
How to waste 2/3 of the throughput of a switch: a

tight characterization of load balancing algorithms
that do not split.

Saad Mneimneh
Visiting Professor, Computer Science, Hunter College of CUNY,

695 Park Avenue, New York, NY 10021
Email: saad walum.mit.edu, Tel: (214)707-1075, Fax: (212)772-5219

Dedicated to the memory of a thought in September 2002

Abstract- Load balancing has recently acquired increased
interest among researchers in the switching community. The
premise is to replace the single switch, running at a speed
proportional to the number n of input and output ports (and
to the line rate), by a load balanced switch consisting of k
switches, each running at 1lk the speed. Indeed, with such an
architecture, and for some classes of traffic patterns, simply
spreading the traffic among the k switches achieves 100%
throughput (thus the term load balancing). However, reordering
among packets of the same flow may occur, which becomes
a major concern. One way of avoiding this problem is to
use a load balancing algorithm that does not split, i.e. that
routes all packets of a given flow through exactly one of the k
switches, without re-routing existing flows. We shall call such
a load balancing algorithm a non-splitting algorithm. While
non-splitting algorithms definitely preserve the order of packets,
it is intuitively well understood that these algorithms waste
throughput. The focus of this paper is to exactly characterize
this waste. We prove an asymptotic tight upper bound of 1/3
on the throughput of any non-splitting algorithm when n >> k.

Keywords: Load balanced switch, load balancing algorithm, non-
splitting algorithm, throughput, upper bound.

I. INTRODUCTION

Load balancing has recently acquired an increased interest
among researchers in the switching community [14]. The
premise is to replace the single switch, running at a speed
proportional to the number n of input and output ports (and
to the line rate), by a load balanced switch consisting of k
switches, each running at 1/k the speed. A load balanced
switch is shown in Figure 1.

Fig. 1. Load balanced switch with unit capacity links and a line rate of k

The load balanced switch appeared repeatedly in literature
over the past few years, e.g. [11], [7], [2], and [10]. In partic-
ular, the work in [10] provides a comprehensive overview of
the load balanced switch and a number of useful contributions.
It is the work of [2] that first identified and emphasized the
load balancing aspect of such an architecture: Each input
spreads its traffic among the k switches using a load balancing
algorithm. Each output then assembles its traffic from the
k switches. Indeed, for some classes of traffic pattern, it is
possible to find simple load balancing algorithms that achieve
100% throughput [2].
However, reordering among packets of the same flow may

occur, which becomes a major concern. Several solutions have
been proposed to cope with reordering. Most of these solutions
use buffers at the input ports to limit the amount of reordering
in the k switches, and therefore, use buffers at the output ports
also to deliver packets in order, e.g. [7], [3], [10], and [12].
Variations on this scheme, such as [4] and [9], exist.

Yet another way of making use of input buffers to avoid
reordering is a load balancing algorithm that does not split, i.e.
that routes all the packets of a given flow through exactly one
of the k switches, and does not re-route existing flows (hence
packets competing for a given switch wait at the input). Such
algorithms (usually based on hashing schemes) are common
in load balancing systems, e.g. [1], [13], [5], [8], [11]. We
shall call them non-splitting algorithms. While non-splitting
algorithms definitely preserve the order of packets, it is intu-
itively well understood that these algorithms waste throughput:
they may result in many remaining small capacities scattered
throughout the switches, and yet none of them is enough by
itself to route a single flow. Although these algorithms may not
be the ideal choice (for the obvious reason), the focus of this
paper is to exactly characterize how much waste of throughput
these algorithms can exhibit. We prove an asymptotic tight
upper bound of 1/3 on the throughput of any non-splitting
algorithm when n >> k. Therefore, we show that 2/3 of
the throughput is wasted as a cost of preserving order in this
particular way.

The paper is organized as follows. Section II defines non-
splitting algorithms and the notion of throughput to be used.
Section III shows that is it possible to achieve a throughput
greater than 1/3 with a simple non-splitting algorithm, pro-
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vided that the rates of flows are known. Section IV shows that
a non-splitting algorithm cannot achieve a throughput greater
than 1/3 asymptotically when n >> k. We finally conclude
in Section V.

II. NON-SPLITTING LOAD BALANCING ALGORITHMS

A non-splitting algorithm is an online load balancing al-
gorithm that routes all packets of a given flow through
exactly one of the k switches. Moreover, it does not re-route
existing flows (otherwise the online property becomes void
algorithmically, and more importantly, reordering may occur).
The choice of an online algorithm is motivated by the fact
that in general a load balancing algorithm has no knowledge
of future flows.

Since a non-splitting algorithm routes flows instead of
individual packets, we assume that each flow has a rate. We
assume further that this rate is known to the algorithm when
the first packet of the flow arrives 1. This assumption is needed
for any non-splitting algorithm to make reasonable routing
decisions in the absence of any knowledge about the flows, and
it only strengthens the negative result of Section IV. Therefore,
we may assume without loss of generality (WLOG) that:

. every flow f has a known rate rf

. once the first packet of a flow arrives, the flow is routed
through one of the k switches

. each link has a capacity of 1

We define Fj,j be the set of flows originating at input i
and routed through switch 1. Similarly, we define Fjl to be
the set of flows destined to output j and routed through the
switch 1.

Definition 1 (Throughput): Let

a= max(max E rf,nmax E rf)

0fGFj fCFj-

Then the throughput of a non-splitting load balancing algo-
rithm is z = min(1/a, 1).

Note that ZfcF,_ rf is the total rate of flows using the
link between input i and switch 1. Similarly, EfrF rf is the
total rate of flows using the link between switch / and output
j. As a result, a represents the largest load on any link. For
instance, if z = 1, then 1/a > 1. This means that a < 1

and no link capacity is exceeded. If z < 1, then z = 1/a
and a > 1. Consequently, at least one flow must have its
rate multiplied by z (or less) to avoid the excessive load. The
choice of such flow(s) may be determined at a level higher
than the switch (e.g. transport protocol). For instance, TCP
fairness guarantees that all flows sharing a bottleneck will have
their rates multiplied by z (theoretically). Therefore, the above
definition provides a reasonable notion of throughput. Besides,
we would like to avoid definitions that make it possible to
achieve a throughput arbitrarily close to 1 but completely
starve a flow (which does not usually happen when splitting).

1While this assumption may be restrictive, we use the existence of such an

algorithm to prove that the bound of Section IV is tight.

Define Fi = U1=1 Fjj and Fj U= 1 jl The
condition EfeF, rf < k and Ef cFj rf < k guarantees
that, in principle, each switch can run at 1/k the speed (the
total rate at the ports is at most nk and the total capacity of
each switch is n). Without this condition, throughput may be
arbitrarily close to zero, even if k = 1 (simply flood the switch
with flows). Therefore, we would (uninterestingly) claim that
the throughput of non-splitting algorithms is trivially z = 0.
Moreover, consider one flow f with rate rf = k. This flow
has to be routed through one of the k switches, which makes
a > k. Therefore, the throughput z < 1/k. If k is large
enough, z is arbitrarily close to 0, which again makes the
setting unrealistic. The condition that for each flow f, rf < 1,
avoids this triviality, and guarantees that, in principle, each
flow can be routed without being split (since the link capacity
is 1). We bundle the above conditions into one condition
that we call the no overload condition, and we shall assume
thereafter that it is enforced.

Definition 2 (No overload condition): Given a flow fo
from input i to output j that is not yet routed, rf0 < 1.
Moreover, rfo + ZfCF rf < k and rfo + EfCF rf < k.

We now present some examples to gain intuition on how
a non-splitting algorithm can waste throughput. Consider the
example where k = 2 and n = 1. We identify the input and the
output by i and j, respectively. Consider three flows from i to
j with the following rates 1/2, 1/2, and 1. Obviously, the no
overload condition cannot be violated. Now say that the non-
splitting algorithm routes the first flow of rate 1/2 through
switch 1, then routes the second flow of rate 1/2 through
switch 2. The third flow can now be routed through either
switch 1 or switch 2, resulting in a = 3/2 and a throughput
z = 2/3.
One would definitely think that a non-splitting algorithm

with some intelligence will pack the first two flows into a
single switch. Hence routing the first two flows through switch
1, and the third flow through switch 2, resulting in a = 1 and a
throughput z = 1. However, as the following example shows,
such an intelligence does not always help.

Here's a more drastic example with k switches and n
1. Consider k + 1 flows from input i to output j each with
rate k Again, the no overload condition cannot be violated.
Since we have k switches only, at least two flows must use
the same switch, resulting in a > 2k1 Therefore, if k is
large, a is arbitrarily close to 2, and hence the throughput z
is arbitrarily close to 1/2. No intelligence in the non-splitting
algorithm can avoid this situation, even if the non-splitting
algorithm is offline, i.e. even if it has the knowledge of all the
flows in advance 2

With such an example in mind, one may wonder whether
it is possible to force a non-splitting algorithm not to achieve

21t was shown in [6], that it is possible to achieve a throughput z >
1/2 with an offline non-splitting algorithm. Therefore, the above example
provides a tight characterization of offline non-splitting algorithms. For these
algorithms, one may also ask about the possibility of obtaining the maximum
throughput, given the knowledge of the flows. Unfortunately, this problem is
NP-hard (see [11] for a variety of problems and approximations regarding
offline non-splitting algorithms for a load balanced switch).



any throughput at all (i.e. making z arbitrarily close to 0).
The following section shows that this is not true, by proving
the existence of a non-splitting algorithm that achieves a
throughput z > 1/3.

III. A GREEDY NON-SPLITTING LOAD BALANCING
ALGORITHM

We describe a non-splitting load balancing algorithm and
call it the greedy non-splitting algorithm. This algorithms
achieves a throughput z > 1/3. We claim no particular
importance of the algorithm itself, but rather, we use it to
show that the 1/3 upper bound of Section IV is tight, i.e. no
better upper bound can be proved.

Greedy non-splitting

The last inequality holds because rf0 1 (no overload
condition) and k > 2. Therefore, either rf0 + EfeF_ rf > k
or rfo + EfEF3 rf > k, which contradicts the no overload
condition.

Now since the greedy algorithm routes a new flow fo
through switch I only when rfo + ZfcF,_ rf < 3 -2/k and
rfo + EfCFj-l rf < 3 -2/k, then EfeF _ rf < 3 -2/k
and ZfcFj _s rf < 3 -2/k after every routing decision for
all I < ij < n and I < I < k. Therefore a < 3 -2/k 3 4
and hence the throughput z > 3k > 1/3.

Theorem 1: There exists a non-splitting load balancing al-
gorithm that achieves a throughput z > 1/3.

Fi1 <- for all 1 < i < n and 1 < I < k
Fj1<- for all 1 <njK n and 1 < K< k
repeat

given a flow fo from input i to output j,
find a switch I C {1 ... k} such that

rfo+ rf <3-2/k
f GF,j

rfo + E rf < 3
fEFj-l

-2/k

route flow fo through switch I
Ftj <-- Fi1 U{fo}
Fjl <- Fj-l U {fo}

until no more flows

The name greedy comes from the fact that the non-splitting
algorithm finds any switch I that satisfies the criteria shown
above and routes the flow fo through it. Note that if no such
switch exists, the greedy algorithm is not well defined!

Lemma 1: Given a flow fo from input i to output j, a switch
I exists such that

rfo + rf < 3 -2/k
fCF

rfo + rf < 3 -2/k
fEFjl

IV. AN UPPER BOUND ON THROUGHPUT

In this section, we show an asymptotic upper bound of
1/3 on the throughput of any non-splitting load balancing
algorithm. By virtue of the previous section, this bound is tight,
i.e. no better upper bound can be established. To show the
desired upper bound on throughput, we show that a > 3 -,
where limk, d = 0, for any non-splitting algorithm. The
basic idea behind our proof is the following: assume all
flows have rate 2[kk 5 and consider any fixed set of
[k/2j switches. Assume also that we manage to force the
algorithm to route 2Lk/2] flows for each output in a set
of 2Fk/21 + 1 outputs through those Lk/2i switches. This
scenario is illustrated in Figure 2.

Lkl2i Fk/21

...

2Fk/21 + 1

Fig. 2. Proof idea

Proof: Assume the opposite for the sake of contradiction.
Then for all 1 < I < k either rf0 + ZfCF,1 rf > 3-
2/k orrfO+ EfcFj ,rf > 3 -2/k. If k = 1, thenthis is a

contradiction to the no overload condition. Therefore, assume
k > 2.

k

krf0+Z( E3 rf+ E: rf)>3k
1=1 f EFil fEFjl

2

krf0 + : rf + : rf > 3k- 2
fcF, fcF3

(rfO+ , rf)+(rfO+ , rf) > 3k-2-(k-2)rfO > 2k

fcF, fcF3

We can also assume V/LOG that the algorithm successfully
avoids so far the event of routing three flows for a given port

3As a consequence of this result, full throughput (z = 1) can be achieved
without splitting if link capacities are 3 -2/k instead of 1 (this is at most 3
and only 2 when k = 2).
4We note the similarity of this result to the result of [15] which states that

3k -2 switches are necessary for a multirate Clos network to be wide-sense
non-blocking. Since a multirate Clos network is a special case of the load
balanced switch, 3k -2 switches (instead of k switches but with the no
overload condition remaining the same) are also necessary for a non-splitting
algorithm to achieve a throughput z = 1 (i.e. a < 1). This is an intuitive
indication that a = 3 -2/k (which could be interpreted as the number of
switches needed divided by the number of switches available) must be close
to optimal, as shown in Section IV.

5Although this rate approaches 1 (the internal line speed) at the limit, it is
only a Ik fraction of the external line speed.



(input or output) through the same switch. When such an event
occurs, a > 2[k-211 6, where limk, d = 0, and we
are done. Therefore, each of the gray switches of Figure 2 is
routing exactly two flows for each of the 2 Fk/21 + 1 outputs.
The proof idea is based on the fact that the scenario of Figure
2 inevitably leads to the event mentioned above.

Consider an input with 2 Fk/21 + 1 flows, one for each of
the above outputs. Referring to Figure 2 above, and based
on the pigeon hole principle, we have one of two cases (or
both):

* at least three of these flows are routed through the same
white switch

. at least one of these flows, say for some output j, is
routed through one of the gray switches. But since every
gray switch is already routing two flows for output j,
this results in three flows for output j routed through the
same gray switch.

Note that the no overload condition is not violated because
every port has at most 2 Fk/21+1 flows with a rate of 2[k +
for each.

It remains to show that an algorithm that successfully avoids
routing three flows for a given port through the same switch
can be forced to reach the scenario of Figure 2. In doing so,
we assume that n is large enough (but finite) compared to k.

Theorem 2 (Non-splitting load balancing algorithms):
The throughput of a non-splitting load balancing algorithm is
z < 1/3 +cE, where limk, e = 0 (when n >> k).

Proof: We show that a > 3 -, where limk, d = 0,
by constructing the scenario of Figure 2. Hence z < 1/a <
1/3+E, where limkO e = 0. Let n > (2Fk/21 +1)(2Lk/2+1).
Let Io be the set of all input ports, and similarly 00 be the set
of all output ports. Pick (2Fk/21 + 1)2Lk/2j inputs in lo and
let '1 be the set of remaining inputs of '0. For each input in
Io-', pick a distinct set of 2 Fk/21 + 1 outputs in Oo and send
one flow for each. Therefore, for each input i C I0 -I, there
must be an output j such that the flow from i to j is routed
through one of the first Lk/2i switches (otherwise, input i
will have three flows routed through the same switch). For
each input i C o I-I fix one such output. Call the set of all
such outputs 01. Note that '11 > (2Fk/21 + 1)2Lk/2j 6 and
0fl = (2Fk/21 + 1)2Lk/2. More importantly, every output
in 01 has one flow routed through the first Lk/2i switches.
Now consider '1 and 01 and repeat the same process, i.e.
pick (2 Fk/21 + 1) (2 Lk/2 - 1) inputs in '1 (and let '2 be the set
of remaining inputs of -I) to obtain 02 in a similar manner
as above. Again, '2 > (2Fk/21 + 1) (2 Lk/2 - 1) and 002 =

(2 Fk/21 + 1)(2Lk/2j-1) and every output in 02 has two flows
routed through the first Lk/2i switches. This can be repeated
2 Lk/2i times to obtain '2 Lk/2j and 02 Lk/2j with 2 Lk/2j >

2Fk/21 + 1 and O°2L/2[k = 2Fk/21 + 1 and every output
in 02Lk/2j has 2 Lk/2i flows routed through the first Lk/2i
switches. This is the scenario of Figure 2 with enough inputs

6This is because for any two numbers a > 2 and b, ab+l- ab = ab(a-
1) > ab.

in '2Lk/2j (only one is needed) to carry out the inevitable
event described earlier. In this construction, we do not violate
the no overload condition since every input port has at most
2 Fk/21 + 1 flows and every output port has at most 2 Lk/2i
flows and every flow has a rate of 2[kk

Figure 3 illustrates the construction described in the proof
(scenario of Figure 2) for k = 2.

0,

0°

Fig. 3. Construction for k = 2. Assuming the algorithm avoids routing 3
flows for a given port through the same switch, at least one flow for each of
(2 Fk/2] + 1)2 Lk/2 = 32 = 9 inputs of Io is routed through the first switch.
This results in O1 with 9 outputs each having 1 flow routed through the first
switch. Then at least one flow for each of (2Fk/2 + 1)(2Lk/2 -1) = 31 = 3
inputs of I1 is routed through the first switch. This results in 02 with 3 outputs
each having 2 flows routed through the first switch. Now sending a flow from
an input in 12 to each of the 3 outputs in 02 will result in at least one port
(either that input or one of the 3 outputs) having 3 flows routed through the
first switch.

V. CONCLUSION

For a load balanced switch with n ports and k switches
(see Figure 1), we show that a load balancing algorithm that
does not split, i.e. that routes all the packets of a given flow
through exactly one of the k switches, and does not re-route
existing flows, cannot achieve a throughput greater than 1/3
asymptotically, when n >> k. Moreover, this upper bound
on throughput is tight, i.e. there exists a non-splitting load
balancing algorithm that achieves a throughput z > 1/3.
Therefore, we establish a tight characterization of non-splitting
load balancing algorithms: they waste 2/3 of the throughput
of a switch.
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