorithm Go [ Jel [ [ ][] ] Jmesimo
can forward at most: cells everym external cell slots, we con- @n [ T Jel [ [ [ T 1 | |we=10
clude that thern-parallel algorithm emulates the:-serial algo-
rithm up to an additive constamt — 1; the reason being that an [ [ Jol [ [ [ [ ][ Jemesmo
a cell that is forwarded with the:-parallel algorithm during an [ T T T T T T [ |re=uo
a cell slotZ” might have been forwarded by the-serial algo-
rithm during any of then external cell slots that correspond to 6 (ol [ [ [T T[] Jmeemo
cell slotZ". Therefore, if then-serial switching algorithm guar- o [o] T T T [ 1 [ [ [ |me=wo
antees an arbitration deldy,, external cell slots, then-par-
allel switching algorithm will guarantee an arbitration delay of o fe] JIJITLT] Jmemne
CDejﬁ —;(T)Ttls_ 1+ mN + b= DA + m(N + 1) + B —1external Flows that start in the second switch
en | [ ] Tele] [ o] | |me=310
V. CONCLUSION o [ [ Jol T T T T 1T Jae=w0
We_suggested a scheme that eliminates the need for speedup & [T [o] T T T T [ [ |me=umo
by usingk = [S] parallel input—output-queued switches with
no speedup, wher§ is the speedup of the original switch. The ey [ | je] [ [ [ | [ ] |ne=wo
key to our approach was to apply the same matching in all the a2 [o] T T T T T T [ [ |me-o
parallel switches. By adapting existing switching algorithms
for the single switch setting to hold their matching constant for wnfof [ [ ] L1 [ [ 1] [we=wo
a number of times, we were able to apply the same matching o [o] TT T T T T T T |ae-wmo
in all switches, and guarantee a bounded delay on every cell.
In addition, both demultiplexing and multiplexing at the inputs ao [of | [ [ [ [ | | ] Jre=mo

and outputs, respectively, could be done usingVlogkN)
amount of communication between the switching algorithm ahl"
the parallel switches. This is to be compared to&/ log V)

amount of communication needed in a single switch for t
algorithm to specify a matching. We also suggested so
heuristics that reduce the amount of state information that t
switching algorithm needs to look at in order to compute
matching, resulting in the algorithm looking only at the stat
of the first switch. Our approach offers the advantage of usi

a constant number of parallel layers. This was not the ca
in [6] and [7], which emulate output queueing for a high lind
speed using’(N) output-queued switches running at lowe

4. Example of cell arrivals in a ten cell slot period.

rgvery flow. Each switch runs a switching algorithm that achieves
80% throughput with a speedup of 2. It can be shown that when
rﬁe&i with data at half the original rate, each switch will appear to
erate at a speedup of 2 and should be able to achieve 100%
roughput had the order of cells been of no concern. The ex-
ple will show that if we wait to reorder cells, the number of
nsmitted cells falls consistently short of the number of ar-
iving cells, leading to overloading of the output. We use two
4 x 14 switches. We also use the OCF algorithm which favors

speed with no memory speedup. While this dependence %I er cells in the switch to be forwarded. Our example consists
N can be eliminated by replacing the output-queued switch 2 repeat_lng sequence of_ten cell Sl(.)ts' In the Fig. 4, we .ShOW
with input-output-queued switches [4], the algorithm fob'€ cell arrivals for both swltches.dunng the ten cell slot time.
emulating an output-queued switch becomes more complicat% ot represents acell .arr|val during the particular cell slot.

and much less practical to implement. Moreover, our approa e will refer to ?he f'rSt. apd second'cells of flow (.1’ 1) by
makes use of FIFO queues only, whereas the approach outli éoandCQ' respectively. Similarly, we wil refe_r to the first and

in [4] requires the use of non-FIFO queues. The bandwid cond cells of flow (2, 1) byy andP;, respectively. Note that

requirement of the architecture proposed heveNd: whereR 7?2 and P, will be forwarded te switch 2 and switch 1, respec-
is the line speed. The authors of [7] succeeded in reducing Tl ly, by the round-robin policy. Note also that the number of

bandwidth requirement t&/ R only at the expense of allowing cells arriving for every flow is O.dd and, therefore, by the er_1d of
cells to arrive in an out-of-order fashion with a bounded deld0€ tenth cell slot, each flow will start over in the other switch.

of O(N?). sing OCF independently in each switch, we will folCe and
P; to be forwarded beforé€’; and P, thus, creating the dead-

lock situation described earlier.

In the first cell slot, only cells going to output 2 are received.

The following scenario illustrates why simple rate splittindgeach switch will choose one of the cells going to output 2 to be
might not achieve 100% throughput. Consider the case of tfarwarded. In the second cell slot, only cells going to output 2
switches. The splitting can be done by deploying a round-robame present in each switch because no arrivals occur; therefore,
policy that, for each flow, decides where to forward the next cedk before, each switch chooses to forward a cell from among the
of that flow. Both switches will receive half the original rate forcells going to output 2.

APPENDIX
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C, Py
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Switch 1 Switch 2
Switch 1 Switch 2 Fig. 7. Two switches at the beginning of the fifth cell slot.

Fig. 5. Two switches at the beginning of the fourth cell slot. satisfies the selection criteria for many other algorithms such as

pure maximal matching, Central Queue [8], and lowest-occu-

: : pancy-output-first algorithm (LOOFA) [9]. A simpler example
that exhibits a similar scenario can be constructed; however, this
1 z particular example has the following advantageous properties.
Ci Py e At most one cell arrives to a particular input during a cell
. 1 slot.
Switch 1 Switch 2 o Forevery flow(s, ), the number of cellsl;; (¢) that arrive

up to timet is bounded as follows:
rt—1< A“(t) <7rt+1

Fig. 6. Two switches at the end of the fourth cell slot.

In the third cell slot, each switch receives a new cell going teherer is the rate of the flow.
output 2, namely’(1, 2) in switch 1 and’(2, 2) inswitch2,and e The maximum aggregate rate at a port is 1; however, it can
some cells destined to output 1. Each switch chooses a cell goiregeduced to be strictly less than 1 (hamely, 20/21) by repeating
to output 1 and a cell going to output 2, where, by the OCF algtiie above pattern twice and inserting an idle slot after that. By
rithm, these cells are different fro@i(1, 2) andC(2, 2), because doing so, we still have the inequality above. The output will still
C(1, 2) andC(2, 2) are the most recent cells. be overloaded since it has to make=2Z11+ 11) output reads
In the fourth cell slot, switch 1 receives, and switch 2 re- every 21= (10+ 10+ 1) cell slots.
ceives ;. Therefore, at the beginning of the fourth cell slot, These properties imply that rate splitting combined with the
both switches have the configuration shown in Fig. 5, where atgorithms mentioned above (which normally provide a cell
edge(i, j) represents a cel'(¢, 5) in the switch. delay bound with a rate less than 1/2, or a speedup of 2 and a
By the selection of OCF, sinc€(1, 2) andC; in the first rate less than 1) is not guaranteed to achieve 100% throughput
switch are the most recent cells, they will not be forwardeslven with the most restrictive input pattern, where the switches
during the fourth cell slot. A symmetric argument is valid foare operated independently. Note that the main problem here
switch 2. Therefore, by the end of the fourth cell slot, we have not the size of the input queues but rather that of the FIFO
the configuration of Fig. 6. output queues, and this is due to the possibility of misordering
In the fifth cell slot, cellsCy; and P, arrive. This time they of cells of the same flow sent through different switch fabrics,
are sent to switch 2 and switch 1, respectively, because of thibich is not present in a single switch setting.
round-robin policy for each flow. At the beginning of the fifth
cell slot, we have the configuration of Fig. 7. REFERENCES
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