
Load Balancing in a Switch Without Buffers

Saad Mneimneh, saad@alum.mit.edu, Visiting Professor, Hunter College of CUNY, New York, NY 10021, USA

Abstract— A load balanced switch consists of k output queued
switches, each running at a speedup (the ratio of internal memory
speed to external line speed) of N/k, where N is the number of
input and output ports. With such an architecture, and for some
classes of traffic patterns, simply spreading the traffic among the
k switches achieves 100% throughput (thus the term load balanc-
ing). However, reordering among packets of the same flow may
occur, which becomes a major concern. Input and output buffers
have been used in the literature to avoid this problem. This pa-
per proves two main results: (1) it is impossible to achieve 100%
throughput and no reordering for a load balanced switch without
buffers, and (2) it is possible to achieve 100% throughput and lim-
ited reordering for a load balanced switch without buffers. The
latter result implies that it is possible to achieve 100% throughput
and no reordering for a load balanced switch with output buffers
only.

Index Terms—Load balancing, switching, reordering, through-
put.

I. INTRODUCTION

LOAD balancing has recently become an important aspect
of a switch architecture due to its capability of spread-

ing the traffic among multiple switching components [19],
and overcoming the traditional limitations of output queued
switches and input queued switches. We briefly review these
limitations below:

A. Output queued switch

An output queued switch simply consists of N FIFO queues,
where N is the number of output ports (without loss of gener-
ality N is also the number of input ports). The operation of the
output queued switch is very trivial: when a packet destined to
output j arrives at a given input, it is placed in the jth queue,
hence the term output queued. A simple schematic of an output
queued switch is depicted in Figure 1.

1

N

Fig. 1. Output queued switch with FIFO queues

Although idealistic, this switch suffers from a major scala-
bility issue: up to N packets (one per input) may be placed in
the jth queue in one time step; hence a speedup (the ratio of
internal memory speed to external line speed) of N is required.

An extended paper on load balancing algorithms in a switch and three prop-
erties: throughput, reordering, and starvation, is in preparation and will be pub-
lished soon.

B. Input queued switch

To avoid sending multiple packets to the same FIFO queue
(and hence the speedup of N), the input queued switch gives
each input its own local copy of the switch of Figure 1, hence
the term input queued switch. Figure 2 illustrates this architec-
ture.

1

N

1

N

1

1

N

N

Fig. 2. Input queued switch

We now refer to the jth FIFO queue at input i as V OQij

(which stands for Virtual Output Queue). V OQij holds there-
fore packets at input i destined to output j.

Since at most one packet per input can arrive in every time
step, all V OQs may now run at no speedup. However, every
output must serve at most one input (no queues at the output
side). This, with some additional implementation detail, has
traditionally imposed a non-trivial operation by which a match-
ing among input and output ports must be computed in every
time step (see for instance [13], [12], [14], [15], [5], [8], [4],
[11], and [18] for literature on this switch). A packet in V OQij

is sent across the switch only if input i is matched to output j.
The matching algorithm completely determines the schedule by
which packets leave their input ports, and hence makes it diffi-
cult to provide guarantees similar to an output queued switch.

C. Load balanced switch

The load balanced switch was suggested repeatedly in liter-
ature over the past few years, e.g. [16], [7], [1], and [10]. In
particular, the work in [10] provides a comprehensive overview
of the load balanced switch and a number of useful contribu-
tions. It is the work of [1] that first identified and emphasized
the load balancing aspect of such architecture.

0-7803-9569-7/06/$20.00 c©2006 IEEE

193

While the input queued switch replicates the output queued
switch of Figure 1 at every input port to completely eliminate
speedup (see Figure 2), a load balanced switch uses a num-
ber of parallel copies, say k, with limited speedup each. Un-
like the input queued switch, however, each of the k output
queued switches is accessible by all input ports (and all out-
put ports). Figure 3 depicts the architecture of a load balanced
switch. Again, we refer to the jth FIFO queue in switch l as
V OQlj .

1

N

1

1

N

N

1

k

1

N

Fig. 3. Load balanced switch

Since every output queued switch runs at a speedup of N/k,
the internal lines connecting the input and output ports to the
k switches need only run at 1/k the speed of the external input
and output lines. Alternatively, one could describe the operation
of a load balanced switch in an enlarged time step as follows:

Load Balancing

• input i receives up to k packets on the input line
• [load balancing] input i sends at most one packet to every

switch until all packets are sent
• output j retrieves at most one packet from V OQlj for all

l = 1 . . . k
• output j delivers up to k packets on the output line

The compromise between the two previous architectures is
manifested by a reduction in speedup from N to N/k with pos-
sibly eliminating it totally if N ≤ k, and by a replacement of
the global matching algorithm with a local load balancing algo-
rithm at every port (almost no scheduling at all).

However, load balancing algorithms may reorder packets be-
longing to the same flow. For instance, suppose that two packets
destined to output j arrive at input i in the same time step (up to
k packets may now arrive at input i in every time step). The two
packets will be placed in different switches and may experience
different delays through their respective V OQs of possibly dif-
ferent lengths and, therefore, may reach output j unordered by
an arbitrary amount. Although at the conceptual level reorder-
ing is not necessarily a problem, some network applications like

TCP do no perform well when packets of the same flow are re-
ordered. Therefore, we generally insist not to reorder packets
belonging to the same flow.

The problem of reordering is traditionally solved by adding
input and/or output buffers to the architecture of Figure 3. For
instance, one approach is to route each flow through at most one
switch [16]. Such an approach requires input buffers (an input
cannot send two packets to the same switch in one time step).
Although it avoids reordering, this approach results in a loss
of throughput due to small capacities of different switches that
remain unused; and nevertheless, non of them is large enough
by itself to route a single flow [16].

Since, as explained above, reordering may occur when two
V OQs for the same output (in different switches) have differ-
ent lengths, another approach to avoid reordering is to ensure
that for each output j, all V OQlj receive the same number of
packets for l = 1 . . . k. This approach is used in [17] for a
switch consisting of k parallel input queued switches. It is also
described in [10] for the load balanced switch as the UFS (Uni-
form Frame Spreading) algorithm and proved to achieve 100%
throughput. With UFS, whenever input i sends packets, it sends
exactly k packets of the same flow, one to every switch. There-
fore, all V OQs for a given output receive the same number of
packets in every time step. This approach also requires buffer-
ing at the input ports: packets destined to a given output are
buffered at the input until there are k of them. However, this
approach might lead to starvation. For instance, if input i re-
ceives a one and only packet for output j, then this packet never
leaves the input buffer, and hence is never received by output j.
Therefore, input i is starved.

Yet another approach is to allow a limited amount of re-
ordering in the switch (with the help of input buffers) and later
correct for misordered packets at the output by adding output
buffers. The work of [7] is the first of this kind and presents the
Parallel Packet Switching algorithm PPS, which mainly sends
packets of the same flow from the input buffer to the k switches
in a round robin order. The algorithm of [2] is almost identical
to the PPS algorithm; however, [2] also presents a variation on
PPS using an Earliest Deadline First queuing algorithm EDF
on the V OQs, which requires the V OQs to be non FIFO. The
work of [9] presents an enhancement over that of [2] at the ex-
pense of using even more complicated queuing mechanism in
the switches (again requiring non FIFO V OQs). The work of
[10] presents the Full Ordered Frames First algorithm, FOFF.
The FOFF algorithm is identical to UFS with the following
exception: FOFF allows the input to send less than k packets
while UFS does not, but of course only when no flow has at
least k packets in the input buffer 1.

As this paper will show, adding input and/or output buffers
to the architecture of Figure 3 is a natural and inevitable out-
come of the research on load balancing. The paper is organized
as follows: For completeness, Section II illustrates some basic
load balancing algorithms (with reordering). Section III pro-
vides some preliminary definitions and prepares for the follow-
ing sections. The main contribution of the paper lies in Sections
IV and V. Section IV proves an impossibility result: there is no

1Therefore, FOFF does not starve an input, but can still starve a flow.

194

load balancing algorithm that achieves 100% throughput and no
reordering for a load balanced switch without buffers. Section
V proves a possibility result: there is a load balancing algo-
rithm that achieves 100% throughput and limited reordering for
a load balanced switch without buffers. This latter result im-
plies that there is a load balancing algorithm that achieves 100%
throughput and no reordering for a load balanced switch with
output buffers only; hence, establishing a theoretical evidence
that input buffers are not necessary. We conclude in Section VI.

II. BASIC LOAD BALANCING (WITH REORDERING)

One possible load balancing algorithm is based on a round
robin approach:

Round Robin Load Balancing (t is the time step)

• input i receives up to k packets on the input line
• input i sends its packets sorted by their outputs in a round

robin order starting at switch [(t − 1) mod k] + 1
• output j retrieves at most one packet from V OQlj for all

l = 1 . . . k
• output j delivers up to k packets on the output line

Therefore, input i sends all packets for output 1, then all
packets for output 2, etc... starting at switch [(t−1) mod k]+1
and continuing in a round robin order of the switches. For now
assume that an admissible traffic satisfies

∑N
i=1 rij < k where

r is the rate matrix. Using a proof technique similar to [1],
we can prove that the round robin load algorithm guarantees
100% throughput for any admissible traffic that is stationary
and weakly mixing.

While the weakly mixing requirement is stronger than ergod-
icity needed for an output queued switch, this requirement can
be relaxed by using randomization.

Randomized Load Balancing

• input i receives up to k packets on the input line
• input i sends its packets to the k switches randomly (at

most one packet per switch)
• output j retrieves at most one packet from V OQlj for all

l = 1 . . . k
• output j delivers up to k packets on the output line

Again, using a proof technique similar to [1] we can prove
that the randomized load balancing algorithm achieves 100%
throughput for any admissible traffic that is stationary and er-
godic.

III. PRELIMINARIES

Let a(t) be an N × N matrix where aij(t) is the num-
ber of packets received at input i for output j at time t. Let
A(t) =

∑t
s=1 a(s) be the matrix representing the cumulative

number of packets up to time t.

Definition 1—Admissible traffic: A traffic is admissible iff:

lim
t→∞

1
t

N∑

i=1

Aij(t) ≤ k

Definition 2—Non-bursty traffic: A traffic is non-bursty iff
there exists an rj for all j = 1 . . .N such that:

|
N∑

i=1

Aij(t) − rjt| ≤ B,∀ t

where B is a burst constant (with respect to t) 2.

Definition 3—Reordering: A switch reorders packets iff two
packets of the same flow are received by their output port in the
wrong order in different time steps.

We adopt the following operational notion of 100% through-
put:

Definition 4—100% throughput: A switch achieves 100%
throughput iff the number of packets served by the switch is
within a constant from the number of packets served by an out-
put queued switch, infinitely many times.

Lemma 1: Let D(t) be an N × N matrix representing
the cumulative number of packets of an admissible non-
bursty traffic served by an output queued switch. Then
||A(t) − D(t)|| ≤ 2NB, where B is the burst constant.

According to Lemma 1, whenever the traffic is admissible
and non-bursty, we can use the fact that the number of pack-
ets remaining in the output queued switch at any time is upper
bounded by a constant. Therefore, for a load balanced switch
to achieve 100% throughput under such traffic, the number of
packets remaining in the switch will have to be upper bounded
by a constant infinitely many times (see Definition 4). We end
this section with a proof for Lemma 1.

Proof: Consider an output queued switch where one unit
of service can serve up to k packets. Let Aj(t) be the cumu-
lative number of packets for output j. Similarly, let Dj(t) be
the number of packets in Aj(t) that are served by the output
queued switch. Therefore, Aj(t) =

∑
i Aij(t) and Dj(t) =∑

i Dij(t). Since the output queued switch is work conserving
(i.e, non-idling), then ([3] page 7)

Dj(t) = min
0≤s≤t

[Aj(s) + k(t − s)]

Let s ≤ t. By the burst condition,

Aj(t) ≤ rjt + B

= (rj − k)t + B + kt

By the admissibility condition, rj − k ≤ 0; other-
wise the burst condition implies that limt→ 1

t Aj(t) =

2Both Definitions 1 and 2 assume that the limit of 1
t

∑
i
Aij(t) exists. Al-

ternatively, we can relax both definitions and combine them into one: there
exists an rj ≤ k such that

∑
i
Aij(t2) −

∑
i
Aij(t1) − rj(t2 − t1) ≤ B

for any t1 ≤ t2. This change does not affect Lemma 1. In either case, if the

rate matrix r = limt→∞ 1
t
A(t) exists,

∑N

i=1
rij ≤ k and

∑N

j=1
rij ≤ k

(because
∑N

j=1
aij ≤ k).

195

limt→ 1
t

∑N
i=1 Aij(t) > k and the traffic is not admissible.

Therefore, since s ≤ t,

Aj(t) ≤ (rj − k)s + B + kt

= (rjs − B) + k(t − s) + 2B

By the burst condition again, rjs − B ≤ Aj(s); therefore,

Aj(t) ≤ [Aj(s) + k(t − s)] + 2B

Since s ≤ t is arbitrary,

Aj(t) ≤ min0≤s≤t[A(s) + k(t − s)] + 2B

= Dj(t) + 2B

Therefore,
Aj(t) − Dj(t) ≤ 2B

Summing over j = 1 . . .N yields ||A(t) − D(t)|| ≤ 2NB.

IV. THE IMPOSSIBILITY RESULT

In this section we prove that it is not possible to achieve
100% throughput and no reordering without buffers. We prove
this impossibility result by forcing any load balancing algo-
rithm that does not reorder to make some output j serve less
than k packets infinitely many times, while generating an ad-
missible and non-bursty traffic that satisfies

∑
i Aij(t) = kt

infinitely many times. This makes the number of packets re-
maining in the switch ||A(t)−D(t)|| an increasing function of
t, and hence by Lemma 1 and Definition 4, the algorithm will
not achieve 100% throughput.

We denote by |V OQlj |t the length of V OQlj at the be-
ginning of time step t. Let maxj(t) = maxl |V OQlj |t and
minj(t) = minl |V OQlj |t and ∆j(t) = maxj(t) − minj(t).
Therefore, we denote by a largest (smallest) V OQlj at time t
the one for which l is a maximizing (minimizing) argument for
maxj(t) (minj(t)).

Definition 5—The unbalancer: Input i unbalances output j
at time t if i sends a packet to a largest V OQlj at time t among
a total of less than k packets to all V OQs of output j.

Lemma 2: If output j serves k packets from its V OQs in
every time step, and if the V OQs of output j receive packets
only from input i, and if i unbalances j more than (k−2)∆j(t)
times in [t, t′], but otherwise sends k packets to the V OQs of
output j, then ∆j(t′) − ∆j(t) ≥ 1.

Proof: Define c(t) =
∑

l(maxj(t) − |V OQlj |t), then
c(t) ≥ maxj(t)−minj(t) = ∆j(t). If input i sends k packets
to the V OQs of output j at time t, then c(t + 1) = c(t) (every
V OQ receives one packet and delivers one packet). If input i
unbalances output j at time t, then c(t+1) ≥ c(t)+1 (a largest
V OQlj receives one packet while at least one other V OQ does
not, and every V OQ delivers one packet). Therefore c(t) in-
creases by at least 1 every time i unbalances j.

c(t′) ≥ c(t) + (k − 2)∆j(t) + 1
c(t′) ≥ ∆j(t) + (k − 2)∆j(t) + 1

= (k − 1)∆j(t) + 1

This implies that at time t′, there exists at least one V OQlj such
that maxj(t′) − |V OQlj |t′ ≥ ∆j(t) + 1 (pigeonhole princi-
ple). Therefore, ∆j(t′) − ∆j(t) ≥ 1.

To see the implication of Lemma 2, consider ∆j(t0) ≥ 0.
By using an unbalancer input i, we can make ∆j(t1) ≥ 1, then
∆j(t2) ≥ 2, etc... where t0 < t1 < t2 < Therefore,
we can create an arbitrary difference in the length of V OQs of
output j.

Lemma 2 provides the main mechanism for constructing our
adversarial traffic. Recall that we are interested in showing that
some output j will serve less than k packets infinitely many
times (provided that the load balancing algorithm does not re-
order). We will show a scenario that forces this once, but then
the whole scenario can be repeated, yielding the desired behav-
ior.

A. The basic idea

Here’s the scenario that we plan to construct. Assume with-
out loss of generality that every output serves k packets from its
V OQs in every time step (if not, then we are done). Let every
input receive a total of k packets in every time step. There-
fore, every input sends k packets in every time step. Based on
Lemma 2, and by using unbalancers (see Definition 5), let some
output j have a large enough ∆j(t), say ∆j(t) ≥ 2. This sce-
nario is illustrated in Figure 4 below.

. . .

.

. . .

Fig. 4. A ∆j(t) = 2 for V OQlj

The gray packets in Figure 4 illustrate the difference in length
among two V OQs of output j. By the end of time step t let
there be only one input, say i, sending packets to output j. Input
i will send k packets to the V OQs of output j in every time
step. Therefore, the two V OQs above will receive one packet
each at time t + 1. These are shown in black in Figure 4. But
the one empty position shown in the lower V OQ of Figure 4
will eventually contain a packet that arrived to input i after the
black packets. If output j continues to serve k packets from its
V OQs in every time step, it will eventually misorder the black
packet in the upper V OQ of Figure 4 (a later packet would be
served in a previous time step). Therefore, output j will have to
serve less than k packets at some time.

Of course the question now is how to construct the above sce-
nario in a way that it can be repeated infinitely many times, and
such that the traffic is admissible and non-bursty and satisfies∑

i Aij(t) = kt infinitely many times.
We start by assuming that N is large enough compared to

k. N will be a function of k; however, to keep the illustration
simple, we will not attempt to calculate an exact value for N .

196

B. The main mechanism

The N input and output ports will form pairs
(i1, j1), . . . , (iN , jN). Input ix receives k packets for
output jx in every time step. Occasionally, input ix may
receive a packet for output jy (and hence only k − 1 packets
for output jx), where x �= y; however, only one such packet
may be received in a given time step; we call such packet an
orphan packet. We will explicitly state when an orphan packet
is received; otherwise, the default is that input ix receives k
packets for output jx in every time step.

We will show how to force some output j to have ∆j(t) ≥ 2,
then the scenario of Figure 4 follows immediately from the
main mechanism described above. Since N is large enough,
there is a large number of outputs, say M ≤ N , that have their
largest V OQ in the same switch (pigeonhole principle). With-
out loss of generality, assume this is switch 1 and that these M
outputs correspond to the pairs (i1, j1), . . . , (iM , jM). We can
also assume that M is itself large enough such that M ≥ 2k.
We will engage these M pairs in a tournament of games at the
end of which there will be a winner pair (i, j) with ∆j(t) ≥ 2.
We first explain a single game.

C. The game

The game consists of P = (k − 2)h + 2 player pairs
at time t, indexed from 1 to P without loss of generality
(i1, j1), . . . , (iP , jP), such that ∆jx(t) ≥ h for all x = 1 . . . P ,
for some h.

Recall that by default input ix receives (and hence also sends)
k packets for output jx in every time step. The objective of the
game is to end up with a pair (i, j) such that ∆j(t′) ≥ h+1 for
some t′ ≥ t. If any of the pairs satisfies this at time t, then we
are done. Otherwise, let (i1, j1) be the coordinator of the game.

Input i1 receives k − 1 packets for j1 and an orphan packet
p2 for j2 at time t + 1. If p2 is sent to switch 1 (where all P
outputs have their largest V OQ), then pair (i2, j2) will have
∆j2(t + 1) ≥ h + 1 and we are done (the packet is sent to
the largest V OQ). If p2 is sent to some other switch, then i1
unbalances j1 (i1 sends less than k packets to the V OQs of
output j1, with one packet being sent to switch 1). If i1 is an
unbalancer at time t + 1, then i1 receives k − 1 packets for j1
and an orphan packet p3 for j3 at time t + 2. If p3 is sent to
switch 1, then pair (i3, j3) will have ∆j3(t+2) ≥ h+1 and we
are done. If p3 is sent to some other switch, then i1 unbalances
j1 for a second time. If i1 is an unbalancer at time t + 2, then
i1 receives k − 1 packets for j1 and an orphan packet p4 for j4
at time t + 3, and the same process repeats.

Eventually at time t′ ≥ t, either we have some output
j �= j1 such that ∆j(t′) ≥ h + 1, or i1 unbalances j1
P − 1 = (k − 2)h + 1 times. In the latter case, ∆j1(t′) ≥ h+1
by Lemma 2. Therefore, we have a winner pair (i, j) at some
time t′ ≥ t with ∆j(t′) ≥ h + 1.

Note that when the game ends with pair (i, j) as the winner,
output j maintains its largest V OQ in switch 1 for future times.
So the winner can participate in another game as described be-
low.

D. The tournament

If the tournament ends at time t, we would like to declare a
winner pair (i, j) with ∆j(t) ≥ 2. Therefore, at the last stage of
the tournament, we need a game with P = (k − 2)(1) + 2 = k
players.

But for the game to work, all k players must start with
∆j(t′) ≥ 1 for some t′ ≤ t. To guarantee the existence of such
players at time t′, we make each player the winner of a previous
game. Looking at one player now, we want ∆j(t′) ≥ 1; hence,
we need a previous game with (k − 2)(0) + 2 = 2 players.
Therefore, M = 2k players are enough to construct the tourna-
ment and obtain a winner pair (i, j) with ∆j(t) ≥ 2. Note that
the existence of M players is guaranteed by the choice of N to
be large enough to find M pairs with all outputs having their
largest V OQ in the same switch.

The construction of the tournament makes it possible to reach
the scenario of Figure 4, which in turn implies that some out-
put j will serve less than k packets at some time t. Therefore,
it would be tempting to wait until that happens, and then re-
peat the tournament infinitely many times. However, there is
an important issue that still needs to be considered: some flows
may receive more (or less) than k packets in some time steps
(because of orphan packets); therefore, we risk not having an
admissible and non-bursty traffic by simply repeating the tour-
nament infinitely many times.

Fortunately, this issue can be dealt with easily. Note that
the number of orphan packets generated during a tournament is
bounded 3. Therefore |∑i Aij(t)− kt| ≤ B for some constant
B (with respect to t).

Before repeating the tournament, the adversary performs a
cleanup phase in which an output jx that received an excess of
packets will receive less than k packets from ix for a number
of time steps until it makes

∑
i Aijx(t) = kt for some time t.

Similarly, an output jx that received a deficit of packets will
receive more than k packets for a number of time steps until it
makes Aijx (t) = kt for some time t. This is possible by using
more inputs and orphan packets (but only a bounded number of
both).

E. The adversarial traffic

Assuming the main mechanism described in Section IV.B
as our default traffic pattern, the adversarial traffic will be as
follows:

Adversary

while (TRUE)
- identify M = 2k pairs (i, j) with all outputs

having their largest V OQ in the same switch
- construct the tournament
- wait until some output j serves less than k packets
- cleanup (make traffic satisfy

∑
i Aij(t) = kt ∀ j = 1 . . .N

3This is because we have a bounded number of games in a tournament, and
the number of orphan packets generated in a single game is at most P − 1
where P is the number of players in that game. An upper bound on the number
of orphan packets in a tournament can be computed as M − 1 = 2k − 1.

197

The adversarial traffic described above forces some output
to serve less than k packets infinitely many times. Since the
traffic satisfies |∑i Aij(t) − kt| ≤ B ∀ t and

∑
i Aij(t) =

kt infinitely many times, for all j = 1 . . .N , we have that
||A(t) − D(t)|| is an increasing function of time, hence the fol-
lowing result:

Theorem 1—Impossibility: It is impossible to achieve 100%
throughput and no reordering for a load balanced switch with-
out buffers (when N >> k ≥ 2).

Proof: By using the adversarial traffic described above
and Lemma 1 and Definition 4 of 100% throughput.

V. THE POSSIBILITY RESULT

In this Section we present a load balancing algorithm that
achieves 100% throughput and limited reordering 4 without
buffers. This implies that it is possible to achieve 100%
throughput and no reordering with the use of output buffers
only. To our knowledge, this fact has not been noted in any
prior work on load balancing in a switch.

Let zlj(t) be the number of packets sent to V OQlj at time t

and Zlj(t) =
∑t

s=1 zlj(t) be the cumulative number of packets
sent to V OQlj . The basic approach for designing our load bal-
ancing algorithm relies on the following two observations for
the architecture of Figure 3 (they can be obtained by generaliz-
ing Appendices D and E of [10]).

• Observation I (no output buffer): if the load balancing al-
gorithm guarantees that |Zlj(t) − Zl′j(t)| is bounded at
any time t for all 1 ≤ l, l′ ≤ k and all j = 1 . . .N ,
and if all V OQs are work conserving, then the algorithm
achieves 100% throughput and limited reordering 5.

• Observation II (adding output buffers): for the same set-
ting above, it is possible to add bounded size output
buffers, and make the load balancing algorithm achieve
100% throughput with no reordering 6.

Therefore, all we need is to show the existence of a load
balancing algorithm that guarantees | 1k

∑
i Aij(t) − Zlj(t)| is

bounded at all times for all l = 1 . . . k, and all j = 1 . . .N .
The load balancing algorithm will conceptually consist of k

algorithms Send-A-Packet1, . . ., Send-A-Packetk that are per-
formed sequentially in turn in one time step at every input port.
Send-A-Packet1 chooses a packet among all the packets re-
ceived at input i and sends it to the first switch. Send-A-Packet2
then chooses a packet among the remaining packets at input
i and sends it to the second switch; and so on until all pack-
ets are sent. Therefore, the algorithms Send-A-Packetl for
l = 1 . . . k experience different traffic patterns. For instance,

4If two packets p1 and p2 belong to flow (i, j), and p1 arrives to input i
before p2, then output j will retrieve p1 at most a bounded number of time
steps after p2.

5Starvation cannot occur because there are no buffers and all V OQs are
FIFO.

6By observation I, for every packet in the output buffer, there will be a time
when delivering that packet cannot violate the packet order; therefore, the algo-
rithm can easily avoid starvation.

Send-A-Packet1 experiences the traffic described by a(t) and
A(t). In general, Send-A-Packetl experiences the traffic de-
scribed by al(t) and Al(t), where:

N∑

i=1

al
ij(t) =

N∑

i=1

aij(t) −
l−1∑

x=1

zxj(t)

N∑

i=1

Al
ij(t) =

t∑

s=1

al
ij(s) =

N∑

i=1

Aij(t) −
l−1∑

x=1

Zxj(t)

where an empty summation is assumed to be zero.
We will first show that under this conceptual view of the

load balancing algorithm, | 1
k−l+1

∑
i Al

ij(t) − Zlj(t)| < D
at all times for all l = 1 . . . k and all j = 1 . . .N , for
some constant D (with respect to time). Then we show
that | 1k

∑
i Aij(t) − Zlj(t)| is bounded at all times for all

l = 1 . . . k, and all j = 1 . . .N . Without loss of generality,
we make the following assumptions:

• there is only one input port i: for whatever bound D we
compute under this assumption, we can simply multiply D
by N to account for all input ports.

• input i receives k packets in every time step; therefore,
Send-A-Packetl for every l = 1 . . . k always finds a packet
to send: if not, we can always fill the remaining empty
packets with packets for a fictitious output 7. Input i will
receive therefore packets for N + 1 outputs.

• let Ol(t) be a subset of outputs defined as follows:
al

ij(t) �= 0 iff j ∈ Ol(t). Obviously Ol(t) ∈ 2{1,...,N}

which is the power set of {1, . . . , N}, and |Ol(t)| ≤
k − l + 1. For Send-A-Packetl, l = 1 . . . k, we con-
sider only the times t when Ol(t) = Ol for a particular
subset of outputs Ol (i.e. a(t), and consequently other
quantities as well, are defined for those times only) 8: for
whatever bound D we compute under this assumption, we
can simply multiply D by 2N−1 to account for all possible
subsets of outputs, since every output belongs to exactly
2N−1 elements of 2{1,...,N}.

For all j ∈ Ol, let:

clj(t) =
1

k − l + 1
Al

ij(t) − Zlj(t)

c∗l (t) = max
j∈Ol

clj(t)

cl∗(t) = min
j∈Ol

clj(t)

glj(t) =
1

k − l + 1
al

ij(t)

Then
clj(t) = clj(t − 1) + glj(t) − zlj(t)

7Packets to the fictitious output are scheduled by the load balancing algorithm
but not actually sent to any physical V OQ.

8Therefore, every Send-A-Packetl can be viewed as 2N separate algorithms
running in parallel, each responding to one particular subset of outputs. How-
ever, we still use t and t + 1 to denote two consecutive time steps for a given
Ol.

198

By the first assumption (there is only one input port i), zlj(t)
is either 0 or 1. Moreover, by all three assumptions, we have∑

j∈Ol
al

ij(t) = k − l + 1,
∑

j∈Ol
Al

ij(t) = (k − l + 1)t, and∑
j∈Ol

Zlj(t) = t. Therefore:

∑

j∈Ol

clj(t) = 0

∑

j∈Ol

glj(t) = 1

1
k − l + 1

≤ glj(t) ≤ 1 ∀ j ∈ Ol

We state the following lemma:

Lemma 3: If c∗l (t) ≤ 1 +
∑

j∈Ol
clj(t)glj(s), then∑

j∈Ol
c2
lj(t) < k3.

Proof:

c∗l (t) ≤ 1 +
∑

j∈Ol
clj(t)glj(s)

≤ 1 + c∗l (t)
k−l

k−l+1 + cl∗(t) 1
k−l+1

The second inequality follows because
∑

j∈Ol
glj(s) = 1

and 1
k−l+1 ≤ glj(s) ≤ 1 ∀ j ∈ Ol. Therefore,

c∗l (t) − cl∗(t) ≤ k − l + 1

Since
∑

j∈Ol
clj(t) = 0, |clj(t)| < k − l + 1 for all

j = 1 . . .N . Therefore,
∑

j∈Ol
c2
lj(t) < |Ol|(k − l + 1)2 ≤

(k − l + 1)3 ≤ k3.

We now describe our Send-A-Packet algorithms (see foot-
note 8):

Send-A-Packetl(t)
for every j ∈ Ol

do if clj(t − 1) = c∗l (t − 1)
then j �→t l

return

where j →t l denotes that input i sends a packet for output
j to switch l at time t (i.e. to V OQlj). Basically, in every time
step of Send-A-Packetl, input i determines an output j ∈ Ol for
which clj(t−1) is maximum and sends a packet for that output
to switch l.

Lemma 4: The Send-A-Packetl algorithm guarantees that
|clj | <

√
k3 + 2 at all times t for all j = 1 . . .N .

Proof:

∑

j∈Ol

c2
lj(t) −

∑

j∈Ol

c2
lj(t − 1) =

∑

j∈Ol

[clj(t − 1) + glj(t) − zlj(t)]2 −
∑

j∈Ol

c2
lj(t − 1) =

∑

j∈Ol

[glj(t) − zlj(t)]2 + 2
∑

j∈Ol

clj(t − 1)[glj(t) − zlj(t)]

Since by the Send-A-Packetl algorithm, zlj(t) = 1 iff
clj(t − 1) = c∗l (t − 1),

∑

j∈Ol

[glj(t) − zlj(t)]2 < 2

∑

j∈Ol

clj(t−1)[glj(t)−zlj(t)] =
∑

j∈Ol

clj(t−1)glj(t)−c∗l (t−1)

Therefore,
∑

j∈Ol

c2
lj(t) −

∑

j∈Ol

c2
lj(t − 1) < 2(1 − γ(t)) < 2

where γ(t) = c∗l (t−1)−∑
j∈Ol

clj(t−1)glj(t) ≥ 0. Now con-
sider the first time t such that

∑
j∈Ol

c2
lj(t) ≥ k3+2; therefore,∑

j∈Ol
c2
lj(t) >

∑
j∈Ol

c2
lj(t − 1). By the above inequality,∑

j∈Ol
c2
lj(t − 1) > k3. By Lemma 3, γ(t) > 1. By the above

inequality,
∑

j∈Ol
c2
lj(t) <

∑
j∈Ol

c2
lj(t − 1), a contradiction.

Therefore,
∑

j∈Ol
c2
lj(t) < k3 + 2 at all times t. Consequently,

|clj(t)| <
√

k3 + 2 at all times t for all j = 1 . . .N .

Therefore, under the assumptions we mentioned earlier, D =√
k3 + 2. In order to relax all assumptions, we set D =

N2(N+1)−1
√

k3 + 2 = N2N
√

k3 + 2, where the multiplica-
tion by N is to account for all inputs, the replacement of N
by N + 1 is to account for a fictitious output, and the multi-
plication by 2(N+1)−1 = 2N is to account for all subsets of
{1, . . . , N + 1} for Ol(t).

Therefore, | 1
k−l+1

∑
i Al

ij(t) − Zlj(t)| < N2N
√

k3 + 2 at
all times for all l = 1 . . . k and all j = 1 . . .N . Consider the
following load balancing algorithm:

Load-Balance(t)
for l ← 1 to k

do Send-A-Packetl(t)

The Load-Balance algorithm runs in O(k2) time at every in-
put port. This is not necessarily an efficient algorithm for load
balancing; however, it provides evidence for the following the-
orem.

Theorem 2—Possibility: There exists a load balancing algo-
rithm that achieves 100% throughput and limited reordering for
a load balanced switch without buffers, and no reordering with
the addition of output buffers.

Proof: Based on Observations I and II, it is
enough to prove that the Load-Balance algorithm guarantees
|∑i

1
kAij(t) − Zlj(t)| is bounded at all times for all l = 1 . . . k

and all j = 1 . . .N . We prove it by induction on l.
Base case: for l = 1 we have | 1k

∑
i A1

ij(t) − Z1j(t)|<
N2N

√
k3 + 1 for all j = 1 . . .N . Therefore,

| 1k
∑

i Aij(t) − Z1j(t)|< N2N
√

k3 + 1 for all j = 1 . . .N .
Induction step: given that | 1k

∑
i Aij(t)−Zxj(t)| is bounded

for all x = 1 . . . l − 1 and all j = 1 . . .N , we prove that

199

| 1k
∑

i Aij(t) − Zlj(t)| is bounded for all j = 1 . . .N . Since
| 1k

∑
i Aij(t) − Zxj(t)| is bounded for all x = 1 . . . l − 1, then

| l − 1
k

∑

i

Aij(t) −
l−1∑

x=1

Zxj(t)|

is bounded. Moreover, we have that

| 1
k − l + 1

∑

i

Al
ij(t) − Zlj(t)|

is bounded. Since
∑

i Al
ij(t) =

∑
i Aij(t) −

∑l−1
x=1 Zlj(t), we

have that

| 1
k − l + 1

(
∑

i

Aij(t) −
l−1∑

x=1

Zxj(t)) − Zlj(t)|

is bounded. The above expression is equal to the following:

|1
k

∑

i

Aij(t)−Zlj(t)+
1

k − l + 1
(
l − 1

k

∑

i

Aij(t)−
l−1∑

x=1

Zxj(t))|

Therefore, | 1k
∑

i Aij(t) − Zlj(t)| is bounded for all j =
1 . . .N . Since the inductive step is needed only k − 1 times,
| 1k

∑
i Aij(t)−Zlj(t)| is bounded at all times for all l = 1 . . . k

and all j = 1 . . .N .

VI. CONCLUSION

We proved the theoretical impossibility of achieving 100%
throughput and no reordering for a load balanced switch with-
out buffers. We also proved that it is possible to achieve 100%
throughput and limited reordering for a load balanced switch
without buffers, by providing a new load balancing algorithm.
Therefore, this algorithm achieves 100% throughput and no re-
ordering with the use of output buffers only. Although this al-
gorithm is not necessarily the most efficient way of load bal-
ancing, it provides a theoretical evidence that input buffers are
not necessary.

REFERENCES

[1] C.-S. Chang, D.-S. Lee, T.-S. Jou, Load balanced Birkhoff-von Neumann
switches, part I: one-stage buffering. Computer Communications, Vol. 25,
No. 6, pp. 611-622, 2002.

[2] C.-S. Chang, D.-S. Lee, C.-M. Lien, Load balanced Birkhoff-von Neumann
switches, part II: multi-stage buffering. Computer Communications, Vol. 25,
No. 6, pp. 623-634, 2002.

[3] C.-S. Chang, Performance Guarantees in Communication Networks.,
Springer-Verlag, New York, 2000.

[4] A. Charny, P. Krishna, N. Patel, R. Simcoe, Algorithms for providing band-
width and delay guarantees in input buffered crossbars with speedup. Pro-
ceedings of 6th International Workshop on Quality of Service, IWQOS 98,
pp. 235-44, May 1998.

[5] S.-T. Chuang, A. Goel, N. McKeown, B. Prabhakar, Matching output queu-
ing with combined input output queued switches. IEEE Journal of Selected
Areas in Communication 17(6), pp. 1030-39, June 1999.

[6] J. G. Dai, B. Prabhakar, The throughput of data switches with and without
speedup. IEEE/ACM INFOCOM 2000, pp. 556-64.

[7] S. Iyer, N. McKeown, Making parallel packet switches practical. Proceed-
ings of IEEE INFOCOM 2001, pp. 1680-87, March 2001.

[8] A. Kam, K.-Y. Siu, R. Barry, A cell switching WDM broadcast LAN with
bandwidth guarantee and fair access. IEEE/OSA Journal of Lightwave
Technology 16(2), pp. 2265-80, December 1998.

[9] I. Keslassy, N. McKeown Maintaining packet order in two-stage switches.
IEEE Infocom, 2002, New York, NY, June 2002.

[10] I. Keslassy, The Load Balanced Router. Ph.D. Thesis, Stanford University,
2004.

[11] P. Krishna, N. S. Patel, and A. Charny, On the speedup requirement for
work conserving crossbar switches. IEEE Journal of Selected Areas in Com-
munication 17(6), pp. 1057-69, June 1999.

[12] N. McKeown, V. Anantharam, J. Walrand, Achieving 100% throughput in
an input queued switch. IEEE INFOCOM 96, vol. 1, pp. 296-302, March
1996.

[13] N. Mckeown, The iSLIP scheduling algorithm for input queued switches.
IEEE/ACM Transactions on Networking, 7(2), pp. 188-201, April 1999.

[14] A. Mekkittikul and N. McKeown, A starvation-free algorithm for achiev-
ing 100% throughput in an input queued switch. Proceeding of the Interna-
tional Conference on Computer Communication and Networking, ICCCN
96, pp. 226-231, October 1996.

[15] A. Mekkittikul, N. McKeown, A practical scheduling algorithm to
achieve 100% throughput in input queued switches. IEEE INFOCOM 1998,
vol. 2, pp. 792-99, March-April 1998.

[16] S. Mneimneh, K.-Y. Siu, Scheduling unsplittable flows using parallel
switches. ICC2002, New York, USA, April 2002.

[17] S. Mneimneh, V. Sharma, K.-Y. Siu, Switching using parallel input-output
queued switches. IEEE/ACM Transactions on Networking 10(5), 2002.

[18] S. Mneimneh, K.-Y. Siu, On achieving throughput in an input queued
switch. IEEE/ACM Transactions on Networking 11(5), 2003.

[19] A. Baldini, D. Bergamasco, D. Blumenthal, D. Chiou, S.-T. Chuang,
V. De Feo, P. Donner, S. Fraser, Y. Ganjali, P. Giaccone, I. Keslassy,
M. Kodialam, F. Mattus, N. McKeown, D.-S. Lee, S. Mneimneh, M.
Neely, A. Smiljanic, B. Towles, R. Zhang-Shen, M. Zirngibl, Stanford
Workshop on Load Balancing. Stanford Universiry, CA, May 19 2004.
http://yuba.stanford.edu/lb/ .

200

