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Switching Using Parallel Input–Output
Queued Switches With No Speedup
Saad Mneimneh, Vishal Sharma, Senior Member, IEEE, and Kai-Yeung Siu

Abstract—We propose an efficient parallel switching archi-
tecture that requires no speedup and guarantees bounded delay.
Our architecture consists of input–output-queued switches with
first-in-first-out queues, operating at the line speed in parallel
under the control of a singlescheduler, with being independent
of the number of inputs and outputs. Arriving traffic is
demultiplexed (spread) over the identical switches, switched to
the correct output, and multiplexed (combined) before departing
from the parallel switch.

We show that by using an appropriate demultiplexing strategy at
the inputs and by applying thesame matchingat each of the par-
allel switches during each cell slot, our scheme guarantees a way
for cells of a flow to be read in order from the output queues of
the switches, thus, eliminating the need for cell resequencing. Fur-
ther, by allowing the scheduler to examine the state of only the first
of the parallel switches, our scheme also reduces considerably
the amount of state information required by the scheduler. The
switching algorithms that we develop are based on existing prac-
tical switching algorithms for input-queued switches, and have an
additional communication complexity that is optimal up to a con-
stant factor.

Index Terms—Delay guarantee, parallel switches, speedup,
switching.

I. INTRODUCTION

T RADITIONAL output-queued or shared memory archi-
tectures are becoming increasingly inadequate to meet

high-bandwidth requirements, because having to account
for multiple arrivals to the same output requires their switch
memories to operate at times the line speed, where is
the number of inputs. Although input-queued switches provide
an attractive alternative since their memory and switch fabrics
may operate at only the line speed, they present a challenge for
providing quality-of-service (QoS) guarantees comparable to
those provided by output-queued switches, and require a so-
phisticated scheduler or arbiter, making it a critical component
of the switch.
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Fig. 1. Input–output-queued switch.

For instance, traditional switching algorithms that achieve
100% throughput in an input-queued switch do not provide
delay guarantees, and are based on computing a maximum
weighted matching that requires a running time of [10],
[11], or [12], making them impractical to implement
on high-speed switches. Some recent work has, therefore,
focused on asking whether an input-queued switch can be made
to emulate an output-queued switch, and has demonstrated
that this can be achieved by a combination of a speedup in
the fabric (of ) and a special switching algorithm
based on computing a stable marriage matching. Such emu-
lation involves substantial bookkeeping and communication
overhead at the scheduler, however, and despite its theoretical
significance, is not yet practical at high speeds. Most practical
switching algorithms for input-queued switches (see, for
instance, [3], [9]), therefore, require a speedup of between 2
and 4 to achieve adequate QoS guarantees. This means that the
switch fabric and the memory need to operate faster than the
line speed by the speedup factor. Note also that an input-queued
switch with a speedup will require queues at the output as well,
since more than one cell can be forwarded to an output in a
single cell slot. Fig. 1 depicts the traditional architecture of
an input–output-queued switch with the virtual output queues
( s), where all queues are first-in–first-out (FIFO) queues.

We propose to use multiple input–output-queued switches in
parallel, allowing each switch to operate at the line speed, so
that no speedup is necessary. We show that such an architecture,
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combined with efficient switching algorithms, is both feasible
and practical, and that operating the switches in parallel incurs
only a small additional computational and communication cost.
We show how to guarantee a bounded cell delay with this archi-
tecture.

The remainder of this paper is organized as follows. In
Section II, we motivate the rationale behind the parallel switch
approach, while in Section III, we describe the parallel archi-
tecture, and outline some of the issues that arise when using
switches in parallel. We also describe in Section III the basic
idea that motivates our design of a switching algorithm for
this parallel switching architecture. In Section IV, we provide
a general framework for a switching algorithm that guarantees
bounded cell delay. We conclude in Section V.

II. M OTIVATION

As discussed above, most practical switching algorithms re-
quire a speedup of at least 2. This poses two nontrivial difficul-
ties in moving toward higher speed switches.

The memory within the switch must run at a speed faster
than that of the external lines. This reduces memory access
times, and makes it difficult to build practically usable mem-
ories, especially with continuously increasing line speeds.

With speedup, the time available to obtain a matching
(by execution of the switching algorithm) is also reduced.
This is particularly problematic for some of the more complex
switching algorithms needed to provide guarantees. Specifi-
cally, with a speedup of , a switching algorithm has only
time units to compute a matching.

Our approach, therefore, is to eliminate the need for speedup
by using input–output-queued switches in parallel. It should be
noted that a previous work that addresses the use of parallel
switches appears in [6]. Below, we briefly point out some dif-
ferences between our approach and [6].

In [6], the authors use parallel output-queued switches,
while we use parallel input–output-queued switches, thus, of-
fering a different theoretical framework for the problem.

The objective in [6] is to emulate output queueing for a
switch operating at a high line speed by using a number of
output-queued switches operating in parallel at some submul-
tiple of the line speed. Our objective is to provide basic guaran-
tees, such as bounded delay on every cell, without requiring any
speedup in the system.

The algorithm in [6] relies on simulating an output-queued
switch in the background, which requires the maintenance of a
large amount of state information. Our switching algorithms, on
the other hand, are based on existing switching algorithms for
an input–output-queued switch that do not require an excessive
amount of state information.

The architecture in [6] naturally requires parallel
layers (where is the size of the switch) of output-queued
switches to fully eliminate memory speedup in the system. This
is because the queue memory of each switch is required to op-
erate at a speed equal to , where is the line speed and

is the number of parallel switches. This dependence oncan
be removed if input–output-queued switches are used instead

(four of them). As a consequence, each input–output-queued
switch will then have to emulate an output-queued switch.
While such an emulation is possible as demonstrated in [4],
it is not yet practical due to the excessive bookkeeping and
communication needed between the switching algorithm and
the switches. Moreover, the emulation makes use of non-FIFO
queues. Nevertheless, the emulation algorithm provided in
[4] is practical at low speeds, suggesting that increasing the
number of parallel input–output-queued switches renders the
algorithm practical. This, however, implies that the number of
parallel switches needed has a dependence on the line speed,
even if switches operating at the line speed are available. By
contrast, to eliminate speedup, our architecture uses a constant
number of layers that is independent of.

The bandwidth of the architecture in [6] is where
is the line speed. The bandwidth of our architecture is .
Therefore, for , which is sufficient to provide delay
guarantees, as will be seen later, both architectures have the
same bandwidth. A more recent work [7] by the same authors
of [6] illustrates an output queueing emulation up to an additive
constant factor using output queues with no speedup.
Hence, they reduce the bandwidth required to only. This,
however, requires resequencing of cells at the output. But
since there is a bound on the time a cell will be delayed
from its output queueing time, resequencing can be eliminated
by waiting a time before delivering any cell at the output.
The remaining disadvantage is that where is the
number of switches, and, hence, the delay is .

Our main goal is not to emulate output queueing, as was done
in [6] and [7]. Rather, it is to obtain an efficient and practical way
of achieving basic guarantees, such as bounded delay on every
cell, with a constant number of parallel layers, no speedup, and
without the need to resequence cells at the output.

III. PARALLEL ARCHITECTURE

We use an architecture similar to the architecture described
in [6]. The only difference between the architecture presented
here and that of [6] is that we use input–output-queued switches
while the authors in [6] use output-queued switches. The archi-
tecture is depicted in Fig. 2.

The architecture consists of the input ports having a de-
multiplexer each, and the output ports having a multiplexer
each. The middle stage consists ofswitches in parallel, with
each switch being an input–output-queued switch, like the one
depicted in Fig. 1. At each input port, a demultiplexer sends a
cell arriving on that input to one of theparallel switches. Like-
wise, at every output port, a multiplexer accesses the output
queue for that port (i.e., theth output queue) in each of the
switches. Since no speedup is to be used, we define a cell slot
to be the time needed for a cell to be read from or stored into
a queue. Therefore, the switches operate in cell slots where in
each cell slot, each switch can forward at most one cell from an
input port and at most one cell to an output port. Although we
assume that no speedup is being used, the switches of Fig. 2 are
input–output-queued switches for the following reason: Since
there is no speedup, an output port can deliver at most one cell
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Fig. 2. Parallel switches.

per cell slot; however, multiple cells can be forwarded to that
output by multiple switches during a single cell slot. Hence, for-
warded cells need to be stored.

During each cell slot, multiple cells may arrive at an input
provided each is destined to a different output. The actual ar-
rival pattern, of course, depends on the traffic model and on
the specific implementation of the demultiplexers (for example,
each demultiplexer in Fig. 2 can representactual demulti-
plexers for the different flows at the input).

To proceed further, we define the following notation:
flow (of cells) from input to output .
a cell from input to output .
a cell from input to output .

in switch .
Output queue in switch .

Unless otherwise mentioned, in the proofs that follow, we
neither require any synchronization between cell arrivals and
the operation of the parallel switches, nor do we require any
synchronization between the switches themselves, except
that they all perform a matching by the end of a cell slot. Our
problem is to find a switching algorithm that provides delay
guarantees while being efficient and practical to implement.
The architecture in Fig. 2 suggests the following natural
decomposition of the switching algorithm:

demultiplexing: at every input, deciding where to send
each incoming cell.

switching: for each of the parallel switches, deciding on
a matching, i.e., which cells to forward across the switch.

multiplexing: at every output, deciding which switch to
read a cell from.

Before discussing the operation of this architecture, we de-
scribe why some simple approaches do not work.

A. Segmentation

The simplest approach one may consider is to segment each
incoming cell into segments, forward the segments in parallel
across the switches, and reassemble the segments at the output.

Fig. 3. Possibility of deadlock at the output.

Unlike what one might think, however, this approach does not
eliminate the need for speedup. This is because each segment
will now require th the time of a complete cell, so a cell
will have to be forwarded across the parallel switches in only

th of a cell slot. Thus, the time available for the switching
algorithm also reduces by a factor of, and matchings will
have to be computed per cell slot.

B. Rate Splitting

Yet another approach could be to split a flow among the par-
allel switches to divide its rate equally among them. If the par-
allel switches are allowed to forward cells independently, how-
ever, it is difficult to control the order in which cells of the same
flow emerge at the outputs of the switches. This can lead to
either deadlock or output overloading with FIFO output queues,
as described below. For example, two cells that arrive at a given
input and are sent to two different switches may experience dif-
ferent delays depending on the state of each switch and, thus,
may arrive at the output in the wrong order. Even though it ap-
pears that this could be circumvented by controlling the order
in which the output queues are read (that is, by determining at
each cell slot the output queue containing the oldest cell of a
flow and reading that cell), there could still be situations, such
as the one depicted in Fig. 3, where no output queue can be read
without violating the order of cells.

In Fig. 3, the cells at the head of output queuein both parallel
switches are the second cells of their respective flows. Thus,
with FIFO output queues, it is not possible to deliver any cell
at output without violating the order of cells in a flow. An-
other solution could be to read the head-of-line (HOL) cells and
temporarily store them to be delivered later. When the multi-
plexer has read deep enough into the output queues to be able
to reconstruct the correct order of cells in a flow, the HOL cells
stored earlier can be released in the correct order. Clearly, if this
happens often, cell slots will be wasted without delivering cells
at output , causing the FIFO output queues to become over-
loaded and to grow indefinitely (see the Appendix). Of course,
the above statement assumes that the output queues are FIFO
and that a multiplexer cannot access more than one cell per cell
slot. The choice of the FIFO restriction is based on the ease of
implementation of FIFO queues. Restricting the multiplexer to
at most one access per cell slot emanates from the need to have
no speedup in any part of the parallel architecture. Both of these
restrictions are reinforced by the fact the we do not allow for
cell resequencing at the output.

Therefore, while on one hand our goal is to enable the
switches to operate in a coordinated fashion, on the other it is
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to avoid excessive bookkeeping of the type needed in [6] to
emulate output queueing.

C. Basic Idea

The key idea is to first avoid the type of deadlock depicted in
Fig. 3. Having achieved that, we focus later on how to provide
the delay guarantees. We say that a cellis older than a cell
if arrives before . In order to avoid the type of deadlock in
Fig. 3, we consider the following two properties.

Definition 1 (Output Contention):In a single switch, two
cells coming from different inputs and destined to the same
output cannot be forwarded during the same cell slot (by the
property of a matching, this is trivial when the switch has no
speedup).

Definition 2 (Per-Flow Order): For any two cells and
of the same flow, if is older than , then by the end of the
cell slot during which was forwarded, would have been
forwarded.

We will show that the two properties above are sufficient to
ensure that, at an output, the cells of any flow can be
read in order. We begin by defining this order more formally. In
doing so, we define a partial order relation that we denote by

. The partial order relation is defined over all the
cells that are residing at the output side of the switches. How-
ever, as it will be seen later from the definition of , some
cells might be left unordered by . These are cells that are
destined to different outputs or cells of different flows that are
forwarded during the same cell slot. We will define the order re-
lation in such a way that, if theper-flow orderproperty
is satisfied, it will induce the standard FIFO order on all cells
pertaining to a single flow.

Definition 3 ( ): For any two cells and
at the output side, if

• the cell slot during which was forwarded precedes
the cell slot during which was forwarded, or

• , is older than , and both were for-
warded during the same cell slot.

Note that if and theper-flow order
property is satisfied, then is older than . More
precisely, we have the following lemma.

Lemma 1: If the output contentionandper-flow orderprop-
erties are both satisfied, the following is true for every output:
At the end of a cell slot, either is empty for all or there
exists a flow such that its oldest cell is at the head
of for some .

Proof: If at the end of a cell slot, is empty for all ,
the lemma is true. So assume that, at the end of a cell slot, there
is an such that is not empty. Since is an order re-
lation, there must exist anand an such that contains a
cell with the following property: there is no cell
at the output side satisfying . We will
prove that is at the head of and that is
the oldest cell of flow . We first prove that is at
the head of . If a cell is ahead of in ,
then by theoutput contentionproperty, was forwarded
during a cell slot prior to the cell slot during which
was forwarded. By the definition of ,

, which is a contradiction. Next, we prove that
is the oldest cell of flow . If this is not so, note that by the
per-flow orderproperty, the oldest cell of flow , ,
must be at the output side, and in the worst case, must have been
forwarded by the end of the cell slot during which was
forwarded. By the definition of and since is older
than , , and we reach a contradic-
tion again.

The above lemma implies that for every flow , when-
ever there are cells in the output queues for output, a cell
can be delivered at outputwithout violating the order of cells
pertaining to flow . Therefore, this eliminates the dead-
lock situation described earlier and prevents the output queues
from being overloaded. Theoutput contentionproperty is triv-
ially satisfied when the switches have no speedup. Therefore,
we will design our switching algorithm to satisfy theper-flow
order property.

IV. A PPROACH

To specify our approach, we will describe how we carry
out the three steps outlined in Section III (demultiplexing,
switching, and multiplexing). As motivated earlier, we will
design our switching algorithm to satisfy theper-flow order
property. We state the following definition which is needed in
the rest of the paper.

Definition 4 ( -Parallel Switching): -parallel switching
is that where, during each cell slot, the switching algorithm
computes only one matching and applies it in all parallel
switches.

We start by describing the demultiplexer operation.

A. Demultiplexer Operation

To distribute the incoming cells among the parallel
switches, the demultiplexer follows a special demultiplexing
strategy, which we callminimum lengthdemultiplexing, as
defined below:

Definition 5 (Minimum Length Demulti-
plexing): Demultiplexer sends a cell destined for output
to a switch with a minimum number of cells in at the
end of the cell slot preceding the current cell slot.

We now prove that this strategy together with-parallel
switching ensures that theoldest cells for each flow are
always in distinct switches. We start with a simple lemma.

Lemma 2: If minimum lengthdemultiplexing and -parallel
switching are used, then at the end of a cell slot, the lengths of

and differ by at most 1 for any two switches
and .

Proof: The proof is by induction on the number of cell
slots.

Base Case: The lemma is trivially true at a fictitious cell slot
before the beginning of the first cell slot.

Inductive Step: Assuming that the lemma is true at the end
of cell slot , we will prove that it holds at the end of cell slot

. We focus on any two s, , and , and
we consider two cases:

Case 1: At the end of cell slot, both s were nonempty.
-parallel switching during time slot will decrease the
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length of both s by the same amount (by either 0 or 1). If
no cell is sent to either one of the s during cell slot ,
then the lemma holds at the end of cell slot . Otherwise,
a cell is sent to one of the s say . By theminimum
lengthdemultiplexing, we know that at the end of cell slot,
the length of was at most that of . Therefore,
adding one cell to will not violate the lemma.

Case 2: At the end of cell slot , at least one , say
, was empty. Then we know by the lemma that

must contain at most one cell. If a cell is sent during cell
slot to either or , then by theminimum
lengthdemultiplexing it must be sent to . Therefore, at
the end of cell slot , the length of both s is at most
1, and the lemma holds.

Using Lemma 2, we can now prove the following lemma:
Lemma 3: If minimum lengthdemultiplexing and -parallel

switching are used, then for any flow, at the end of a cell slot,
either all cells at the input side are in distinct switches or the
oldest cells at the input side are in distinct switches.

Proof: If at the end of a cell slot , there is some
that is empty, then by Lemma 2, has length at most 1
for all , and, hence, all cells at the input side are in distinct
switches. If at the end of a cell slot, no is empty,
then for the oldest cells at the input side not to be in distinct
switches, it must be that some , say , contains
two of the oldest cells and , and another , say

, contains a cell that is not among the oldest cells.
Without loss of generality, is the head of by the end
of cell slot . Let be the cell slot during which arrived to

.
Consider the end of cell slot . Since only one cell

, in this case , can arrive during cell slot , we know
that at the end of cell slot , both and were in .
Therefore, from the end of cell slot until the end of cell
slot , was nonempty. Therefore,-parallel switching
implies that every time was served by a matching, so
was . Since at the end of cell slot, is at the head of

, all the cells that were in at the end of cell slot
must have been forwarded by the end of cell slot. This

means that at least that many cells, excludingand , were
also forwarded from . Therefore, at the end of cell slot

, the lengths of and differed by at least
two, which contradicts Lemma 2.

Using Lemmas 2 and 3, we prove the main result of this sec-
tion.

Theorem 1: If minimum lengthdemultiplexing and -par-
allel switching are used, then theper-flow orderproperty is sat-
isfied.

Proof: Consider a flow and a cell slot . If no cell
is forwarded during cell slot , then theper-flow order

property for flow cannot be violated during cell slot. As-
sume a cell is forwarded during cell slot . By Lemma
3, at the end of cell slot , either all cells of flow were
in distinct switches or the oldest cells of flow were in
distinct switches. Therefore,-parallelswitching cannot violate
theper-flow orderproperty during cell slot .

As a consequence, we can now prove that usingminimum
length demultiplexing and -parallel switching cannot create
the deadlock situation illustrated in Section III.

Corollary 1: If minimum lengthdemultiplexing and -par-
allel switching are used, then for every output, at the end of a
cell slot, either is empty for all or there exists a flow such
that its oldest cell is at the head of for some .

Proof: Since theoutput contentionproperty is trivially
satisfied, the corollary is immediate from Lemma 1 and
Theorem 1.

The demultiplexers do not have to explicitly identify the
with the minimum number of cells, as we can prove

that each of the following strategies, when combined with
-parallel switching, is aminimum lengthdemultiplexing.
Round Robin: In this strategy, each demultiplexer keeps

counters, one for each output. Each counter stores the identity
of the switch to which a new cell for that output should be sent,
and all counters start initially at 0. Every time the demultiplexer
sends a cell for a particular output to the switch specified by
the corresponding counter, it increments that counter modulo.
This has the nice property of dividing the rate of a flow equally
among the parallel switches. Moreover, as we will illustrate
later in Section IV-D, this strategy will be useful for building a
switch that supports a line speed that istimes the line speed
of the individual switches.

Round-Robin Reset:This strategy is theRound-Robin
strategy with a slight variation. For every flow , the
system keeps track of the number of cells of that flow that
are still residing at the input side of the switches. Whenever
this number becomes 0, the counter at demultiplexerthat
corresponds to output is reset to 0. This strategy requires
some extra information (to be kept either by the switching
algorithm or by the demultiplexers) to correctly reset the
counters of the demultiplexers. Moreover, it might require
some synchronization between cell arrivals and the cell slots
of the switch. As will be seen later, however, this strategy will
actually allow the switching algorithm to keep less information
for coordinating the operation of multiplexers at the output
ports, and, in some cases, it also helps to reduce the amount of
state information that the switching algorithm must consider
for computing a matching.

Lemma 4: If -parallel switching is used, thenRound-Robin
demultiplexing is aminimum lengthdemultiplexing.

Proof: We will prove that for any flow , by the end
of a cell slot , either s in all switches have the same
length, or starting from a switch, we can find a round-robin order
on the switches, to , such that there exists , such
that is the last that received a cell by
the end of cell slot , the length of any for
is , and the length of any for is .
Note that proving the above claim proves the lemma since the
next cell slot a cell arrives, it will be sent to a
with the minimum number of cells, either because s in
all switches had the same length at the end of cell slot, or
because the cell is sent to by Round-Robindemulti-
plexing, which has a minimum number of cells. We prove the
above claim by induction on the number of cell slots.

Base Case: The claim is trivially true at a fictitious cell slot
before the beginning of the first cell slot since s in all
switches have the same length.

Inductive Step: The claim is true up to cell slot. We will
prove that it remains true for cell slot . We are not going
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to consider the interleaving in the operations of applying the
matching and sending a cell to some , but one can show
that this interleaving has no effect on the reasoning below.

If s in all switches had the same length by the end of
time slot (or after the arrival of a cell during cell slot ),

-parallel switching implies that they will have the same length
by the end of cell slot . Moreover, by -parallel switching,
if a cell is forwarded from a for , a cell will be
forwarded from a for . Therefore, the above claim
will still be true after applying the matching.

If a cell arrives during cell slot and s
in all switches had the same length by the end of cell slot
(or after applying the matching during cell slot ), then if

is sent to some (which will have the maximum
number of cells by the end of cell slot ), we set the order

to such that and we make .
If a cell arrives during cell slot and by the end

of cell slot (or after applying the matching during cell slot
), we had the order to with some , then

we keep the same order and incrementby one. If ,
then by the end of time slot , s in all switches will
have the same length since will be sent to .

A similar proof can be constructed forRound-Robin Reset
sinceRound-Robin Resetacts exactly likeRound Robin,except
that it resets the round-robin order for a flow whenever all cells
of that flow have been forwarded. In the interval between two
successive resets, therefore,Round-Robin Resetbehaves exactly
like Round Robinand, hence, satisfiesminimum lengthdemul-
tiplexing.

B. Switching Operation

We showed howminimum lengthdemultiplexing together
with -parallel switching can satisfy theper-flow order
property, which (with theoutput contentionproperty) ensures
that, for every output , it is possible to read a cell (if one is
available) without violating the order of cells within a flow.
In Section IV-C, we explain how, during each time slot, the
multiplexer may identify the appropriate queue to read from.
Our focus here is to consider how a matching may be
computed to achieve a bounded delay on every cell. We turn
our attention first to a class of switching algorithms for the
single switch setting that we call-serial switching.

Definition 6 ( -Serial Switching): In a single switch setting,
-serial switching is one in which the switching algorithm ap-

plies a given matching consecutively times before com-
puting and applying a new matching.

Our intention is then to show that any-serial switching al-
gorithm with a particular speedup can be emulated by a combi-
nation ofminimum lengthdemultiplexing and some -parallel
switching algorithm, where we define emulation as follows.

Definition 7 (Emulation): If, using a -serial switching al-
gorithm, a cell is forwarded across the single switch during a
cell slot , then usingminimum lengthdemultiplexing and some

-parallel switching algorithm, the same cell would also have
been forwarded across one of theparallel switches by the end
of cell slot .

In what follows, we will assume that cells arrive only at the
beginning of a cell slot. This requirement can be realized by
delaying an incoming cell until the beginning of the next cell
slot, which increases the cell delay by at most one cell slot.

We first state the following simple lemma.
Lemma 5: For any real number , if minimum lengthde-

multiplexing and -parallel switching are used, and cell ar-
rivals occur only at the beginning of a cell slot, then if is the
matching computed in cell slot and , then either
all the cells of flow or the oldest cells of flow
are forwarded by the end of cell slot.

Proof: If at the end of cell slot , at least cells of
flow are at the input side, then the result is true by Lemma
3 applied at the end of cell slot . If at the end of cell slot

, less than cells of flow are at the input side, then
assume, without loss of generality, that a cell arrives at
the beginning of cell slot . By Lemma 3 applied at the end of
cell slot , and byminimum lengthdemultiplexing,
will be sent to an empty . Thus, at the beginning of cell
slot , there are at most cells of flow at the input
side, each being in a separate by Lemma 3. Therefore,

-parallel switching implies that all cells of flow will
be forwarded by the end of cell slot.

Using Lemma 5, we can prove the following theorem.
Theorem 2: If cell arrivals occur only at the beginning of a

cell slot, then any -serial switching algorithm under a frac-
tional speedup can be emulated usingminimum length
demultiplexing and an -parallel switching algorithm.

Proof: Every cell slots, the -serialswitching algorithm
has exactly matching phases, during all of which a matching

is kept constant. The -parallel switching algorithm will
run the -serialalgorithm in the background, and in doing so, it
will compute the same matching every cell slots. We will
prove the theorem by induction on the number of cell slots.

Base Case: The theorem is trivially true at a fictitious cell
slot before the beginning of the first cell slot.

Inductive Step: By the end of cell slot, all cells that were
forwarded by the -serialalgorithm were also forwarded by the

-parallel algorithm. Consider cell slot . Since the -se-
rial switching algorithm can have at most matching phases
in every cell slot (speedup of), this implies that if ,
then the number of cells of flow that are going to be for-
warded during cell slot by the -serial algorithm cannot
be more than . By Lemma 5, if , then either all
the cells of flow or the oldest cells of flow are
forwarded during cell slot by the -parallel algorithm.
Therefore, if a cell is forwarded during cell slot
by the -serial algorithm, and had not been forwarded by the

-parallel algorithm by the end of cell slot , then it must be
among the cells that will be forwarded during cell slot .

Note that if is an integer (which we can always assume to
be true), then the -parallel switching algorithm is a -par-
allel switching algorithm because . In this case,
as a practical consideration, the-parallel switching algorithm
does not need to run the-serial switching algorithm in the
background. Instead, it reconstructs the state of the single switch
from the parallel switches. This is possible since in every cell
slot both switching algorithms apply the same matchingan
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equal number of times (one in parallel and the other sequen-
tially); therefore, by the end of a cell slot, the same cells which
remain at the input side in the single switch also remain at the
input side in the parallel switches. This reconstruction of the
exact state of the single switch requires also that the same cells
are being read from the output queues in every cell slot by both
algorithms (FIFO order). We know from Lemma 1 that this is
possible (since -parallel switching means that cells that are
forwarded to the same output during a single cell slot pertain to
the same flow, and, hence, all cells at an output are ordered by
the relation). Reconstructing the single switch from the
parallel switches, however, implies that the switching algorithm
has to look at a large amount of state. At the end of this section,
we will suggest a way to reduce the amount of state information
that the -parallel switching algorithm has to look at; namely,
we will consider looking only at the state of the first switch.

Note also that since the -parallel switching can exactly
mimic the -serial ( ) algorithm when is an integer, it
can provide the same guarantees as the-serialswitching algo-
rithm.

Below, we state some loose delay bounds that the emulation
guarantees for every cell under a constant burst traffic [3]. In
a constant burst traffic, the number of cells arriving at a given
input port or destined to a given output port during an interval
of time is bounded by where is a constant inde-
pendent of time and is the loading of the switch. We
define the arbitration delay of a cell as the time the cell remains
in its . The following theorem states that if each output
emulates a global FIFO queue, emulating a-serial switching
algorithm that guarantees a cell arbitration delay will also result
in guaranteeing a total cell delay.

Theorem 3: If a -serial switching algorithm under a con-
stant burst traffic and a fractional speedup guarantees
a cell arbitration delay , then emulating that switching al-
gorithm usingminimum lengthdemultiplexing and an -par-
allel switching algorithm achieves a bounded delay of

on every cell, where is the traffic burst constant,
provided that every output reads the cells in the order.

Proof: By Theorem 2, we know that the -parallel
switching algorithm will guarantee a cell arbitration delay .
Therefore, at the end of a cell slot, the number of cells destined
to an output that are still at the input side cannot exceed
in any of the switches. Otherwise, at least one cell will be
delayed for more than cell slots at its input, implying that
its arbitration delay will be greater than . Consequently, at
the end of a cell slot, the number of cells destined to output

that are still at the input side in all switches is at most
. By Corollary 1, if there are cells waiting in some

output queue , then it is possible to deliver a cell at output
without violating the cell order of any flow. Therefore, as long
as some is not empty, output delivers a cell. Consider
a cell slot in which some becomes nonempty. At the
end of cell slot , the number of cells destined to output
that reside at the input side is at most , as argued above.
If during cell slots starting from cell slot , some is
nonempty, then by the end of thecell slots, output will have
delivered cells. However, during the cell slots, the total
number of cells that could have been forwarded to some output

queue of port is at most ; since at most
cells destined to output could have arrived during thecell
slots, by the property of the constant burst traffic. This means
that the total number of cells that remain in the output queues
of port after the cell slots is at most . This is
true for any ; therefore, at the end of a cell slot, the number
of cells in all output queues of port is at most .
As a result, since the output emulates a FIFO queue (with an

-parallel switching algorithm, all cells at a particular output
are ordered by ), once a cell arrives at the output side, it
will be delivered within at most cell slots, hence,
achieving a bounded delay of on every cell.

If Round-Robindemultiplexing is used, then to achieve a
bounded delay on every cell, we need not restrict the output
to read cells in a global FIFO order. We only require that
the output read cells of the same flow in order, which is a
requirement we have imposed throughout the paper.

Theorem 4: If a -serial switching algorithm under a con-
stant burst traffic and a fractional speedup guaran-
tees a cell arbitration delay , then emulating that switching
algorithm usingRound-Robindemultiplexing and an -par-
allel switching algorithm achieves a bounded delay of

on every cell, where is the
traffic burst constant and is the size of the switch, provided
every output reads cells of the same flow in order.

Proof: The proof is similar to the proof of Theorem 3. We
use the fact that at the end of a cell slot, the number of cells in
all output queues of port is at most . Assume a
cell remains in for at least

cell slots. By the end of the cell slot during
which was forwarded, contained at most

cells including . Therefore, at least
cells, that were forwarded after , were delivered

at output before . These cells cannot pertain to flow
since cells of a flow are delivered in order. Therefore, at

most flows can contribute to these cells. As a consequence,
there exists a flow for which at least cells were forwarded
after and delivered at output before . Since
Round-Robindemultiplexing is used and the output reads cells
of the same flow in order, it must be that one of these cells, say,

, was in . But is a FIFO queue and was forwarded
to it after . Therefore, could not have been delivered
at output while remains in .

It remains for us to show the existence of-serial switching
algorithms that guarantee a cell arbitration delay under some
speedup . We will modify some existing switching
algorithms that guarantee cell arbitration delay under some
speedup to make them -serialswitching algorithms, for any
integer .

1) Some -Serial Switching Algorithms:In order to obtain
-serial switching algorithms, we convert existing switching

algorithms for a single switch into -serial switching algo-
rithms, by simply modifying the existing algorithms to hold the
matching that they compute constant fortimes.1 Our motiva-

1A similar idea was suggested in which a random matching is computed in
every matching phase, but the matching is used only if it is better (in some sense)
than the last used matching. Therefore, a matching might be held for a while
before applying another matching.
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tion is that the state of the switch cannot change substantially
within a constant time . Thus, holding the same matching
for times should possibly still be able to guarantee a cell
arbitration delay.

We were able to prove this fact for several existing switching
algorithms, such as the Oldest Cell First (OCF) algorithm [3],
the Central Queue algorithm [8], and the Delayed Maximal
Matching algorithm, an algorithm that we describe here in
order to illustrate the point further.

Oldest Cell First: This algorithm is due to Charnyet al.
[3] and is a priority switching algorithm. The priority scheme
used by this algorithm assigns higher priority to the s
holding older cells. Therefore, in every matching phase, the
oldest cell that can still be forwarded is chosen. This is re-
peated until a maximal matching is obtained. This algorithm
guarantees a bounded delay on every cell with when

under a constant burst traffic (see [3]), whereis the
loading of the switch. The priority scheme of this algorithm
guarantees that if a cell is not forwarded, then either an
older cell is forwarded, or an older cell is for-
warded. Holding a matching for times starts to violate the
above property for only when some (or some

) becomes empty while being served by the matching
. The above property will be violated at most times

by a (or a ) while remains nonempty,
since once (or ) becomes empty, its incoming
cells will definitely be more recent that that of and this
will be reflected by the priority scheme when the matching is
recomputed after cell slots. Therefore, holding the matching
constant for times will violate the above property for
at most times while is nonempty (there
are s that share either an input or an output with

). This is enough for the algorithm to still provide a delay
guarantee (see [3]). The additional delay to the original delay
will be .

Central Queue:This algorithm is due to Kamet al. [8]. The
algorithm works by assigning credits to each based of
the rate of flow . A cell is admitted if it has credit. The
credit is decremented by 1 whenever a cell is forwarded. The
credit of a nonempty represent the weight of . In
every matching phase, the algorithm computes a 1/2-approx-
imation of the maximum weighted matching, by repeatedly
picking with the largest weight until a maximal matching
is obtained. This was proved to guarantee a bounded length
of every under no speedup when the credit rate at each
input and output is less then 1/2. As argued in [8], when a flow

is constantly backlogged, a bounded length
implies a bounded cell arbitration delay , where is the
credit rate of flow . Using the same techniques in [8], one
can prove that, with a speedup of 2 and a credit rate less than
one, this algorithm also guarantees bounded queues.

During a constant time, the change in the credit assigned to
a is bounded. Therefore, the change in the total weight
of the maximum weighted matching is also bounded. Our
matching, being a 1/2 approximation of the maximum weighted
matching when first computed, when held fortimes, cannot
differ from the half weight of the maximum weighted matching
by more than a certain bound. A problem arises, however, if a

with a large credit suddenly becomes empty. In that
case, is still considered part of the matching, while the
matching is being held constant, and is contributing a large
weight to the matching. However, that weight should not be
counted in the matching because flow is idle and no
cells of flow are being forwarded. Therefore, the weight
of the real maximum weighted matching at that time might
differ from the weight of the maximum weighted matching
when our matching was computed, by as much as the credit
of . If flow is constantly backlogged, however,
when it becomes idle, the credit of can be bounded.
As a consequence, when all flows are constantly backlogged,
the difference between the weight of the matching and the half
weight of the maximum weighted matching is bounded at all
times [the bound is ], and this is all what we need to
keep the proof working (see [8]). Therefore, the length
will still be bounded and a delay guarantee will be achieved
when all flows are constantly backlogged. Note that in order to
satisfy the requirement of Theorem 2, namely, that a cell arrival
occurs only at the beginning of a cell slot, delaying an incoming
cell until the next cell slot does not violate the condition that a
flow is constantly backlogged.

Delayed Maximal Matching:This is a simple algorithm that
we present to illustrate further the idea of holding the matching
for a constant number of times. The switching algorithm waits
for a time until enough cells have accumulated in the s.
Then it forwards those cells in an interval of timeusing suc-
cessive arbitrary maximal matchings. During that interval of
time, another set of cells would have accumulated, and the al-
gorithm repeats. Therefore, the arbitration delay is. One way
of achieving this with a constant burst traffic is the following.
The switching algorithm builds an matrix where

represents the number of cells that arrived from inputto
output . The algorithm waits a time where
is the loading of the switch and is the traffic burst constant.
Since the number of cells that arrive from an input or to an output
during an interval of time is at most (property of the
constant burst traffic), the sum of entries of any row and any
colon in the matrix will be at most . In that case, it can be
shown that the switching algorithm can forward those cells in
at most maximal matchings. Therefore, with a speedup of

, this is done in at most cell slots. By that time, another
matrix would have been computed and the same process is re-
peated again.

If we hold the matching for times, every will be
served at most times while its . We can show that
this implies that the algorithm will need an extra

matchings (or, equivalently, cell slots with
a speedup ) to forward the cells during the interval of
time . For the process to work as before, we require that

or ,
which adds an extra delay of .

2) Birkhoff–von Neumann Decomposition: A-Parallel
Switching Algorithm: Chang et al. [1] (see also [2]) have
proposed an algorithm that is capable of providing delay
guarantees for input-queued switches with no speedup. The
algorithm consists of taking a static rate matrix and computing
only once a static schedule in time , based on a decom-
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position result of Birkhoff and von Neumann. The schedule is a
static list of matchings, corresponding to permutation matrices
obtained from the decomposition of the rate matrix, and applied
according to certain weights. In our context, we may utilize this
algorithm in conjunction withRound-Robindemultiplexing
which ensures identical rate matrices for all switches. Using
this algorithm, static schedules can be obtained based on
the individual rate matrices. These static schedules will be
identical since all switches will have the same rate matrix.
Thus, as a natural consequence of this approach, the same
matching will be applied in every cell slot in all of the parallel
switches. For each individual switch, this provides comparable
arbitration delay guarantees as the original algorithm of Chang,
with the added advantage, that we can sustain a line speed
that is now times the speed at which the parallel switches
operate. Note, however, that since each switch is now running
at a slower speed, it is not possible to transmit cells at the line
speed between the inputs and the switches and between the
switches and the outputs. However, the technique described in
of buffering cells at the demultiplexers and multiplexers can
be utilized, causing only a small additive delay. This will be
discussed with more detail in Section IV-D.

3) Reducing State Information:It can be shown that when
the speedup is an integer, the -parallel switching
algorithm can reconstruct, from the state of all theparallel
switches, the state of the single switch running the-serial
switching algorithm. This requires, however, that the scheduler
examine the state of each of the parallel switches, and
maintain a global state. It turns out that this global state
requirement can actually be relaxed. For the single switch
switching algorithms discussed above, only two kinds of state
information are used: the oldest cell of each for OCF,
and the length of each for Central Queue2 andDelayed
Maximal Matching.

By usingRound-Robin Resetdemultiplexing, the amount of
state information needed can be greatly reduced for the OCF.
For instance, it ensures that the oldest cell of every flow is al-
ways in the first switch. Thus, when using OCF andRound-
Robin Reset,the algorithm needs only look at the state of the
first switch to compute a matching.

For the Central Queue algorithm, the use of anyminimum
length demultiplexing ensures that, for every flow , the
number of all the cells at the input side is related to the number
of cells in in the following way:

Thus, if is used as an approximation to, the computation
of the 1/2-approximation of the maximum weighted matching
will be affected by at most a certain bound, which, as argued
previously, will not hurt the delay guarantees for the Central
Queue algorithm. Note that we are now using lengths of s
as the weights and not the credits (see footnote 2).

For theDelayed Maximal Matchingalgorithm, defining sim-
ilarly and using the upper bound as an ap-

2Here, we say that the length of aV OQ instead of its credit because when a
constant burst traffic where each flow has a rate and is constantly backlogged,
the length of aV OQ differs from its credit by at most a constant. Alternatively,
the Central Queue algorithm can use the credit of aV OQ and no other state
information will be needed. But then, explicit knowledge of the rates is required.

proximation for , will result in serving a at most an
additional bounded number of times while it is empty; a phe-
nomenon that can be accommodated for in the same way de-
scribed earlier for the-serial version of theDelayed Maximal
Matchingalgorithm, i.e., by increasing the delay after which the
algorithm obtains a new matrix. The upper bound
is used here because the algorithm needs to make sure that it is
emptying all the matrix as described earlier.

Observe that state reduction is not an issue for the
Birkhoff–von Neumann decomposition algorithm, because it
only stores a precomputed schedule and so does not require
any state information from the switches for its operation.

C. Multiplexer Operation

We have already shown that when usingminimum lengthde-
multiplexing and -parallelswitching, it is possible for the mul-
tiplexer at an output port to always deliver a cell from the output
queues of the parallel switches in a way not to violate the
order of cells pertaining to the same flow. The only question
that remains is how a multiplexer determines which output
queue to read the next cell from. This can be done in dif-
ferent ways. One way is to use a standard resequencing tech-
nique. Cells are tagged upon arrival to the switch with their
arrival times. At the output side, the multiplexer incrementally
sorts the tags of the HOL cells and chooses to read the one with
the smallest tag. This requires additional access to the output
queues which we assume not possible given that no speedup is
available, especially since the tag value itself can grow as large
as the total delay of a cell.

An alternative is for the switching algorithm to store this in-
formation and sort the HOL cells of all the queues. This, how-
ever, requires the communication of tags between the demul-
tiplexers and the switching algorithm every time cells arrive.
In addition, to avoid the use of unbounded tags, both of these
approaches must address the issue of tag reuse.

We would like to avoid the use of the above resequencing
techniques. A more efficient approach that usesRound Robin
or Round-Robin Resetdemultiplexing is the following. For
each output , the switching algorithm maintains a FIFO list

of tuples of the form pertaining to successive cell
slots during which a cell was forwarded to output. Hence,
for every such cell slot, is the number of cells switched to
output during that cell slot, and is the index of the switch
that forwarded the oldest cell to outputduring that cell slot
(note that all cells switched to outputduring that cell slot
pertain to the same flow).

Therefore, during each cell slot for which some belongs
to the matching, the algorithm adds a to . The algorithm
may easily obtain the information to do so from the demulti-
plexers. Each demultiplexer stores the number of cells for a
particular output that have arrived up to the current cell slot and
are still remaining at the input side.

Upon applying a matching , the switching algorithm com-
municates to demultiplexer the index of the output for
which . The demultiplexer responds with the number
of cells that will be forwarded to outputas a result of applying

(this is easy to determine since it is either all the cells or
cells by Lemma 5), and the index of the switch that contains
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the oldest such cell (also easy to determine with any of the two
round-robin demultiplexing strategies described earlier). The
total communication required between the demultiplexers and
the switching algorithm is therefore .

Following this, demultiplexer updates for every output
the number of cells of flow remaining on the input side as
well as the index of the switch that now contains the oldest cell
of flow .

At the output side, each multiplexer periodically retrieves
from the switching algorithm a tuple from which it learns
the number of cells that must be read and the identityof
the switch from whose output queue the multiplexer must start
reading the first cell of this round, and continues in a round-
robin fashion (as a consequence of the round-robin demulti-
plexing). Therefore, the communication between the switching
algorithm and the multiplexers is . Hence, the total
communication with the switching algorithm is ,
which is within a constant factor of the amount of
communication needed for the switching algorithm to specify a
matching in a single switch.

If we useRound-Robin Resetdemultiplexing, then we know
that the oldest cell of a flow is always in the first switch and,
therefore, is not needed.

Instead of requiring additional memory for the switching al-
gorithm, we can use the memory of the switch itself, i.e., the
output queues, in order to store the required information. This
works for the case ofRound-Robin Resetdemultiplexing in the
following way: Since the oldest cell of a flow is in the first
switch, we only need to tag a cell that is forwarded
across the first switch with the numberof cells of flow
that are going to be forwarded during the current cell slot. At
the output, the multiplexer retrieves this number when reading
the cell in the first switch, and, hence, it knows how many cells
to read before coming back to the first switch. This is efficient
in terms of space since the tag length is and only cells
in the first switch need to be tagged. A difficulty with this ap-
proach is that we must tag cells upon forwarding them, which
might not be straightforward to realize.

D. Supporting Higher Line Speeds

We now briefly describe how we can use parallel switches
that run at a speed slower than the line speed. For this purpose,
we assume that the line speed is some integer multiple,, of
the speed of a single switch.

The first thing to note is that each cell slot of a switch is now
times the original cell slot of the traffic (since the switches are
times slower). Thus, we will refer to the cell slots of the traffic

by external cell slots, reserving the term time slots to denote the
internal cell slots of the switches.

The second thing to note is that now a demultiplexer will not
be able to send cells to a single switch in successive external cell
slots, since each link can be accessed only once every cell slot,
i.e., once every external cell slots. Similarly, a multiplexer can
access output queue for output once every external cell
slots.

We will assume the use of theRound-Robindemultiplexing
strategy. Assume also that the number of parallel switches is.

We will describe how we can use the links that are running at
the original line speed.

We will use FIFO buffers running at the line speed in each
demultiplexer and multiplexer. Each of theFIFO buffers cor-
responds to one of the switches. When a cell needs to be sent
by demultiplexer from input to a switch, it is stored in a
buffer of corresponding to that switch. The cell at the head of
the buffer is sent to the switch when the link is available. When
only one cell can arrive at an input during a single external cell
slot, an analysis of this technique appears in and illustrates that a
buffer size of is enough for each buffer of the demultiplexer.
Moreover, each cell will be delayed at mostcell slots (i.e.,

external cell slots) at the input. Therefore, we can consider
a new arrival pattern of cells at the input, where at a given time
slot, only cells that arrived cell slots prior to the current cell
slot are considered present. This produces the original arrival
pattern of cells delayed by external cell slots.

Similarly, when a cell needs to be delivered at outputby
multiplexer , it is stored, when the link is available, in a buffer
in corresponding to the switch being used to deliver that
cell. The cell remains in that buffer until it can be delivered.
Therefore, the buffers of the multiplexer act as a resequencing
buffer. As before, the analysis described in [7] yields a buffer
size of for each of the buffers of . Moreover, each cell
will be delayed at most cell slots (i.e., external cell slots)
at the output. Therefore, by waiting external cell slots at the
output, the same techniques for delivering cells described in the
previous section are still valid, hence, making resequencing a
simple operation.

In general, for a constant burst traffic with burst constant,
the buffer size will be and the delay of external
cell slots will be replaced by .

The above buffering technique solves the problem of slow
links with an additive delay of . We now illustrate
that with these slow switches, we can still somehow emu-
late an -serialswitching algorithm running at the original line
speed.

We consider the new arrival pattern at the input, which is the
exact original arrival pattern delayed by external cell
slots.

The idea is similar to what Lemma 5 and Theorem 2 achieve.
As before, the -serial switching algorithm holds a matching

for external cell slots, which is equal to one cell slot
of the -parallel switching algorithm. First we note thatmin-
imum lengthdemultiplexing operates in every external cell slot
now as opposed to every cell slot. Therefore, the number of
cells in a at the end of an external cell slot might not
be accurately defined since a matching requiresexternal cell
slots (one cell slot) to complete. Conceptually, however, we can
think of the matching taking effect only during the last external
cell slot of a cell slot. Hence,minimum lengthdemultiplexing
reflects the correct number of cells in the s as viewed
by the demultiplexers in each external cell slot. Since in our
setting,Round-Robindemultiplexing is aminimum lengthde-
multiplexing as proved earlier, and sinceRound-Robindemul-
tiplexing does not rely on the number of cells in the s,
regardless of how the matching is carried during a cell slot, we
will still have the same results as before. Namely, Lemma 5 will
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still be true, and, hence, if is in the matching , then ei-
ther all cells of flow or the oldest cells of flow
will be forwarded by the end of a cell slot. With a proof sim-
ilar to the one for Theorem 2, and since the-serial algorithm
can forward at most cells every external cell slots, we con-
clude that the -parallel algorithm emulates the -serialalgo-
rithm up to an additive constant ; the reason being that
a cell that is forwarded with the -parallel algorithm during
a cell slot might have been forwarded by the-serial algo-
rithm during any of the external cell slots that correspond to
cell slot . Therefore, if the -serialswitching algorithm guar-
antees an arbitration delay external cell slots, the -par-
allel switching algorithm will guarantee an arbitration delay of

external
cell slots.

V. CONCLUSION

We suggested a scheme that eliminates the need for speedup
by using parallel input–output-queued switches with
no speedup, where is the speedup of the original switch. The
key to our approach was to apply the same matching in all the
parallel switches. By adapting existing switching algorithms
for the single switch setting to hold their matching constant for
a number of times, we were able to apply the same matching
in all switches, and guarantee a bounded delay on every cell.
In addition, both demultiplexing and multiplexing at the inputs
and outputs, respectively, could be done using
amount of communication between the switching algorithm and
the parallel switches. This is to be compared to the
amount of communication needed in a single switch for the
algorithm to specify a matching. We also suggested some
heuristics that reduce the amount of state information that the
switching algorithm needs to look at in order to compute a
matching, resulting in the algorithm looking only at the state
of the first switch. Our approach offers the advantage of using
a constant number of parallel layers. This was not the case
in [6] and [7], which emulate output queueing for a high line
speed using output-queued switches running at lower
speed with no memory speedup. While this dependence on

can be eliminated by replacing the output-queued switches
with input–output-queued switches [4], the algorithm for
emulating an output-queued switch becomes more complicated
and much less practical to implement. Moreover, our approach
makes use of FIFO queues only, whereas the approach outlined
in [4] requires the use of non-FIFO queues. The bandwidth
requirement of the architecture proposed here is where
is the line speed. The authors of [7] succeeded in reducing this
bandwidth requirement to only at the expense of allowing
cells to arrive in an out-of-order fashion with a bounded delay
of .

APPENDIX

The following scenario illustrates why simple rate splitting
might not achieve 100% throughput. Consider the case of two
switches. The splitting can be done by deploying a round-robin
policy that, for each flow, decides where to forward the next cell
of that flow. Both switches will receive half the original rate for

Fig. 4. Example of cell arrivals in a ten cell slot period.

every flow. Each switch runs a switching algorithm that achieves
100% throughput with a speedup of 2. It can be shown that when
fed with data at half the original rate, each switch will appear to
operate at a speedup of 2 and should be able to achieve 100%
throughput had the order of cells been of no concern. The ex-
ample will show that if we wait to reorder cells, the number of
transmitted cells falls consistently short of the number of ar-
riving cells, leading to overloading of the output. We use two
14 14 switches. We also use the OCF algorithm which favors
older cells in the switch to be forwarded. Our example consists
of a repeating sequence of ten cell slots. In the Fig. 4, we show
the cell arrivals for both switches during the ten cell slot time.
A dot represents a cell arrival during the particular cell slot.

We will refer to the first and second cells of flow (1, 1) by
and , respectively. Similarly, we will refer to the first and

second cells of flow (2, 1) by and , respectively. Note that
and will be forwarded to switch 2 and switch 1, respec-

tively, by the round-robin policy. Note also that the number of
cells arriving for every flow is odd and, therefore, by the end of
the tenth cell slot, each flow will start over in the other switch.
Using OCF independently in each switch, we will forceand

to be forwarded before and , thus, creating the dead-
lock situation described earlier.

In the first cell slot, only cells going to output 2 are received.
Each switch will choose one of the cells going to output 2 to be
forwarded. In the second cell slot, only cells going to output 2
are present in each switch because no arrivals occur; therefore,
as before, each switch chooses to forward a cell from among the
cells going to output 2.
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Fig. 5. Two switches at the beginning of the fourth cell slot.

Fig. 6. Two switches at the end of the fourth cell slot.

In the third cell slot, each switch receives a new cell going to
output 2, namely, (1, 2) in switch 1 and (2, 2) in switch 2, and
some cells destined to output 1. Each switch chooses a cell going
to output 1 and a cell going to output 2, where, by the OCF algo-
rithm, these cells are different from(1, 2) and (2, 2), because

(1, 2) and (2, 2) are the most recent cells.
In the fourth cell slot, switch 1 receives and switch 2 re-

ceives . Therefore, at the beginning of the fourth cell slot,
both switches have the configuration shown in Fig. 5, where an
edge represents a cell in the switch.

By the selection of OCF, since(1, 2) and in the first
switch are the most recent cells, they will not be forwarded
during the fourth cell slot. A symmetric argument is valid for
switch 2. Therefore, by the end of the fourth cell slot, we have
the configuration of Fig. 6.

In the fifth cell slot, cells and arrive. This time they
are sent to switch 2 and switch 1, respectively, because of the
round-robin policy for each flow. At the beginning of the fifth
cell slot, we have the configuration of Fig. 7.

Since (1, 2) is the oldest cell in switch 1, and(2, 2) is
the oldest cell in switch 2, both of them will be forwarded. This
means that in the first switch will not be forwarded. Simi-
larly, in the second switch will not be forwarded. However,

in the first switch will be forwarded because no other cells
are blocking it. The same holds for in the second switch. By
the end of the fifth cell slot, and are forwarded but not
and . By the end of the tenth cell slot, all cells are forwarded.

Since and were forwarded before and , the only
way to retrieve cells in order at the output is to read either
or , store it temporarily, and read it again when it can be de-
livered. Since we have ten cells to output 1 during ten cell slots,
this implies that at least eleven reads are needed at that output
in order to deliver all ten cells. However, the same pattern is
being repeated every ten cell slots; therefore, output queue 1
will grow indefinitely. Note that although we are using the OCF
algorithm for switching, the selection of cells in this example

Fig. 7. Two switches at the beginning of the fifth cell slot.

satisfies the selection criteria for many other algorithms such as
pure maximal matching, Central Queue [8], and lowest-occu-
pancy-output-first algorithm (LOOFA) [9]. A simpler example
that exhibits a similar scenario can be constructed; however, this
particular example has the following advantageous properties.

At most one cell arrives to a particular input during a cell
slot.

For every flow , the number of cells that arrive
up to time is bounded as follows:

where is the rate of the flow.
The maximum aggregate rate at a port is 1; however, it can

be reduced to be strictly less than 1 (namely, 20/21) by repeating
the above pattern twice and inserting an idle slot after that. By
doing so, we still have the inequality above. The output will still
be overloaded since it has to make 22(11 11) output reads
every 21 (10 10 1) cell slots.

These properties imply that rate splitting combined with the
algorithms mentioned above (which normally provide a cell
delay bound with a rate less than 1/2, or a speedup of 2 and a
rate less than 1) is not guaranteed to achieve 100% throughput
even with the most restrictive input pattern, where the switches
are operated independently. Note that the main problem here
is not the size of the input queues but rather that of the FIFO
output queues, and this is due to the possibility of misordering
of cells of the same flow sent through different switch fabrics,
which is not present in a single switch setting.
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