
858 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

On Achieving Throughput in an Input-Queued Switch
Saad Mneimneh and Kai-Yeung Siu

Abstract—We establish some lower bounds on the speedup
required to achieve throughput for some classes of switching
algorithms in a input-queued switch with virtual output queues
(VOQs). We use a weak notion of throughput, which will only
strengthen the results, since an algorithm that cannot achieve
weak throughput cannot achieve stronger notions of throughput.
We focus on priority switching algorithms, i.e., algorithms that
assign priorities to VOQs and forward packets of high priority
first. We show a lower bound on the speedup for two fairly general
classes of priority switching algorithms: input priority switching
algorithms and output priority switching algorithms. An input
priority scheme prioritizes the VOQs based on the state of the
input queues, while an output priority scheme prioritizes the
VOQs based on their output ports. We first show that, for output
priority switching algorithms, a speedup 2 is required
to achieve weak throughput. From this, we deduce that both
maximal and maximum size matching switching algorithms do
not imply weak throughput unless 2. The bound of 2 is
tight in all cases above, based on a result in Daiet al. Finally, we
show that a speedup 3 2 is required for the class of input
priority switching algorithms to achieve weak throughput.

Index Terms—Lower bounds, priority switching algorithms,
speedup, throughput.

I. INTRODUCTION

T RADITIONAL output queued or shared memory architec-
tures are becoming increasingly inadequate to meet high-

bandwidth requirements, because having to account for multiple
arrivals to the same output requires their switch memories to
operate at times the line speed, where is the number of
input ports. Although input-queued switches provide an attrac-
tive alternative because their memory and switch fabrics may
operate at only the line speed, they present a challenge for pro-
viding quality-of-service (QoS) guarantees comparable to those
provided by output-queued switches, and they require a sophis-
ticated scheduler or arbiter, making it a critical component of
the switch.

For instance, traditional switching algorithms that achieve
100% throughput in an input-queued switch do not provide
strict delay guarantees and are based on computing a maximum
weighted matching that requires a running time of [11],
[13], or [14], making them impractical to implement
on high-speed switches. Some recent work [4] has, therefore,
focused on asking whether an input-queued switch can be made
to emulate an output-queued switch, and has demonstrated that

Manuscript received December 5, 2000; revised April 8, 2002 and November
22, 2002; approved by IEEE/ACM TRANSACTIONS ONNETWORKING Editor N.
McKeown. This work was supported by the Networking Research Program of
the National Science Foundation under Award 9973015.

S. Mneimneh is with the Southern Methodist University, Dallas, TX 75275
USA (e-mail: saad@engr.smu.edu).

K.-Y. Siu is with the Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: ssiu@razafoundries.com).

Digital Object Identifier 10.1109/TNET.2003.818180

Fig. 1. Input–output-queued switch.

this can be achieved by a combination of a speedup in the fabric
(of) and a special switching algorithm based on com-
puting a stable-marriage matching. Such emulation involves
substantial bookkeeping and communication overhead at the
scheduler, however, and despite its theoretical significance, is
not practical at high speeds.

Most practical switching algorithms for input-queued
switches (see, for instance, [3] and [8]) require a speedup
of between 2 and 4 to achieve adequate QoS guarantees.
These algorithms are priority-based switching algorithms and
operate by assigning priorities to the input queues (the virtual
output queues, VOQs) and forwarding packets of high priority
first. We will prove that the speedup requirement for these
algorithms is inherent, in the sense that they cannot achieve
throughput without a speedup in the switch. As a result, the
switch fabric and the memory need to operate faster than the
line speed by the speedup factor. This also implies that the
input-queued switch will require queues at the output as well,
since now more than one packet can be forwarded to an output
in a single time unit. Fig. 1 depicts the traditional architecture
of an input–output-queued switch with VOQs. Our model of a
switch will be essentially the same general model of Fig. 1.

We will denote by the at input , which will
hold packets originating at inputand destined to output. With
no speedup in the switch, at most one packet can be forwarded to
a particular output in a single time unit. This packet can be con-
sumed by the output port by the end of the time unit and, hence,
there will be no need to store packets at the output. Therefore,
with no speedup, no output queues are needed in the architec-
ture of Fig. 1. Similarly, at most one packet will be forwarded
from an input port in a single time unit when the switch has no
speedup. Therefore, the set of packets that are forwarded in a
particular time unit satisfies the condition that no two packets

1063-6692/03$17.00 © 2003 IEEE

MNEIMNEH AND SIU: ON ACHIEVING THROUGHPUT IN AN INPUT-QUEUED SWITCH 859

will share an input or an output. This notion is formally ab-
stracted in the literature as a matching.

The operation of a switch with no speedup is, therefore,
modeled as successive computations of matchings in a bipartite
graph, one matching in each time unit. The bipartite graph is
obtained as follows: the input ports form a set of nodes, the
output ports form the other set of nodes, and the nonempty
VOQs form the edges between the two sets of nodes. Thus, a
nonempty is modeled as an edge between node(input)
and node (output). The matching is a set of disjoint edges, i.e.,
edges that do not share nodes. Therefore, the matching matches
input ports to output ports, and if inputis matched to output
in a particular time unit, is served in that time unit.

The general model of a switch with speedup can be described
hereafter as follows: the switch operates in matching phases,
computing a matching in every phase. We will assume that the
switch computes a maximal matching in every phase, i.e., a
matching where no more inputs and outputs can be matched.
Assuming continuous time, a switch with speeduptakes
time units to complete a matching phase before starting the next
phase. Therefore, if , output queues are used at the output
ports because packets will be forwarded to the output at a speed
higher than the line speed.

II. TRAFFIC MODELS

We will mention three traffic models used in the literature.
A traffic model describes the arrival of packets to the switch
as a function of time. A traffic model can be probabilistic or
deterministic, as will be seen shortly. Before we proceed to the
different traffic models, we need to define a quantity that tracks
the number of packets arriving to the switch. Let be the
number of packets that arrive to the switch by timeat input
and are destined to output.

A. Strong Law of Large Numbers (SLLN) Traffic

This traffic conforms to a probabilistic model that obeys the
Strong Law of Large Numbers, hence, its name SLLN. In sim-
pler terms, this means that it is possible to define a ratefor
the flow of packets from input to output .

SLLN:

• with probability 1;
• ;
• ;
• .

The parameter is called theloadingof the switch and will be
present in the two traffic models below, which are based on the
(,) model, where represents the burstiness andrepresents
an upper bound on the long-term average rate (if it exists).

B. Weak Constant Burst Traffic

In some sense, the weak constant burst traffic is a stronger
model than SLLN because it is deterministic. However, it does
not necessarily define a rate for the flow of packets from input
to output . Alternatively, it provides a bound on the burst of
packets at input and output . This bound is a constant inde-
pendent of time. It also defines an upper bound (in this case)

on the rate of the aggregate flow at each input and output if it
exists. Nevertheless, the model does not directly constrain the
flow of packets from input to output , hence, the use of the
termweakin the burst characterization of this traffic model.

Weak Constant Burst:

• , ;
• , ;
• .

It can be seen that for any rate assignment, some flow from
input to output can still have a time-dependent burst without
violating the above conditions. For instance, assume
and all the flows are sending packets at their assigned rates. If
all flows stop sending packets except for one flow that starts
sending packets at a rate of 1, none of the conditions above is
violated, but that flow can exhibit a time-dependent burst until
it exceeds any burst bound, then comes back to normal, where
all flows start sending at their assigned rates again.

C. Strong Constant Burst Traffic

The following model implies the previous model and is, there-
fore, stronger (more constrained). It imposes a time-indepen-
dent bound on the burst of the individual flows, hence, a time-in-
dependent bound on the burst at each input and output port. The
strong constant burst model does not necessarily define a rate
for an individual flow of packets from inputto output . Un-
like the weak constant burst model, however, it defines an upper
bound on that rate if it exists.

Strong Constant Burst:

• , ;
• ;
• ;
• .

Note that both the weak constant burst and the strong constant
burst models do not necessarily imply the SLLN model because

, which is the rate, might not exist. How-
ever, if that limit exists, then the strong constant burst model
satisfies the SLLN model.

III. T HROUGHPUT

Throughput basically means that, as time evolves, the
switching algorithm will be able to forward all the packets that
arrive to the switch. There are many definitions of throughput,
and some definitions depend on the adopted traffic model.
One possible definition of throughput under a probabilistic
traffic model is for the expected length of each VOQ to be
bounded. Therefore, if denotes the length of
at time , we require that [11], [13],
[14]. One can show that this implies that for any , there
exists a time such that for every

. Therefore, converges to 0 in probability.
If in probability, this defini-
tion of throughput implies that
in probability, where . Other
definitions of throughput require that under an SLLN
traffic, with probability 1 [5].
It is possible to show that if is bounded, then

860 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

with probability 1, which in turn
implies that with probability 1 if

with probability 1.
In this paper, we will use a weak notion of throughput, defined

below.
Definition 1 (Weak Throughput):Let be the length of

at time . Then .
The above definition can be also expressed as follows. For

every , there exists a time such that
for any time .

Note that in the above definition, the throughput does not rely
on the fact that exists. Note also that the
definition does not impose any strict bound on the size of the
VOQs (in fact, the size can grow to infinity).

IV. SOME PREVIOUS WORK

Here, we review some of the practical switching algorithms
found in the literature and their speedup requirements.

Charny et al. proved in [3] that any maximal matching
policy (i.e., any switching algorithm that computes a maximal
matching in every matching phase) achieves a bounded delay
on every packet in an input-queued switch with a speedup

under a weak constant burst traffic. We will prove that
the simple policy of computing just any maximal matching
does not imply weak throughput for a speedup . In fact,
we prove that a maximum size matching policy does not imply
weak throughput for .

Since switches with speedup are not desired due to their man-
ufacturing cost and impracticality, it is legitimate to look at what
loading a switch with no speedup (i.e.,) can tolerate.
A work in [7] addresses this issue and provides a switching al-
gorithm (called theCentral Queuealgorithm) that computes a

-approximation of the maximum weighted matching, where
the length of is used as the weight for edge (,). This
work is a slight generalization of the result described in [16]
applied to the very special setting of a switch. The-approx-
imation algorithm used in [7] is a priority switching algorithm
where VOQs with larger length are considered first as candi-
dates for the matching (the description of this algorithm is ac-
tually different in [7], but for our purposes it is to convenient to
describe it in this way). TheCentral Queuealgorithm achieves
bounded VOQ length when under a strong constant
burst traffic. The results obtained in this paper will prove that it
cannot achieve weak throughput unless and, hence,
if (no speedup), it cannot achieve weak throughput for

.
In [3], the authors provide an algorithm calledOldest Cell

First that guarantees a bounded delay on every packet with a
speedup under a weak constant burst traffic. The same
algorithm can be proved to achieve bounded VOQ length with a
speedup of 2 under a strong constant burst traffic. This switching
algorithm is a priority switching algorithm that assigns higher
priority to VOQs with older head-of-line (HOL) packets. Sim-
ilarly, the results obtained here will prove that this algorithm
cannot achieve weak throughput unless . Note that an-
other switching algorithm calledOldest Cell Firstappears in

[13] and is based on computing a maximum weighted matching.
This is not to be confused with the algorithm described above.

In [8], Krishna et al. provide an algorithm calledLowest
Occupancy Output Queue First(LOOFA) that guarantees a
bounded delay on every packet with a speedup of 2 and a
strong constant burst traffic, and uses a more sophisticated
priority scheme. This algorithm has also a work conservation
property that we will not address here. The same lower bound
of applies for this algorithm as well in the sense that
LOOFA does not imply weak throughput unless .

Before we prove our lower bound results for the different
classes of priority switching algorithms, we need to define the
traffic model that we will assume for the rest of the paper. We
also need to provide a formal definition of priority to obtain the
framework for a priority switching algorithm.

V. TRAFFIC ASSUMPTIONS

We define a restricted model of traffic under which we will
prove our lower bound results on. Note that more restricted
traffic yields stronger results.

Definition 2: An -shapedtraffic is a traffic that satisfies the
following:

• , ;
• ,

;
• ,

;
• ;
• ;
• .

The above conditions state that the rate of the flow from
input to output exists and is equal to . Moreover, the burst
of the flow from input to output (first condition), and the
aggregate flow at any input and any output (second and third
conditions), is independent of time as well as the
size of the switch . Note that the first condition does not nec-
essarily imply the second and third conditions, namely, because
the individual flow bursts of may result in an burst
at some input or output port. The-shaped traffic satisfies the
SLLN model as well as the strong constant burst model. This is
the traffic model under which we will prove the various lower
bound results. As a consequence, the results will hold for all
traffic models described in Section II, namely, the SLLN traffic,
the weak constant burst traffic, and the strong constant burst
traffic.

VI. PRIORITY SCHEME

In this section, we formally define a priority scheme which
will provide the framework for a priority switching algorithm.
A priority scheme imposes on the VOQs an order by which they
are considered for the matching.

Definition 3: A priority scheme defines for every matching
phase a partial order relation on the VOQs.

We will use the notation to denote that
has higher priority than during matching

MNEIMNEH AND SIU: ON ACHIEVING THROUGHPUT IN AN INPUT-QUEUED SWITCH 861

phase . We will also use the notation to
denote that does not have higher priority than
during matching phase .

Note that since is a partial order relation, two VOQs might
be unordered by (e.g., for and ,

and). In order for this to cleanly
reflect the notion of equal priority, we define a well-behaved
priority scheme, as follows.

Definition 4: A well-behaved priority scheme is a priority
scheme such that for every matching phase, if and

are unordered by , and and are un-
ordered by , then and are unordered by .

The above condition on the priority scheme reflects the no-
tion of equal priority. Hence, if during a particular matching
phase, and have equal priority, and and

have equal priority, then and will
have equal priority. This condition defines an equivalence re-
lation on the VOQs which will help us later to explicitly extend
the partial order relation to a total order relation by which all
VOQs are ordered.

In practice, a priority switching algorithm breaks ties among
the VOQs with equal priorities. We will assume that ties are
broken using the indices of the ports and, hence, we assume
the existence of a fixed total order relation on the (,) pairs
used for breaking ties. Adopting the assumption that breaking a
tie among two VOQs involves only the two VOQs in question
and no other information, this is a fairly general deterministic
way of breaking ties; other policies that are more sophisticated
can usually be incorporated into the priority scheme itself. The
following definition captures the idea.

Definition 5: Let be a well-behaved priority scheme and
be a total order relation on the (,) pairs. We define the
extension of to be the priority scheme as follows.

For any matching phase , if , then
. For any matching phase , if

and are unordered by , and , then
.

Since is well-behaved, induces the equal priority equiv-
alence relation on the VOQs in every matching phase. This
in turn implies that we can extendas described above without
violating the property of an order relation. We omit the proof of
this fact. Therefore, if is a well-behaved priority scheme, then

is a priority scheme such that orders all VOQs for every
matching phase .

Note that our definition of a priority scheme is general enough
to tolerate changing the definition of the partial order relation in
every matching phase. Therefore, it is possible to prioritize the
VOQs based on their lengths in one matching phase and based
on the age of their HOL packets in another.

A priority switching algorithm computes its matchings based
on a given priority scheme by forwarding packets with higher
priority first. Fig. 2 describes one possible implementation
(greedy) of one matching phase.

For a given priority scheme, we can generally define a
matching that describes the outcome of a priority switching al-
gorithm, as follows.

Definition 6: For a given priority scheme, a matching com-
puted in matching phase is -stable iff it satisfies the fol-

Fig. 2. Matching phasem of a priority switching algorithm.

lowing condition: if a nonempty is not served, then a
nonempty is served and , or a
nonempty is served and .

The notion of a -stable matching is more general than the
process depicted in Fig. 2. In other terms, a priority switching
algorithm for the priority scheme will always compute a

-stable matching. Although the most intuitive and straight-
forward way of computing a -stable matching is the greedy
approach described in Fig. 2, Definition 6 does not impose any
restriction on how the -stable matching is computed.

In the next section, we prove lower bound results on the
speedup under an-shaped traffic.

VII. L OWER BOUNDS

We will start by stating, without proof, the following simple
lemma.

Lemma 1: If an event occurs every time units,
then the number of times the event occurs in the interval

, satisfies

We will later use this lemma to argue a lower bound on the
number of packets arriving from a particular inputduring an
interval of time, and an upper bound on the number of matching
phases during the same interval of time. Using these bounds, we
will prove our different results by showing that the number of
packets arriving to the switch at a particular input is more than
the number of times that input is served (i.e., some VOQ at that
input is served) by the matching phases. In order to obtain such
scenario for a given algorithm, we make use of an adversary.
The adversary will supply the switch (the algorithm) with an

-shaped traffic that will force the algorithm to fail in achieving
weak throughput unless the speedup is high enough.

We will denote by a matching policy a switching algorithm
which computes a matching that satisfies the policy in every
matching phase. For instance, a-stable matching policy de-
notes a priority switching algorithm for the priority scheme.
We will also use loosely the notion ofreducibility. For instance,
when we say that weak throughput is not reducible to some
matching policy, we mean that using this matching policy does
not necessarily imply weak throughput for any traffic and switch
size. As an example, a matching policy could be merely any
maximal matching with no other conditions on the matching.
Therefore, if we say that weak throughput is not reducible to
a maximal matching policy, we mean that an algorithm which
computes a maximal matching in every matching phase does not

862 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

necessarily imply weak throughput for any traffic and switch
size.

A. Output Priority Switching Algorithms

In this section, we establish a lower bound on the speedup for
a class of priority switching algorithms that employ an output
priority scheme defined next.

Definition 7: An output priority scheme is a priority
scheme that satisfies the following: for every matching phase

, there exists a partial order relation on the output ports
such that iff .

Note that according to this definition, and are
unordered by an output priority scheme (since for any
matching phase), reflecting the fact that neither has priority
over the other because they share the same output. An example
of an output priority scheme islowest output occupancywhere
a has higher priority if there are less packets in output
queue . This scheme was used in LOOFA [8] which forward
packets for the smallest length output queue first.

Next, we describe the first adversary that we will use.
The -adversary: Let be any total order relation on the

pairs. We will assume, without loss of generality, that (1,1)
is the highest ranked according to. Similarly, after discarding
(1,) and (, 1) for all , we assume that (2,2) has
the highest rank according toamong the remaining pairs. We
continue until we obtain pairs in the
same way. The adversary produces an-shaped traffic as shown
in Fig. 3.

At input , the flow of rate is divided equally among the
outputs in a round-robin fashion. The adversary produces

a packet at input every time units. Similarly, the adver-
sary produces a packet at input, where , every

time units. It can be shown that this traffic is
-shaped. For instance, using Lemma 1 and the fact that the ad-

versary uses a round-robin order at inputto generate packets
for the first outputs, we can show that during any time
interval , the number of packets from input to any of
the first outputs satisfies

where . This conforms with the first condition of an
-shaped traffic. The condition is also true for all other flows.

We can show that the rest of the conditions are also satisfied.
Note also that no overloading occurs since, at any port, the sum
of the rates of all flows is at most

Lemma 2: For any well-behaved output priority scheme
and any total order relation on the (,) pairs, a -stable
matching policy, under the-adversary, cannot serve inputs 1
and during the same matching phase.

Proof: By the property of an output priority scheme, for
any matching phase , and are unordered by

. Therefore, we have that for every
matching phase because (see the definition
of the -adversary). Hence, the -stable matching policy will

Fig. 3. The�-adversary.

choose the matching when-
ever possible. Since the-adversary provides the same traffic
for flows , and , the matching
policy will always be able to pick the corresponding edges to-
gether. In other words, it is not possible that is nonempty
and is not for , . As a result, inputs 1
and cannot be served during the same matching phase.

Theorem 1: For any well-behaved output priority scheme
and any total order relation on the (,) pairs, a -stable
matching policy cannot achieve weak throughput under an

-shaped traffic unless .
Proof: Consider the -adversary. Pick a time . By

Lemma 1, we have at most matching phases by time
, each of which is forwarding at most one packet from inputs

1 and by Lemma 2. By Lemma 1, the number of packets
arriving to input 1 and by time is at least

Therefore, at time, the number of packets remaining at inputs
1 and is at least

For , there exists a large enough, say, , such that
. If weak throughput is

to be achieved, then for every , there must exist a large
enough , say, , such that for every ,
for any . Assume that weak throughput is achieved and
let and be as defined above. Let be such
that . Since at inputs 1 and we have
at most nonempty VOQs, there exists a

such that the number of packets remaining in at
time is at least . Therefore

Since , we have a contradiction.

MNEIMNEH AND SIU: ON ACHIEVING THROUGHPUT IN AN INPUT-QUEUED SWITCH 863

We have proved that any switching algorithm based on an
output priority scheme that breaks ties using the indices of the
ports cannot achieve weak throughput under an-shaped traffic
unless . The implication of this result is that a speedup of
at least 2 is required for an output priority switching algorithm
to provide throughput with a full loading of the switch. Below,
we prove a corollary.

Corollary 1: For any output priority scheme , weak
throughput is not reducible to a-stable matching policy unless

.
Proof: There exists a well-behaved output priority scheme

such that for
every matching phase.1 Therefore, for any total order relation

on the (,) pairs,

for every matching phase . Hence, a -stable
matching policy is a -stable matching policy and the result is
immediate from Theorem 1 using .

The basic version of LOOFA [8] considers first the VOQs
with lower output queue occupancy as candidates for the
matching. As a consequence, it only guarantees that some

-stable matching policy will be used, whereis the lowest
output occupancypriority scheme. Therefore, we proved that
this switching algorithm does not imply weak throughput for

. LOOFA assumes that at most one packet arrives to any
input per time unit. The -adversary satisfies this condition
(see Fig. 3).

Theorem 1 also implies that a greedy switching algorithm,
where the VOQs are always considered for the matching in
a fixed particular order , cannot achieve weak throughput
unless . To see this, simply set the output priority
scheme such that is the empty relation for every matching
phase . As a result, will be the order by which the
greedy algorithm serves the VOQs in every matching phase,
resulting in a -stable matching. By Theorem 1, is
required to achieve weak throughput. An example of such a
greedy switching algorithm is the Wave Front Arbiter (WFA)
[15] when the priorities do not rotate.

B. Maximum Size Matching

Consider the switching algorithm that computes a maximum
size matching in every matching phase. McKeownet al.proved
in [11] that such an algorithm, with probability 1, will not
achieve weak throughput unless , when arrivals
to the switch are i.i.d. Bernoulli arrivals and a random max-
imum size matching is computed. We will consider the lower
bound on when this switching algorithm is deterministic.
Consider the -adversary described earlier. Note that for any
well-behaved output priority scheme and any total order
relation on the (,) pairs, a -stable matching policy is a
maximum size matching policy under the-adversary. To see
this, note that the maximum possible size for a matching is

when the first outputs are matched. Note also that,
whenever possible, the -stable matching policy will choose

1
� can be obtained by forcing some order on VOQs that are unordered by

� and do not share an output.

the matching where
for are either nonempty together or none of
them is. As a consequence, we have the following result.

Corollary 2: Weak throughput is not reducible to a max-
imum size matching policy unless .

Proof: Immediate from Theorem 1 using since,
as argued above, for any well-behaved output priority scheme

and any total order relation on the (,) pairs, under the
-adversary, a -stable matching policy is a maximum size

matching policy.

C. Maximal Matching

Since a maximum size matching is also a maximal matching,
we have the following result.

Corollary 3: Weak throughput is not reducible to a maximal
matching policy unless .

Proof: Immediate from Corollary 2 since a maximum size
matching is a maximal matching.

In a recent paper, Daiet al. [5] proved that with ,
any maximal matching policy guarantees weak throughput
with probability 1 under an SLLN traffic. We have just proved
(Corollary 3) that this is not true when . Therefore, since
both a -stable matching and a maximum size matching are
maximal matchings, the lower bound results obtained so far
are tight.

Charnyet al.proved in [3] that a delay guarantee is reducible
to a maximal matching policy if under any weak con-
stant burst traffic. It can be shown that bounded VOQ length is
reducible to a maximal matching policy if under a strong
constant burst traffic. The question of achieving bounded VOQ
length with any maximal matching policy under constant burst
traffic models for remains to be answered.

D. Input Priority Switching Algorithms

In this section, we will prove a lower bound on the speedup
for another class of priority switching algorithms that use input
priority.

We can define an input priority scheme in a similar way to
the output priority scheme by reversing the role of input and
output ports and, hence, obtaining the same results above, by
using the -adversary where input and output ports are inter-
changed. However, we choose to define an input priority scheme
differently to take into account the state of the input queues.
Therefore, an input priority scheme provides a more interesting
framework (note, however, that it will not be a generalization of
an output priority scheme).

Before we define an input priority scheme, we introduce the
state of a VOQ.

Definition 8: For a matching phase , let be a func-
tion of time such that if , and

otherwise. Similarly, let be a func-
tion of time such that if , and

otherwise. The state of a during
matching phase , , is the tuple (,).

864 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

In other terms, the state of during matching phase
is the history of packet arrivals and departures to and from

up to the beginning of matching phase.2

Definition 9: An input priority scheme is a priority scheme
that satisfies the following: for every matching phase, there
exists a partial order relation on the states of the VOQs such
that iff .

According to the definition of an input priority scheme, VOQs
with equal VOQ states are unordered and, therefore, have equal
priority. An example of an input priority scheme islargest queue
lengthwhere VOQs with more packets have more priority. This
scheme was used in theCentral Queuealgorithm [7]. Another
example isoldest HOL packetwhere the VOQs with the older
HOL packets have more priority. This scheme was used in the
Oldest Cell Firstalgorithm [3].

Next, we will prove a lower bound result on the speedup re-
quired by priority switching algorithms with an input priority
scheme. Before we do so, we start with few definitions and
lemmas. The reader can skip Definition 10, Definition 11, and
Lemma 3 if desired. They are only needed to prove the existence
of the next adversary we will consider.

Definition 10: A -ordered is an complete
bipartite graph with a total order relationon its edges.

Definition 11: In a -ordered , an -symmetriccycle
is a cycle , (i.e., the nodes alternate on each
side of the) that satisfies the following:

iff for ,
where is the same as and is the same as .

Lemma 3: For any and a large enough , any -or-
dered contains an -symmetric cycle.

Proof: Let and be the two disjoint sets of nodes of
. Consider the bipartite graph induced by any

nodes in and any nodes in . Let
and be the two disjoint sets of nodes of the new bipartite

graph. Every node in orders the nodes of according to
the order of their respective edges to node. Since there are at
most possible orders, we can find at leastnodes in that
define the same order on . Let these nodes be
and let be the set . Now every node in
orders the nodes of according to the order of their respective
edges to node. Since there are at mostpossible orders, we
can find at least nodes in that define the same order
on . Let these nodes be and let be the set

. Therefore, we obtain two ordered setsand
that satisfy the following properties:

Without loss of generality, let be the ordered el-
ements of and let be the ordered elements of

2The definition of the VOQ state can be made more general by lettingS
be the tuple (A ,D). Therefore, the state of aVOQ will additionally in-
corporate the knowledge of any future packet arrivals toVOQ . This definition
of the state of a VOQ allows the switching algorithm to somehow foresee the
future (as a matter of fact, to know everything about the adversary). Although
this is practically impossible, it will only strengthen our result for a lower bound
on the speedup. It is important to note, however, that� is fixed by the algorithm
prior to any knowledge of the adversary since the adversary is defined in terms
of �.

Fig. 4. `-symmetric cycles.

Fig. 5. The 3-symmetric�-adversary.

. We can verify that the two cycles of Fig. 4 are-symmetric
cycles.

We define the following adversary.
The 3-symmetric -adversary: Consider an adversary that

generates packets for the (,) pairs that form a 3-symmetric
cycle in the -ordered , as shown in Fig. 5. What this
essentially means is that our adversary satisfies the following
main property: ,

, and
. Definition 10, Definition 11, and Lemma 3 guarantee that

for a large enough switch size, such an adversary exists for any
total order relation on the (,) pairs. Therefore, as in the case
of the -adversary, the 3-symmetric-adversary is defined for
a given (which is fixed). The adversary will generate packets
for every flow shown in Fig. 5 at a rate of , i.e., a packet
every time units, producing an-shaped traffic.

Note that the traffic of the 3-symmetric-adversary is a the-
oretical one where two packets from the same input can arrive
to the switch simultaneously. This is possible if the VOQs at an
input can be accessed independently. For instance, each VOQ
is a physically separate queue. In any case, the use of such an
adversary can be justified by the following reasoning. We can
assume that time is discretized to fixed size intervals of length

and, hence, as long as packets arrive during the same interval,
they will have the same timestamp. Therefore, we can consider
a discrete version of the 3-symmetric-adversary. The discrete

MNEIMNEH AND SIU: ON ACHIEVING THROUGHPUT IN AN INPUT-QUEUED SWITCH 865

Fig. 6. 3-symmetric�-adversary interleaving packet arrivals.

adversary will write the two packets in parallel to the memory
of the input-queued switch by writing a bit of each in an alter-
nating fashion. Since any two write operations to the memory
will complete in a particular order, specifically the last two write
operations, we still have that one packet will arrive before the
other. However, we can prove that for any rational, there ex-
ists a line speed (equivalently, a packet size) beyond which any
two simultaneous packets in the 3-symmetric-adversary will
arrive during the same interval of lengthin the discrete adver-
sary. Similarly, we can prove that for any rational , there
exists a line speed beyond which any two simultaneous packets
in the 3-symmetric -adversary cannot straddle the beginning of
a matching phase in the discrete adversary. Therefore, ifand

are both rational, there exists a line speed beyond which
any two simultaneous packets in the theoretical 3-symmetric

-adversary will appear to arrive simultaneously in the discrete
adversary.

Nevertheless, the assumption on the 3-symmetric-adver-
sary that entails the two packets at an input to arrive simultane-
ously is actually not needed, and we can work with a more re-
laxed assumption. We only need that packets of flows (,) and
(,) arrive simultaneously. This can be realized by making the
adversary send the packets in parallel; however, unlike the dis-
cretization argument described above, we can make the arrival
time of packets exact, i.e., a packet of flow (,) and a packet of
flow (,) will arrive at exactly the same time. The idea is that
the 3-symmetric -adversary will generate equal-sized packets,
and will divide each packet into two equal chunks and inter-
leave the arrival of these chunks in a way to satisfy the relaxed
assumption. Fig. 6 shows a pattern of how this can be done.

As can be seen from the pattern of Fig. 6, the second chunks
of packets pertaining to flows (,) and (,) arrive simulta-
neously. The pattern can be repeated without wasting any time
units as suggested by the dimmed chunks of packets. Therefore,
this discretization of the 3-symmetric-adversary provides the
desired property that packets of flows (,) and (,) always
arrive at exactly the same time. In what follows, we will not
make an explicit distinction between the 3-symmetric-adver-
sary and its discrete version. We will assume that the adversary
is the 3-symmetric -adversary of Fig. 5, keeping in mind that

there is a way of constructing from it a practical adversary with
the desired property that packets of flows (,) and (,) arrive
simultaneously, without requiring that two packets arrive simul-
taneously at an input.

Next, we prove a lemma similar to Lemma 2 for the case of
the 3-symmetric -adversary.

Lemma 4: For any well-behaved input priority schemeand
any total order relation on the (,) pairs, a -stable matching
policy, under the 3-symmetric-adversary, serves at most two
VOQs in each matching phase.

Proof: We will prove that if there are packets at the input
side during a matching phase, the-stable matching policy
will choose one of the following maximal matchings: {(1,3),
(3,1)}, {(1,2), (2,1)}, or {(2,3), (3,2)}. This is enough to con-
clude that at most two VOQs are served in each matching phase.
We will prove this by induction on the number of matching
phases.

Base case: The claim is trivially true at a fictitious matching
phase before the beginning of the first matching phase.

Inductive step: We assume that the claim is true up to
matching phase . We need to prove that it remains true
for matching phase . First, we denote by (,) and (,)
two edges belonging to one of the above three matchings.
Since the claim is true up to matching phase and the
adversary assigns the same traffic to flows (,) and (,),

and will have the same state by the beginning
of matching phase . Second, we can see from Fig. 5 that if (,
) is adjacent to (,) (i.e., either or), then (,) is

adjacent to (,); moreover, by the property of the 3-symmetric
-adversary we have iff (see the

above description of the 3-symmetric-adversary).
If there are no packets at the input side during matching

phase , then we are done. Otherwise, let (,) be the edge
in the graph such that there is no other edge (,) in the graph
that satisfies . Therefore, by the property of
the -stable matching, (,) will be in the matching during
matching phase . We will prove that (,) is also in the
matching.

Consider an edge (,) in the graph during matching phase
that is adjacent to (,). By equality of VOQ states, we know

that (,) is in the graph during matching phase (
nonempty implies nonempty). We also know that (,)
is adjacent to (,).

Case 1) If , then by equality of VOQ
states, .

Case 2) Otherwise, it must be that
and and
by our choice of (,). By equality of VOQ states
and the property of the 3-symmetric-adversary,

and and
.

Therefore, in both cases, for any
nonempty such that (,) is adjacent to (,) and,
hence, (,) is in the matching during matching phaseby the
property of the -stable matching.

Theorem 2: For any well-behaved input priority scheme
and any total order relation on the (,) pairs, a -stable

866 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

matching policy cannot achieve weak throughput under an
-shaped traffic unless .

Proof: We will use the 3-symmetric -adversary. Con-
sider a time . By Lemma 1, we have at most matching
phases by time, each of which forward at most two packets
by Lemma 6. Therefore, the number of packets forwarded by
time is at most . By Lemma 1, the number of packets
arrived by time to the switch is at least

Therefore, at time, the number of packets remaining at the
inputs is at least

For , . If weak throughput is
to be achieved, then for every , there must exist a large
enough , say, , such that for every ,
for any . Assume that weak throughput is achieved and
let and be as defined above. Let be such
that . Since at the inputs we have at most six
nonempty VOQs, there exists a such that the number of
packets remaining in at time is at least .
Therefore

Since , we have a contradiction.
We have proved that any switching algorithm based on an

input priority scheme that breaks ties using the indices of
the ports cannot achieve weak throughput under an-shaped
traffic unless . For instance, theCentral Queueand
theOldest Cell Firstswitching algorithms cannot achieve weak
throughput unless , under the assumption that indices
of the input and output ports are used to break ties when two
VOQs have the same priority (i.e., same VOQ length and same
age of HOL packet, respectively). We can prove that theOldest
Cell First switching algorithm cannot achieve weak throughput
even without the above tie-breaking assumption, by considering
the discrete version of the 3-symmetric-adversary shown
in Fig. 6. This adversary creates a traffic in which packets of
flows (1,2) and (2,1) are delayed by time units, and
packets of flows (2,3) and (3,2) are delayed by time units.
In that case, theOldest Cell Firstalgorithm will have to choose
matchings in a way similar to before, forwarding only two
packets per matching phase, because the VOQs that will have
the oldest HOL packets are the ones that belong to one of the
three matchings listed previously.

Theorem 2 suggests that a speedup of at leastis required
for an input priority switching algorithm to provide throughput
with a full loading of the switch. Next, we prove a corollary.

Corollary 4: For any input priority scheme , weak
throughput is not reducible to a-stable matching policy unless

.
Proof: There exists a well-behaved input priority scheme

such that for

every matching phase.3 Therefore, for any total order relation
on the (,) pairs,

for every matching phase . Hence, a -stable
matching policy is a -stable matching policy and the result is
immediate from Theorem 2 using .

Now, we discuss the enhanced version of the LOOFA algo-
rithm presented in [8] which uses a combined input–output pri-
ority scheme. Although LOOFA assumes that only one packet
can arrive to an input port per time unit (which is not true with
the 3-symmetric -adversary), we will show that the priority
scheme of LOOFA does not imply weak throughput under an

-shaped traffic if .
LOOFA computes a matching in the following way. It finds

the port with the smallest output queue and selects an input with
which to match it, then repeats until the matching is maximal.
In the deterministic version of LOOFA, the input selection crite-
rion can be either the input with the oldest HOL packet, or it can
be performed in a round-robin fashion. We can show that this
combined input–output priority scheme also suffers the same
limitations. We will not go into the details; we will just illus-
trate a sketch of the proof.

Consider the example of Fig. 5. Let , which
means that . Since every VOQ accumulates packets
at a rate of , every three matching phases, a VOQ will re-
ceive a new packet. This means that a policy can continuously
select the following matchings in that order:

One can show, irrespective of the speedup of the switch, that
this order in choosing the matching satisfies the smallest output
queue criterion, assuming that forwarded packets arrive at the
same time to their output queues and that output queues are
served as soon as possible (there is no restriction on the order in
which packets are delivered at the output). This assumption can
be justified by an adversary that controls the timing of the algo-
rithm. Moreover, this order in choosing the matching satisfies
three input selection criteria:round-robin, oldest HOL packet,
andlargest queue length. Since a matching of size 2 is computed
in every matching phase, weak throughput cannot be achieved,
as proved in Theorem 2.

VIII. C ONCLUSION

We proved lower bounds on the speedup required by several
classes of switching algorithms to achieve weak throughput. By
doing so, we showed that most of the practical switching algo-
rithms suffer the same theoretical limitation, which is the fact
that speedup cannot be avoided for throughput to be guaran-
teed. An algorithm based on a Birkhoff–von Neumann decom-
position of the rate matrix that provides a delay guarantee with
no speedup under a strong constant burst traffic has been sug-
gested in [2]. This algorithm requires a preprocessing step on
the rate matrix of time complexity, but after that it
runs in time. Theoretically speaking, we can disre-
gard the preprocessing step because it occurs only once; how-

3
� can be obtained by forcing some order on VOQs that are unordered by

� and do not have equal states.

MNEIMNEH AND SIU: ON ACHIEVING THROUGHPUT IN AN INPUT-QUEUED SWITCH 867

ever, the algorithm still requires an explicit knowledge of the
rates s and, therefore, its correct operation is sensitive to the
exact values of the s. The results presented here suggest that
using the practical switching algorithms known so far (running
in or time with no prior knowledge of
the rates) requires a speedup in the switch. As a future work,
it would be interesting to prove lower bounds on the speedup
for particular running times of the switching algorithm. In this
paper, we did not consider the family of iterative switching algo-
rithms (e.g., Parallel Iterative Matching (PIM) [1], iSLIP [12],
iLQF and iOCF [10], Dual Round Robin (DRR) [9], and Priori-
tized Dual Round Robin (pDRR) [6]), but similar limitations for
most of these algorithms can also be proved. For instance, under
any 3-symmetric -adversary and our assumption of breaking
ties, both iLQF and iOCF compute a -stable matching, where

is thelargest queue lengthfor iLQF and the oldest HOL packet
for iOCF (although they do no do it using the greedy approach
of Fig. 2). Moreover, we can also prove that iSLIP and DRR re-
quire a speedup to achieve weak throughput. Using
the 3-symmetric -adversary (although is not an important pa-
rameter in this case), the round-robin pointers in both of these
algorithms can exhibit a behavior in which only two VOQs will
be served in each matching phase, namely, and ,

and , and and .

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their very useful comments and suggestions.

REFERENCES

[1] T. E. Anderson, S. Owicki, J. Saxes, and C. Thacker, “High speed switch
scheduling for local area networks,”ACM Trans. Comput. Syst., vol. 11,
no. 4, pp. 319–352, Nov. 1993.

[2] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and von Neumann,” inProc. 7th Int. Workshop Quality of Ser-
vice (IWQOS), 1999, pp. 79–86.

[3] A. Charny, P. Krishna, N. Patel, and R. Simcoe, “Algorithms for pro-
viding bandwidth and delay guarantees in input-buffered crossbars with
speedup,” inProc. 6th Int. Workshop Quality of Service (IWQOS), May
1998, pp. 235–244.

[4] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queuing with combined input-output queued switches,”IEEE J.
Select. Areas Commun., vol. 17, pp. 1030–1039, June 1999.

[5] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” inProc. IEEE INFOCOM, 2000, pp. 556–564.

[6] G. Damm, J. Blanton, P. Golla, D. Verchere, and M. Yang. Fast sched-
uler solutions to the problem of priorities for polarized data traffic.
Alcatel USA, Richardson, TX. [Online]. Available: http://www.ut-
dallas.edu/~meiyang/papers/ist01.pdf.

[7] A. Kam, K.-Y. Siu, and R. Barry, “A cell switching WDM broadcast
LAN with bandwidth guarantee and fair access,”J. Lightwave Technol.,
vol. 16, pp. 2265–2280, Dec. 1998.

[8] P. Krishna, N. S. Patel, and A. Charny, “On the speedup requirement for
work-conserving crossbar switches,”IEEE J. Select. Areas Commun.,
vol. 17, pp. 1057–1069, June 1999.

[9] Y. Li, S. Panwar, and H. J. Chao, “Saturn: a terabit packet switch using
dual round-robin (DRR),”IEEE Commun. Mag., vol. 38, pp. 78–84,
Dec. 2000.

[10] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
Ph.D. Dissertation, Univ. California, Berkeley, May 1995.

[11] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” inProc. IEEE INFOCOM, vol.
1, Mar. 1996, pp. 296–302.

[12] N. Mckeown, “The iSLIP scheduling algorithm for input queues
switches,” IEEE/ACM Trans. Networking, vol. 7, pp. 188–201, Apr.
1999.

[13] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for
achieving 100% throughput in an input-queued switch,” inProc. Int.
Conf. Computer Communication and Networking, Oct. 1996, pp.
226–231.

[14] , “A practical scheduling algorithm to achieve 100% throughput in
input-queued switches,” inProc. IEEE INFOCOM, vol. 2, Mar. 1998,
pp. 792–799.

[15] Y. Tamir and H. Chi, “Symmetric crossbar arbiters for VLSI communi-
cation switches,”IEEE Trans. Parallel Distrib. Syst., vol. 4, pp. 13–27,
Jan. 1993.

[16] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queuing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Trans. Automat. Contr., vol. 37, pp.
1936–1949, Dec. 1992.

Saad Mneimnehwas born in Beirut, Lebanon, in
1973. He received the B.E. degree in computer and
communication engineering from the American Uni-
versity of Beirut (AUB) in 1995, and the S.M. degree
in information technology and the Ph.D. degree in
communication networks from the Massachusettes
Institute of Technology, Cambridge, in 1997 and
2002, respectively.

He is currently an Assistant Professor in the
Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX. His

interests include various algorithmic aspects of high-speed network switches,
optical routing, and in general networking and graph problems and their
applications to other disciplines like biology.

Kai-Yeung Siu received the B.S. degree (summa
cum laude) in mathematics and computer science
from New York University, New York, NY, and
the B.Eng. degree (summa cum laude) in electrical
engineering from The Cooper Union, New York, NY,
both in 1987. He received the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, in 1988 and 1991, respectively.

From 1989 to 1990, he was a Research Student
Associate with the IBM Almaden Research Center,
San Jose, CA. From 1991 to 1995, he was Assistant

Professor of electrical and computer engineering with the University of Cali-
fornia, Irvine. He joined the Massachusetts Institute of Technology, Cambridge,
in 1996, as an Associate Professor. He was with the d’Arbeloff Laboratory for
Information Systems and Technology of Mechanical Engineering and also af-
filiated with the Laboratory for Information and Decision Systems of Electrical
Engineering and Computer Science. He was the founding research director of
the MIT Auto-ID Center, an industry-funded center which develops next-gen-
eration automatic identification systems with e-commerce applications. He has
also served as a Consultant for major Internet equipment vendors and service
providers. He has published over 100 research papers in the areas of optical
networking, wireless communications, Internet routing and congestion control
protocols, parallel and distributed algorithms, and computational complexity
theory.

Dr. Siu was a recipient of the d’Arbeloff Career Development Chair at MIT.
He also received a National Science Foundation Young Investigator Award
in 1993, the UC Irvine Distinguished Assistant Professor Award in 1995, the
IEEE Browder J. Thompson Memorial Prize Paper Award in 1997, and the
Best Paper Award of the SPIE Conference on All-Optical Networking in 1998.
He has served on the Editorial Board of the IEEE/ACM TRANSACTIONS ON

NETWORKING.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

