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On Achieving Throughput in an Input-Queued Switch

Saad Mneimneh and Kai-Yeung Siu

Abstract—We establish some lower bounds on the speedup Ninput ports Noutput ports

. . X N with N VOQs with 1 output
required to achieve throughput for some classes of switching each queue each
algorithms in a input-queued switch with virtual output queues
(VOQs). We use a weak notion of throughput, which will only R —
strengthen the results, since an algorithm that cannot achieve i —1
weak throughput cannot achieve stronger notions of throughput. =T~
We focus on priority switching algorithms, i.e., algorithms that
assign priorities to VOQs and forward packets of high priority —Tn
first. We show a lower bound on the speedup for two fairly general i —7
classes of priority switching algorithms: input priority switching -_—=m:1~

algorithms and output priority switching algorithms. An input

priority scheme prioritizes the VOQs based on the state of the :
input queues, while an output priority scheme prioritizes the i !
VOQs based on their output ports. We first show that, for output

priority switching algorithms, a speedup S > 2 is required ::"U‘
to achieve weak throughput. From this, we deduce that both I
maximal and maximum size matching switching algorithms do ———

not imply weak throughput unless S > 2. The bound of S > 2 is
tight in all cases above, based on a result in Daét al. Finally, we
show that a speedupS > 3/2 is required for the class of input
priority switching algorithms to achieve weak throughput.

Index Terms—tower bounds, priority switching algorithms, this can be achieved by a combination of a speedup in the fabric
speedup, throughput. (of 2 — 1/N) and a special switching algorithm based on com-
puting a stable-marriage matching. Such emulation involves
substantial bookkeeping and communication overhead at the
scheduler, however, and despite its theoretical significance, is
T RADITIONAL output queued or shared memory architecy gt practical at high speeds.

tures are becoming increasingly inadequate to meet highqost practical switching algorithms for input-queued
bandwidth requirements, because having to account for multiglgitches (see, for instance, [3] and [8]) require a speedup
arrivals to the same output requires their switch memories ¢ petween 2 and 4 to achieve adequate QoS guarantees.
operate atV times the line speed, whetg is the number of These algorithms are priority-based switching algorithms and
input ports. Although input-queued switches provide an attragperate by assigning priorities to the input queues (the virtual
tive alternative because their memory and switch fabrics MB¥tput queues, VOQs) and forwarding packets of high priority
operate at only the line speed, they present a challenge for piest. Wwe will prove that the speedup requirement for these
viding quality-of-service (QoS) guarantees comparable to thoggorithms is inherent, in the sense that they cannot achieve
provided by output-queued switches, and they require a sophigoughput without a speedup in the switch. As a result, the
ticated_ scheduler or arbiter, making it a critical component @{yitch fabric and the memory need to operate faster than the
the switch. - o _ ~ line speed by the speedup factor. This also implies that the

For instance, traditional switching algorithms that aCh'eWﬁput-queued switch will require queues at the output as well,
100% throughput in an input-queued switch do not providgnce now more than one packet can be forwarded to an output
strict delay guarantees and are based on computing a maximyrg single time unit. Fig. 1 depicts the traditional architecture
weighted matching that requires a running timeXfV°) [11],  of an input—output-queued switch with VOQs. Our model of a
[13], or O(N*°) [14], making them impractical to implementsyitch will be essentially the same general model of Fig. 1.
on high-speed switches. Some recent work [4] has, thereforeyye will denote bW 0Q,; the jt" VOQ at inputi, which will
focused on asking whether an input-queued switch can be maggy packets originating at inpéaind destined to outpyit With
to emulate an output-queued switch, and has demonstrated fipépeedup in the switch, at most one packet can be forwarded to

a particular output in a single time unit. This packet can be con-
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Fig. 1. Input—output-queued switch.
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will share an input or an output. This notion is formally aben the rate of the aggregate flow at each input and output if it

stracted in the literature as a matching. exists. Nevertheless, the model does not directly constrain the
The operation of a switch with no speedup is, thereforéow of packets from input to outputj, hence, the use of the

modeled as successive computations of matchings in a bipart@amweakin the burst characterization of this traffic model.

graph, one matching in each time unit. The bipartite graph isWeak Constant Burst:

obtained as follows: the input ports form a set of nodes, the « v¢, < ¢,, S Aik(t2) — Ai(t1) < a(ta — ) + B;

output ports form the other set of nodes, and the nonempty « v¢, < ¢,, Sy Anj(ta) — Agj(t1) < oty — t1) + B;

VOQs form the edges between the two sets of nodes. Thus, a. o < 1.

nonemptyvVOQ,; is modeled as an edge between nofieput) -

4 L S . It can be seen that for any rate assignment, some flow from
and nodeg (output). The matching is a set of disjoint edges, i.e,

: mput: to outputj can still have a time-dependent burst without
edges that do not share nodes. Therefore, the matching mat?ﬁ@l%ting the above conditions. For instance. assume- 1

input ports to output ports, and if inputs matched to outpu and all the flows are sending packets at their assigned rates. If

in ahpart|cuIarltlmedu?lt?/OQi_j 'i se_rr\:ed In ;hat tlmebun(;t. _all flows stop sending packets except for one flow that starts
The general model of a switch with speedup can be descrifgg, jing packets at a rate of 1, none of the conditions above is

hereafter as follows: the switch operates in matching phasggyated, but that flow can exhibit a time-dependent burst until

computing a matching in. every pha;e. We will assume th.at tl?‘aexceeds any burst bound, then comes back to normal, where
SW'tCh. computes a maxmal matching in every phase, i.€. 4@ s start sending at their assigned rates again.
matching where no more inputs and outputs can be matched.

Assuml_ng continuous time, a s_W|tch with speecﬂrpak_esl/S C.. Strong Constant Burst Traffic
time units to complete a matching phase before starting the next
phase. Therefore, § > 1, output queues are used at the output The following modelimplies the previous model and is, there-
ports because packets will be forwarded to the output at a spé@fg, stronger (more constrained). It imposes a time-indepen-
higher than the line speed. dent bound on the burst of the individual flows, hence, a time-in-
dependent bound on the burst at each input and output port. The
strong constant burst model does not necessarily define a rate
for an individual flow of packets from inputto outputj. Un-

We will mention three traffic models used in the literaturdike the weak constant burst model, however, it defines an upper
A traffic model describes the arrival of packets to the switchound);; on that rate if it exists.
as a function of time. A traffic model can be probabilistic or Strong Constant Burst:
deterministic, as will be seen shortly. Before we proceed to the + vy, < ¢, Aij(t) = Aij(t1) < Aij(ta — t1) + B;
different traffic models, we need to define a quantity that tracks , S ik < 0
the number of packets arriving to the switch. L&t (t) be the « Sy < o
number of packets that arrive to the switch by titret input: e < 1.
and are destined to outpyit N

Il. TRAFFIC MODELS

Note that both the weak constant burst and the strong constant
i burst models do not necessarily imply the SLLN model because
A. Strong Law of Large Numbers (SLLN) Traffic lim; . (A;;(t))/(t), which is the rate, might not exist. How-
This traffic conforms to a probabilistic model that obeys thever, if that limit exists, then the strong constant burst model
Strong Law of Large Numbers, hence, its name SLLN. In sinsatisfies the SLLN model.
pler terms, this means that it is possible to define a katdor
the flow of packets from inputto output;.

SLLN: Ill. THROUGHPUT

. Hm.t_}oo(Ai,»(t))/(t) — )\,; with probability 1; Throughput basically means that, as time evolves, the
Y, Ak < (Jl ! ’ switching algorithm will be able to forward all the packets that
. Zk )\Z_ < a'. arrive to the switch. There are many definitions of throughput,
. a k< 17 - and some definitions depend on the adopted traffic model.

. . . . One possible definition of throughput under a probabilistic
The parametaet is called thdoadingof the switch and will be raffic model is for the expected length of each VOQ to be

present in the two traffic models below, which are based on the s
(o, p) model, wherer represents the burstiness angpresents ounded. Therefore, if;;(t) denotes the length o¥0Q,,

e at timet, we require thatt'[X,,(t)] < M < oo [11], [13],
an upper bound on the long-term average rate (if it exists). [14]. One can s?wow that th[is i]rr(1p)l]ies that for aen)L (} t[hele

i exists a timet, such thatPr[(X;;(t))/(t) > €] < e for every
B. Weak Constant Burst Traffic t > to. Therefore,(X;;(t))/(t) converges to 0 in probability.
In some sense, the weak constant burst traffic is a strondlerlim,_..(4,;(¢))/(t) = A;; in probability, this defini-

model than SLLN because it is deterministic. However, it dod¢i®n of throughput implies thalim, ... (D;;(t))/(t) = Aij
not necessarily define a rate for the flow of packets from iripuin probability, whereD,;(t) = A;;(t) — X;;(t). Other
to outputj. Alternatively, it provides a boung on the burst of definitions of throughput require that under an SLLN
packets at input and outputj. This bound is a constant inde-traffic, lim;_,..(D;;(t))/(t) = X with probability 1 [5].
pendent of time. It also defines an upper boumdn(this case) It is possible to show that ifE[X,L?j(t)] is bounded, then
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lim; o0 (X;;(t))/(t) = 0 with probability 1, which in turn [13]and is based on computing a maximum weighted matching.
implies thatlim,_,..(D;;(t))/(t) = Xi; with probability 1 if This is not to be confused with the algorithm described above.
limy o0 (A45(¢))/(t) = Ai; with probability 1. In [8], Krishna et al. provide an algorithm called.owest

In this paper, we will use a weak notion of throughput, define@ccupancy Output Queue Firgt OOFA) that guarantees a
below. bounded delay on every packet with a speedup of 2 and a

Definition 1 (Weak Throughput)Let X;;(¢) be the length of strong constant burst traffic, and uses a more sophisticated
VOQ,; attimet. Thenlim, ... (X;;(t))/(t) = 0. priority scheme. This algorithm has also a work conservation

The above definition can be also expressed as follows. Fmoperty that we will not address here. The same lower bound
everye > 0, there exists a time, such that X;;(¢))/(t) < e of S > 3/2 applies for this algorithm as well in the sense that
for any timet > . LOOFA does not imply weak throughput unle$s> 3/2.

Note that in the above definition, the throughput does not rely Before we prove our lower bound results for the different
on the fact thatim,_ . (A4;;(t))/(t) exists. Note also that the classes of priority switching algorithms, we need to define the
definition does not impose any strict bound on the size of thaffic model that we will assume for the rest of the paper. We
VOQs (in fact, the size can grow to infinity). also need to provide a formal definition of priority to obtain the

framework for a priority switching algorithm.

IV. SOME PrREVIOUS WORK
V. TRAFFIC ASSUMPTIONS

Here, we review some of the practical switching algorithms \ye qefine a restricted model of traffic under which we will

found in the literature and their speedup requirements.  ,6ve our lower bound results oh Note that more restricted
Charny et al. proved in [3] that any maximal matchings atfic yields stronger results.

policy (i.e., any switching algorithm that computes a maximal pefinition 2: An a-shapedraffic is a traffic that satisfies the
matching in every matching phase) achieves a bounded del’é‘lYowing:

on every packet in an input-queued switch with a speedup | N e P .

S > 4 under a weak constant burst traffic. We will prove that :il ittz Az”(tjl) (t?j—(t,lél) _(tAjLJgZZ tl)\). i(tO(_l)t, )+
the simple policy of computing just any maximal matching 1= "2 Lo k02 kAL T Lk kT2 0

. o(1);
does not imply weak throughput for a speediuipc 2. In fact,
we prove that a maximum size matching policy does not imply \g(ll)g for 2 Awiltz) = Aki(t) = 2a Akgltz = 1) £
weak throughput folS' < 2. ey /\ < a
Since switches with speedup are not desired due to their man- Zk )\lk, - a'.
ufacturing costand impracticality, itis legitimate to look atwhat | r i” -

loading« a switch with no speedup (i.eS, = 1) can tolerate. .
A work in [7] addresses this issue and provides a switching al- "€ above conditions state that the rate of the flow from
gorithm (called theCentral Queuealgorithm) that computes a INPUt? 10 output; exists and is equal t;;. Moreover, the burst
1/2-approximation of the maximum weighted matching, wher@f the flow from mputz.to outputy (first condition), and the _
the length ofVOQ; ; is used as the weight for edgg £). This aggrggate fIc_>w at any mput and any outp.ut (second and third
work is a slight generalization of the result described in [1§nditions), isB = O(1) independent of time as well as the
applied to the very special setting of a switch. ThHe-approx- S1Z€ o_f the switchV. Note that the first co_n_dltlon does not nec-
imation algorithm used in [7] is a priority switching algorithmess‘?‘r'l}’ |_mply the second and third condmo_ns, namely, because
where VOQs with larger length are considered first as candit€ individual flow bursts o©(1) may result in arO(N) burst
dates for the matching (the description of this algorithm is aft SOMe input or output port. Theshaped traffic satisfies the
tually different in [7], but for our purposes it is to convenient too-LN model as well as the strong constant burst model. This is
describe it in this way). Th€entral Queuelgorithm achieves the traffic model under which we will prove the various lower
bounded VOQ length when < 1/2 under a strong constantbou_nd results. As a consequence, the results will hold for_ all
burst traffic. The results obtained in this paper will prove that {faffic models described in Section Il, namely, the SLLN traffic,
cannot achieve weak throughput unléss> 3/2a and, hence, the yveak constant burst traffic, and the strong constant burst
if S = 1 (no speedup), it cannot achieve weak throughput fgaffic.
a > 2/3.

In [3], the authors provide an algorithm call&@ldest Cell
First that guarantees a bounded delay on every packet with a
speedupS > 2 under a weak constant burst traffic. The same In this section, we formally define a priority scheme which
algorithm can be proved to achieve bounded VOQ length withrll provide the framework for a priority switching algorithm.
speedup of 2 under a strong constant burst traffic. This switchiAgriority scheme imposes on the VOQs an order by which they
algorithm is a priority switching algorithm that assigns higheare considered for the matching.
priority to VOQs with older head-of-line (HOL) packets. Sim- Definition 3: A priority schemer defines for every matching
ilarly, the results obtained here will prove that this algorithmhasen a partial order relation,, on the VOQs.
cannot achieve weak throughput unlésg 3/2. Note thatan- ~ We will use the notatioVOQ,; < VOQy, to denote that
other switching algorithm calle®Idest Cell Firstappears in VOQ,; has higher priority thanvOQ,;, during matching

VI. PRIORITY SCHEME
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phasen. We will also use the notatiodOQ,; A, VOQ,, to Priority Switching Algorithm
denpte thaNQQij does not have higher priority thanOQ,, start with an empty matching M = 0
during matCh.mg phgsm. ] ] ] prioritize all VOQs according to mm
Note that sincer,,, is a partial order relation, two VOQs might repeat the following until M is maximal o
be unordered by,, (e.g., forvOQ,; andVOQy,, VOQ;; %, choose a’;‘;"ls"f:ﬂ;’tgllong”ﬂ‘;’ﬁhﬂ; highest (‘i’""j‘;“ty
VOQ,, andVOQ,, 4 VOQ,L-j). In order for this to cleanly discard VOQ;;
reflect the notion of equal priority, we define a well-behaved
priority scheme, as follows. Fig. 2. Matching phase: of a priority switching algorithm.

Definition 4: A well-behaved priority scheme is a priority
scheme such that for every matching phaseif VOQ,; and

lowing condition: if a nonemptyw OQ,; is not served, then a
VOQ,, are unordered by,,, andvVOQ,, andVOQ,,,,, are un nonemptyVOQ, is served andvOQ.; A, VOQu. or a

ordered byr,,,, then_V_OQij andVO_Q,_,m are unordered by,,, . nonemptyVoQ, : is served and0Q, . £ VOQ,..
The above condition on the priority scheme reflects the no- . J A J
The notion of ar-stable matching is more general than the

tion of equal priority. Hence, if during a particular matchin% : I L L
. rocess depicted in Fig. 2. In other terms, a priority switching
phaseVOQ,;; andVOQ,, have equal priority, anOQ,,;, and algorithm for the priority scheme will always compute a

VOQ,,, have equal priority, theOQ;; and VOQ,,,, Wil r-stable matching. Although the most intuitive and straight-

have equal priority. This condition defines an equivalence Efo_rward wav of computing a-stable matching is the greed
lation on the VOQs which will help us later to explicitly exten y ob pulting . 9 €9 y
proach described in Fig. 2, Definition 6 does not impose any

. . . : p
the partial order relation to a total order relation by which aﬁestriction on how ther-stable matching is computed.
VOQs are ordered. .
i . I . . In the next section, we prove lower bound results on the

In practice, a priority switching algorithm breaks ties among . 4uo under am-shaped traffic
the VOQs with equal priorities. We will assume that ties ardP P P '
broken using the indices of the ports and, hence, we assume
the existence of a fixed total order relation on thgj) pairs VII. L OWER BOUNDS

used for breaking ties. Adopting the assumption that breaking ape will start by stating, without proof, the following simple
tie among two VOQs involves only the two VOQs in questiofymma.

and no other information, this is a fairly general deterministic | amma 1: If an eventE occurs everyr #£ 0 time units

way of breaking ties; other policies that are more sophisticatgfhp, the number of timek, ,,; the event occurs in the interval
can usually be incorporated into the priority scheme itself. TfHel 2], satisfies '

following definition captures the idea.

Definition 5: Let = be a well-behaved priority scheme and by — 1 by — 1
¢ be a total order relation on thée, (j) pairs. We define the — 1< Ep, 4 <
¢ extension ofr to be the priority schemer® as follows.
For any matching phase, if VOQ,; <z, VOQ, then We will later use this lemma to argue a lower bound on the
VOQ,; =< VOQy,;. For any matching phase, if VOQ,; number of packets arriving from a particular inguduring an
andVOQ,,; are unordered byt,,, and (7,5) <4 (k,l), then interval of time, and an upper bound on the number of matching
VOQ;; <6 VOQy. phases during the same interval of time. Using these bounds, we

Sincer is well-behaveds,,, induces the equal priority equiv- will prove our different results by showing that the number of
alence relation on the VOQs in every matching phasérhis packets arriving to the switch at a particular input is more than
in turn implies that we can extendas described above withoutthe number of times that input is served (i.e., some VOQ at that
violating the property of an order relation. We omit the proof ahput is served) by the matching phases. In order to obtain such
this fact. Therefore, ifr is a well-behaved priority scheme, therscenario for a given algorithm, we make use of an adversary.
7% is a priority scheme such thaf, orders all VOQs for every The adversary will supply the switch (the algorithm) with an
matching phasen. a-shaped traffic that will force the algorithm to fail in achieving

Note that our definition of a priority scheme is general enougheak throughput unless the speedup is high enough.
to tolerate changing the definition of the partial order relation in We will denote by a matching policy a switching algorithm
every matching phase. Therefore, it is possible to prioritize théhich computes a matching that satisfies the policy in every
VOQs based on their lengths in one matching phase and baseiching phase. For instancesrestable matching policy de-
on the age of their HOL packets in another. notes a priority switching algorithm for the priority scheme

A priority switching algorithm computes its matchings based/e will also use loosely the notion eéducibility. For instance,
on a given priority scheme by forwarding packets with higher when we say that weak throughput is not reducible to some
priority first. Fig. 2 describes one possible implementatiomatching policy, we mean that using this matching policy does
(greedy) of one matching phase. not necessarily imply weak throughput for any traffic and switch

For a given priority scheme, we can generally define asize. As an example, a matching policy could be merely any
matching that describes the outcome of a priority switching ahaximal matching with no other conditions on the matching.
gorithm, as follows. Therefore, if we say that weak throughput is not reducible to

Definition 6: For a given priority scheme, a matching com- a maximal matching policy, we mean that an algorithm which
puted in matching phase is w-stableiff it satisfies the fol- computes a maximal matching in every matching phase does not

+ 1
.
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necessarily imply weak throughput for any traffic and switch
size.

A. Output Priority Switching Algorithms

In this section, we establish a lower bound on the speedup for
a class of priority switching algorithms that employ an output
priority scheme defined next.

Definition 7: An output priority schemer is a priority
scheme that satisfies the following: for every matching phase
m, there exists a partial order relatiaf), on the output ports
such thatVOQ;; <z, VOQu iff j < [

Note that according to this definitioW,0Q,; andVOQ, ; are
unordered by an output priority scheme (siricé,. j for any
matching phasen), reflecting the fact that neither has priority
over the other because they share the same output. An example
of an output priority scheme iswest output occupanayhere
aVoOQ,;, has higher priority if there are less packets in output
gueuej. This scheme was used in LOOFA [8] which forward ,
packets for the smallest length output queue first. Fig. 3. The¢-adversary.

Next, we describe the first adversary that we will use.

The ¢-adversary: Let ¢ be any total order relation on thechoose the matching(1, 1), (2,2),..., (N —1, N —1)} when-
(i, 7) pairs. We will assume, without loss of generality, that (1'1?ver possible. Since thg-adversary provides the same t_rafflc
is the highest ranked accordingdoSimilarly, after discarding for flows (1,1),(2,2),..., and(N — 1, N — 1), the matching
(1,k)and ¢, 1) forallk = 1... N, we assume that (2,2) hasPolicy will always be able to pick the corresponding edges to-
the highest rank according tpamong the remaining pairs. Weg€ther. In other words, itis not possible thedQ;; is nonempty
continue until we obtain pairé3, 3)...(N — 1, N — 1) inthe andVOQ;;isnotfori,j =1...N — 1. As aresult, inputs 1
same way. The adversary producesashaped traffic as shown @ndN' cannot be served during the same matching phasm
in Fig. 3. Theorem 1: For any well-behaved output priority scheme

Atinput IV, the flow of ratea is divided equally among the and any total order relatio on the ¢, j) pairs, ar®-stable
N —1 outputs in a round-robin fashion. The adversary producB¥tching policy cannot achieve weak throughput under an
a packet at inpulVv every1/a time units. Similarly, the adver- @-shaped traffic unless > 2a. _ _
sary produces a packet at inputvhere; = 1... N — 1, every Proof: Consider the¢-adversary. Pick a time. By
(N —1)/(N —2)a time units. It can be shown that this traffic is-.émma 1, we have at most + 1 matching phases by time
a-shaped. For instance, using Lemma 1 and the fact that the Adkach of which is forwarding at most one packet from inputs
versary uses a round-robin order at inplito generate packets 1 and NV by Lemma 2. By Lemma 1, the number of packets
for the first N — 1 outputs, we can show that during any timé@'Tiving to input 1 andV by timet is at least
interval [t1, 2], the number of packets from inpDf to any of

the first N — 1 outputs satisfies at —1+ N 1at -1
al —1 al +1 i A ;
{ J < Anj(ts) — Anj(t) < { w Therefor_e, at time, the number of packets remaining at inputs
N-1 N-1 1 andN is at least
whereT' = t, — t1. This conforms with the first condition of an 2N -3 AP
a-shaped traffic. The condition is also true for all other flows. N_1%" o

We can show that the rest of the conditions are also satisfied.

Note also that no overloading occurs since, at any port, the sfiff & < 2, there exists a large enougdh, say, Ny, such that
of the rates of all flows is at most (2No = 3)/(No — )a = S = & > 0. If weak throughput is
N2 to be achieved, then for eveey> 0, there must exist a large
o _

= a=a. enought, say,to, such that for everyW 0Q;;, (Xi;(t))/(t) < e
N-1 N-1 for anyt > t,. Assume that weak throughput is achieved and
Lemma 2: For any well-behaved output priority scheme lete < 6/No andt, be as defined above. Let> ¢, be such
and any total order relatiop on the ¢, j) pairs, ar?-stable thaté/No — (3)/(Not) > €. Since at inputs 1 and/, we have
matching policy, under the-adversary, cannot serve inputs Bt mostl + (No — 1) = No nonempty VOQs, there exists a
and N during the same matching phase. VOQ;; such that the number of packets remaininy Q) ; at
Proof: By the property of an output priority schemefor timet is at leas{6t — 3)/(No). Therefore

any matching phase:, VOQ;; andVOQ ; are unordered by Xi(t) 5
7., Therefore, we have thatOQ;; < . VOQy; for every Y
matching phase: becaus€j, j) <, (IV,7) (see the definition
of the ¢-adversary). Hence, the?-stable matching policy will Sincet > t,, we have a contradiction. [ ]
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We have proved that any switching algorithm based on @me matchind (1, 1), (2,2),...,(N -1, N —1)} whereVOQ);;
output priority scheme that breaks ties using the indices of tfer 7 = 1... N — 1 are either nonempty together or none of
ports cannot achieve weak throughput undesashaped traffic them is. As a consequence, we have the following result.
unlessS > 2. The implication of this result is that a speedup of Corollary 2: Weak throughput is not reducible to a max-
at least 2 is required for an output priority switching algorithimum size matching policy unless > 2.
to provide throughput with a full loading of the switch. Below, Proof: Immediate from Theorem 1 using = 1 since,
we prove a corollary. as argued above, for any well-behaved output priority scheme

Corollary 1: For any output priority schemer, weak = and any total order relatios on the ¢, j) pairs, under the
throughput is not reducible torastable matching policy unless ¢-adversary, ar®-stable matching policy is a maximum size
S > 2. matching policy. [ |

Proof: There exists a well-behaved output priority scheme
7’ such thaVOQ;; <., VOQ, = VOQ,; <. VOQ,, for
every matching phase.! Therefore, for any total order relationC. Maximal Matching
¢ on the ¢, j) pairs,VOQ,; <,i,, VOQ, = VOQ,; =t o
VOQ,, for every matching phase:. Hence, ar’'®-stable Since a maximum size matching is also a maximal matching,

matching policy is ar-stable matching policy and the result i¢V€ have the following result. _ _
immediate from Theorem 1 using= 1. - Corqllary 3 Weak throughput is not reducible to a maximal
The basic version of LOOFA [8] considers first the VoQghatching policy unless’ > 2. _ _ .
with lower output queue occupancy as candidates for the Proof: Immediate from Corollary 2 since a maximum size
matching. As a consequence, it only guarantees that sofgtching is a maximal matching. u
n-stable matching policy will be used, whereis thelowest  In a recent paper, Dat al. [5] proved that withS > 2,
output occupancyriority scheme. Therefore, we proved thag@ny maximal matching policy guarantees weak throughput
this switching algorithm does not imply weak throughput fowith probability 1 under an SLLN traffic. We have just proved
S < 2. LOOFA assumes that at most one packet arrives to affyorollary 3) that this is not true whef < 2. Therefore, since
input per time unit. Thep-adversary satisfies this conditionboth ar-stable matching and a maximum size matching are
(see Fig. 3). maximal matchings, the lower bound results obtained so far
Theorem 1 also implies that a greedy switching algorithnaye tight.
where the VOQs are always considered for the matching inCharnyet al. proved in [3] that a delay guarantee is reducible
a fixed particular ordery, cannot achieve weak throughputo a maximal matching policy i# > 4 under any weak con-
unlessS > 2a. To see this, simply set the output prioritystant burst traffic. It can be shown that bounded VOQ length is
schemer such thatr,, is the empty relation for every matchingreducible to a maximal matching policySf = 4 under a strong
phasem. As a resultz? = ¢ will be the order by which the constant burst traffic. The question of achieving bounded VOQ
greedy algorithm serves the VOQs in every matching phase length with any maximal matching policy under constant burst
resulting in ar?-stable matching. By Theorem &, > 2 is traffic models forS € [2, 4] remains to be answered.
required to achieve weak throughput. An example of such a
greedy switching algorithm is the Wave Front Arbiter (WFA)
[15] when the priorities do not rotate. D. Input Priority Switching Algorithms

B. Maximum Size Matching In this section, we will prove a lower bound on the speedup
for another class of priority switching algorithms that use input
H?iority.

We can define an input priority scheme in a similar way to

Consider the switching algorithm that computes a maximu
size matching in every matching phase. McKe@tal. proved

in [11] that such an algorithm, with probability 1, will not . : .
achieve weak throughput unless > 1.037a, when arrivals the output priority scheme by reversing the role of input and

to the switch are i.i.d. Bernoulli arrivals and a random ma>9u_tpUt ports and, hence, obtaining the same results above, by

imum size matching is computed. We will consider the lowet>"9 the¢-adversary where input a_nd OUt.pUt por_ts are inter-
bound onS when this switching algorithm is deterministic.Changed' However, we choose to define an input priority scheme

Consider thep-adversary described earlier. Note that for an ifferently to tgke intq a_ccount the stat(? of the inpgt queues.
well-behaved output priority scheme and any total order herefore, an input priority scheme provides a more interesting
relation on the §, j) pairs, ar*-stable matching policy is a framework (note, however, that it will not be a generalization of

maximum size matching policy under thieadversary. To see anBOL:ctput p”%”?_/ scheme).t iorit h introd th
this, note that the maximum possible size for a matching i% te o][e V{’/% €fine an input priority scheme, we introduce the
N — 1 when the firstV — 1 outputs are matched. Note also thats, ate of a VOQ.

; ; : . Definition 8: For a matching phase., let A;,,, be a func-
h le, the?- I h I Il ch . . . Hm
whenever possible, the?-stable matching policy will choose tion of time such thats;,, (1) — Ay (t) if ¢ € [0.m/S], and

Aijm (t) = A;j(m/S) otherwise. Similarly, leD,;,,, be a func-

tion of time such thaD; ;.. (t) = D;;(t) if t € [0,m/S], and

1x/ can be obtained by forcing some order on VOQs that are unordered@jm(o = D;j(m/S) Oth_erW'SG- The state of@OQ;; during
.. and do not share an output. matching phase, S, is the tuple @; .., D;jm).
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In other terms, the state 6fOQ),; during matching phase " v
m s the history of packet arrivals and departures to and from
VOQ;; up to the beginning of matching phase? u, vy uy v,
Definition 9: An input priority schemer is a priority scheme
that satisfies the following: for every matching phasethere " o
exists a partial order relatiarf,, on the states of the VOQs such .
thatVOQij <7 VOQH iff Sijm <z Skim- °
According to the definition of an input priority scheme, VOQs e
with equal VOQ states are unordered and, therefore, have equal
priority. An example of an input priority schemddsgest queue
lengthwhere VOQs with more packets have more priority. This Herl
scheme was used in tiizentral Queuealgorithm [7]. Another
example isoldest HOL packetvhere the VOQs with the older . s
HOL packets have more priority. This scheme was used in the ° °
Oldest Cell Firstalgorithm [3].
Next, we will prove a lower bound result on the speedup re- «,, A u, v
quired by priority switching algorithms with an input priority
scheme. Before we do so, we start with few definitions and 4, v u, v
lemmas. The reader can skip Definition 10, Definition 11, and
Lemma 3 if desired. They are only needed to prove the existence

[Z]] u

£>1 and odd £>2 and even

of the next adversary we will consider. Fig. 4. (-symmetric cycles.
Definition 10: A ¢-ordered Ky n is anN x N complete w2

bipartite graph with a total order relatighon its edges. o2
Definition 11: In a ¢-orderedK y n, an/-symmetriccycle

is a cycleny, ns, ..., na, ny (i.€., the nodes alternate on each

side of theK y n) that satisfies the following(n,_1,n;) <g Z;g

(ni, ’Ili+1) iff (ni_1+[7 ni_,_[) <¢ (ni+g,ni+1+[) fori=1...4,

wheren is the same ass, andnsq,41 is the same as; .
Lemma 3: For any/ > 2 and a large enoughlv, any ¢-or- g;;

deredK y n contains arf-symmetric cycle.

Proof: Let L and R be the two disjoint sets of nodes 0ffig. 5. The 3-symmetrig-adversary.
K~ ~. Consider the bipartite graph induced by dny= (¢ —
1)¢!+1nodesinl and anykr = (£—1)kz!+1nodesink.Let v, We can verify that the two cycles of Fig. 4 aksymmetric
U andV be the two disjoint sets of nodes of the new bipartitgycles. n
graph. Every node in V" orders the:;, nodes o/ accordingto e define the following adversary.

the order of their respective edges to ned&ince there are at  The 3-symmetrig-adversary: Consider an adversary that
mostky! possible orders, we can find at leéstodes inV' that generates packets for the ) pairs that form a 3-symmetric
define the same order, onU. Letthese nodes bg, v2,...,v¢  cycle in theg-orderedK vy, as shown in Fig. 5. What this
and letV; be the sefv,va,..., v }. Now every node: in U essentially means is that our adversary satisfies the following
orders the’ nodes ofl/; according to the order of their respectivamain property(1,3) <4 (2,3) < (3,1) <4 (3,2), (2,3) <4
edges to node. Since there are at moétpossible orders, we (2, 1) < (3,2) <, (1,2), and(2,1) <, (3,1) & (1,2) <4
can find at least nodes inU that define the same ordeér, (1, 3). Definition 10, Definition 11, and Lemma 3 guarantee that
on V;. Let these nodes be;, uz, ..., u, and letU, be the set for a large enough switch size, such an adversary exists for any
{u1,uz,...,uc}. Therefore, we obtain two ordered sétsand  total order relations on the ¢, j) pairs. Therefore, as in the case
Vi that satisfy the following properties: of the ¢-adversary, the 3-symmetrig-adversary is defined for
a giveng (which is fixed). The adversary will generate packets
for every flow shown in Fig. 5 at a rate of/2, i.e., a packet
(u,vi) <o (u,v;) iff v; <4, v; Yu € Up,Vvi,v; € Vi every2/a time units, producing an-shaped traffic.
Without loss of generality, let;, us, . . ., u, be the ordered el- N_ote that the traffic of the 3—symmetra';h:—advers_ary is a the- .
ements of/; and letwv,, vs, ..., v, be the ordered elements Oforetlcal one Where two packets _fr(_)m the same Input can arrive
e to the switch simultaneously. This is possible if the VOQs at an
2The definition of the VOQ state can be made more general by lefting  input can be accessed independently. For instance, each VOQ

be the tuple{;;, D). Therefore, the state ofaOQ,, will additionally in- 5 5 physically separate queue. In any case, the use of such an
corporate the knowledge of any future packet arrivalé@Q, ; . This definition

of the state of a VOQ allows the switching algorithm to somehow foresee Raversary can be .]USt.Ierd by the fqllowm_g reasoning. We can
future (as a matter of fact, to know everything about the adversary). Althougissume that time is discretized to fixed size intervals of length

this is practically impossible, it will only strengthen our result for a lower boung 3nd. hence. as Iong as packets arrive during the same interval
on the speedup. Itis important to note, however, thistfixed by the algorithm ’ ’ ’

prior to any knowledge of the adversary since the adversary is defined in ter“?@_y will have the same timestamp. Therefore, we Car! consider
of o. a discrete version of the 3-symmetrieadversary. The discrete

(ui,v) < (uj,v) Hf u; <4, uj Vui,uj € Ug, Yo €V
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— J} . {‘ N there is a way of constructing from it a practical adversary with

: : the desired property that packets of flowsj) and (j, ¢) arrive

;”;';)”,;’ ﬁ’%{(’;’ifa’f{% 45 | simultaneously, without requiring that two packets arrive simul-
D 2 taneously at an input.

R .. Next, we prove a lemma similar to Lemma 2 for the case of
’ L I the 3-symmetrigh-adversary.

o ) o, s i o
ey B oen A @3 r”/(z,u é’f @3 7 Lemma 4: For any well-behaved input priority schemend

7
e s any total order relation on the ¢, j) pairs, ar®-stable matching

' : policy, under the 3-symmetrig-adversary, serves at most two

VOQs in each matching phase.

4 Proof: We will prove that if there are packets at the input
2 :’////” : side during a matching phase, thé-stable matching policy
g | il will choose one of the following maximal matchings: {(1,3),
4 o tinie units — & (3,1}, {(1,2), (2,1)}, or {(2,3), (3,2)}. This is enough to con-
clude that at most two VOQs are served in each matching phase.
We will prove this by induction on the number of matching
phases.
) ) ] Base case: The claimis trivially true at a fictitious matching
advers_ary will write the_two pack_e_ts in pa_lrallel to the MeMmOoYhase before the beginning of the first matching phase.
of the input-queued switch by writing a bit of each in an alter- Inductive step: We assume that the claim is true up to

nating fashion. Since any two write operations to the memOFXatching phase: — 1. We need to prove that it remains true
will complete in a particular order, specifically the Iasttwowritqor matching phasen. First, we denote byi( j) and , i)

operations, we still have that one packet will arrive before tl}ﬁ,o edges belonging to one of the above three matchings
pther. However, We can prove that for any rationa) there €X"" Since the claim is true up to matching phase— 1 and the
ists a line speed (equivalently, a packet size) beyond which aé‘é'versary assigns the same traffic to flowsj and @, i),

two simultaneous packets in the 3-symmetfiadversary will VOQ,; andVOQ,; will have the same state by the beginning

arrive d.ur!ng the same interval of lengtfin the G!iscrete adver- of matching phaser. Second, we can see from Fig. 5 thatlif (
sary. Similarly, we can prove that for any rationglS, there % is adjacent toi( /) (i.e., eitheri = & or j = 1), then {, k) is

L L
:”alts.n / 5/(3,1) ?f
7

Fig. 6. 3-symmetrieb>-adversary interleaving packet arrivals.

exists a line speed beyond which any two simultaneous pack Jﬁacent to{, i); moreover, by the property of the 3-symmetric

in the 3-symmetrig-adversary cannot straddle the beginning of _ d have. i b 1Viff (7 Lk th
a matching phase in the discrete adversary. Therefoté,adind aﬁ?)v\éetgsezrcyri\[l)vt? ona(\),%ﬁ] g ; iy( m7 m)elt r;bé;;ji/)e?sgr(ys ) (see the
2 .

«/S are both rational, there exists a line speed beyond whi If there are no packets at the input side during matching
any two simultaneous packets in the theoretical 3-symmetriﬁ

¢-adversary will appear to arrive simultaneously in the discrefe 23€7 then we are done..OtherW|se, ler {) .be the edge
adversary. in the graph such that there is no other edgd)in the graph

, ) that satisfiegk,!) <.+ (i,7). Therefore, by the property of
Nevertheless, the assumption on the 3-symmefraiver- e +4_stable matching,i( j) will be in the matching during

sary that entails the two packets at an input to arrive simultaqﬁatchmg phasen. We will prove that §, i) is also in the
ously is actually not needed, and we can work with a more "Biatching. ’

laxed assumption. We only need that packets of flawg)(@nd

P o . ) . Consider an edgé,(k) in the graph during matching phase
(7, 7) arrive simultaneously. This can be realized by making th_e that is adjacent toj( ). By equality of VOQ states, we know

adversary send the packets in parallel; however, unlike the at (:, 1) is in the graph during matching phase (VOQ,,

;:_retlza;tlon Er?umentt d_escrlbed Irzlbtovfef,I vye candmake tkhet afrrwg empty implies70Q,,, nonempty). We also know tha (1)
ime of packets exact, i.e., a packet of floiy{) and a packet o iis adjacent tof( j).

flow (7, 7) will arrive at exactly the same time. The idea is tha _
the 3-symmetricp-adversary will generate equal-sized packets, Case 1) IfVOQ,; < VOQy, then by equality of VOQ

and will divide each packet into two equal chunks and inter- statesVOQ;; <x,, VOQ.
leave the arrival of these chunks in a way to satisfy the relaxedCase 2) Otherwise, it must be thiOQ;; Ax, VOQ
assumption. Fig. 6 shows a pattern of how this can be done. and VOQ; Ar,, VOQ,; and (i,j) <4 (k1)

As can be seen from the pattern of Fig. 6, the second chunks by our choice of{, 7). By equality of VOQ states

of packets pertaining to flows,(j) and (j, ) arrive simulta- and the property of the 3-symmetrigadversary,
neously. The pattern can be repeated without wasting any time VOQj; Ar,, VOQu andVOQy, Ax,, VOQ;; and
units as suggested by the dimmed chunks of packets. Therefore, (7:4) <4 (L, F).

this discretization of the 3-symmetrjeadversary provides the ~ Therefore, in both cases/OQ;; <2 VOQ,, for any
desired property that packets of flows {) and (j, i) always nonemptyVOQ,, such that {, k) is adjacent to f, ¢) and,
arrive at exactly the same time. In what follows, we will nohence, {, 7) is in the matching during matching phaseby the
make an explicit distinction between the 3-symmegriadver- property of ther?-stable matching. [ |

sary and its discrete version. We will assume that the adversaryrheorem 2: For any well-behaved input priority scheme
is the 3-symmetrig-adversary of Fig. 5, keeping in mind thatand any total order relatiop on the ¢, j) pairs, ar®-stable
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matching policy cannot achieve weak throughput under a&awery matching phase.® Therefore, for any total order relation

a-shaped traffic unles§ > 3/2a. ¢ on the ¢, j) pairs,VOQ,; <z, VOQ,; = VOQ;; < s
Proof: We will use the 3'Symmetri(d)'adversary. Con- VOle for every matching phasm. Hence, aﬂ-/d)-stab|e

sider a timel. By Lemma 1, we have at mos$ + 1 matching matching policy is ar-stable matching policy and the result is

phases by time, each of which forward at most two packetsmmediate from Theorem 2 using= 1. m

by Lemma 6. Therefore, the number of packets forwarded bynow, we discuss the enhanced version of the LOOFA algo-

timet is at mos(¢S +1). By Lemma 1, the number of packetsithm presented in [8] which uses a combined input—output pri-

arrived by timet to the switch is at least ority scheme. Although LOOFA assumes that only one packet
can arrive to an input port per time unit (which is not true with
6 (g i 1) . the 3-symmetrigp-adversary), we will show that the priority
scheme of LOOFA does not imply weak throughput under an

Therefore, at time, the number of packets remaining at thg_igaggi traffic it < 3/2. o , :
inputs is at least _computes a matching in the following way. _It fmds_

the port with the smallest output queue and selects an input with
which to match it, then repeats until the matching is maximal.
In the deterministic version of LOOFA, the input selection crite-
rion can be either the input with the oldest HOL packet, or it can
be performed in a round-robin fashion. We can show that this
combined input—output priority scheme also suffers the same
limitations. We will not go into the details; we will just illus-
rﬁgte a sketch of the proof.

Consider the example of Fig. 5. Lét < (3/2)«, which
fneans tha2/a < 3/S. Since every VOQ accumulates packets
at a rate ofw/2, every three matching phases, a VOQ will re-
ceive a new packet. This means that a policy can continuously

(30 — 28)t — 8.

ForS < 3/2a, (3a — 25) = & > 0. If weak throughput is
to be achieved, then for eveey> 0, there must exist a large
enought, say,to, such that for every 0Q,;, (Xi;(t))/(t) < e

for anyt > ty. Assume that weak throughput is achieved a
lete < /6 andt, be as defined above. Let> tg be such
thaté/6 — 8/6t > e. Since at the inputs we have at most si
nonempty VOQEs, there existsvd)Q;; such that the number of
packets remaining iVOQ,; at timet is at least(6t — 8)/(6).

Therefore select the following matchings in that order:
X(t) S 5 8
e R {(1.3). 3.1} . {(1.2), (2. 1)} .{(2.3).(3.2)}
Sincet > to, we have a contradiction. B One can show, irrespective of the speedup of the switch, that

We have proved that any switching algorithm based on #inis order in choosing the matching satisfies the smallest output
input priority scheme that breaks ties using the indices qlieue criterion, assuming that forwarded packets arrive at the
the ports cannot achieve weak throughput undetashaped same time to their output queues and that output queues are
traffic unlessS > 3/2«. For instance, th€entral Queueand served as soon as possible (there is no restriction on the order in
the Oldest Cell Firstswitching algorithms cannot achieve weakvhich packets are delivered at the output). This assumption can
throughput unless' > 3/2, under the assumption that indicese justified by an adversary that controls the timing of the algo-
of the input and output ports are used to break ties when twithm. Moreover, this order in choosing the matching satisfies
VOQs have the same priority (i.e., same VOQ length and satieee input selection criteriaound-robin oldest HOL packet
age of HOL packet, respectively). We can prove thai@fdest andlargest queue lengtiSince a matching of size 2 is computed
Cell First switching algorithm cannot achieve weak throughpth every matching phase, weak throughput cannot be achieved,
even without the above tie-breaking assumption, by consideriag proved in Theorem 2.
the discrete version of the 3-symmetricadversary shown
in Fig. 6. This adversary creates a traffic in which packets of VIIl. CONCLUSION

flows (1,2) and (2,1) are delayed B¥)/(2«) time units, and )
packets of flows (2,3) and (3,2) are delayedibiy. time units. We proved lower bounds on the speedup required by several

In that case, th®Idest Cell Firstalgorithm will have to choose classes of switching algorithms to achieve weak throughput. By

matchings in a way similar to before, forwarding only thploing so, we showed that most of the practical switching algo-
packets per matching phase, because the VOQs that will hﬁgms suffer the same theoretical limitation, which is the fact

the oldest HOL packets are the ones that belong to one of g&s&eeﬂup pﬁnntc))t bedav0|dqu H ;fhrougRPUt 0 bedguaran—
three matchings listed previously. teed. An algorithm based on a Birkhoff-von Neumann decom-

Theorem 2 suggests that a speedup of at fésis required position of the rate matrix that provides a delay guarantee with
for an input priority switching algorithm to provide throughpuf™® spegdup und_er a strong constant burst traffic ha_s been sug-
with a full loading of the switch. Next, we prove a corollary. gested in [2]..Th|s algonthm réquires a preprocessing ste.p on

Corollary 4: For any input priority schemer, weak the rate matrix ofO(N*) time complexity, but after that it

throughput is not reducible torastable matching policy unless runs inO(log N) t|m§. Theoretically speaklng, we can disre-
S > 3/2. gard the preprocessing step because it occurs only once; how-

Proof: There exists a well-behaved input priority scheme 3z’ can be obtained by forcing some order on VOQs that are unordered by
7’ such thaVOQ,; <, VOQ, = VOQ,; <z VOQ,, for =, and do not have equal states.
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ever, the algorithm still requires an explicit knowledge of the[11]
rates);;s and, therefore, its correct operation is sensitive to the
exact values of tha;;s. The results presented here suggest thqtn]
using the practical switching algorithms known so far (running

in O(N?) or O(N?log N) time with no prior knowledge of

the rates) requires a speedup in the switch. As a future worlesl
it would be interesting to prove lower bounds on the speedup
for particular running times of the switching algorithm. In this 4]
paper, we did not consider the family of iterative switching algo-
rithms (e.g., Parallel Iterative Matching (PIM) [1], iSLIP [12],
iLQF and iOCF [10], Dual Round Robin (DRR) [9], and Priori- [15]
tized Dual Round Robin (pDRR) [6]), but similar limitations for
most of these algorithms can also be proved. For instance, undgs]
any 3-symmetrigp-adversary and our assumption of breaking
ties, both iLQF and iOCF computerd -stable matching, where

w is thelargest queue lengtior iLQF and the oldest HOL packet

for iOCF (although they do no do it using the greedy approach
of Fig. 2). Moreover, we can also prove that iSLIP and DRR re-
quire a speeduf’ > 3/2a to achieve weak throughput. Using
the 3-symmetrig-adversary (althoug is not an important pa-
rameter in this case), the round-robin pointers in both of the
algorithms can exhibit a behavior in which only two VOQs will
be served in each matching phase, naméi¥(),, andvVOQ;,,
VOQ;, andVOQ,;, andVOQ,; andVOQss,.
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