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Multiple RNA Interaction: Beyond Two
Saad Mneimneh and Syed Ali Ahmed

Abstract—The interaction of two RNA molecules involves a
complex interplay between folding and binding that warranted
recent developments in RNA-RNA interaction algorithms. How-
ever, biological mechanisms in which more than two RNAs take
part in an interaction also exist. It is reasonable to believe that
interactions involving multiple RNAs are generally more complex
to be treated pairwise. In addition, given a pool of RNAs, it is not
trivial to predict which RNAs interact without sufficient biological
knowledge. Therefore, structures resulting from multiple RNA
interactions often cannot be predicted by the existing algorithms
that handle RNAs pairwise and may simply favor the best inter-
acting pair. We propose a system for multiple RNA interaction
that overcomes the difficulties mentioned above by formulating
a combinatorial optimization problem called Pegs and Rubber
Bands. A solution to this problem encodes a structure of inter-
acting RNAs. The problem, not surprisingly, is NP-hard. However,
our experiments with approximation algorithms and heuristics for
the problem suggest that this formulation is adequate to predict
known interaction patterns of multiple RNAs. In general, however,
the optimal solution obtained does not necessarily correspond to
the actual structure observed in biological experiments. Moreover,
a structure produced by interacting RNAs may not be unique. We
extend our approach to generate multiple suboptimal solutions.
By clustering these solutions, we are able to reveal representatives
that correspond to realistic structures. Specifically, our results on
the U2-U6 complex with introns in the spliceosome of human/yeast
and the CopA-CopT complex in E. coli are consistent with pub-
lished biological structures.
Index Terms—Approximation algorithm, clustering, dynamic

programming, multiple RNA interaction, structure prediction,
suboptimal solution.

I. INTRODUCTION

T HE interaction of two RNA molecules has been indepen-
dently formulated as a computational problem in several

works, e.g., [1]–[3]. In their most general form, these formula-
tions lead to NP-hard problems (which means computationally
intractable, i.e., the running time of the algorithm that produces
an optimal solution increases exponentially with the problem
size). To overcome this hurdle, researchers have been either re-
verting to approximation algorithms, or imposing algorithmic
restrictions; for instance, the avoidance of the formation of cer-
tain structures computationally.
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Fig. 1. Pegs and Rubber Bands. All positive weights are equal to 1 and are
represented by dashed lines. The optimal solution achieves a total weight of 8.

While these algorithms had limited use in the beginning, they
became important venues for (and in fact popularized) an inter-
esting biological fact: RNAs interact. For instance, micro-RNAs
(miRNAs) bind to a complementary part of messenger RNAs
(mRNAs) and inhibit their translation [4].
But more complex forms of RNA-RNA interaction exist. In

E. coli, CopA binds to the ribosome binding site of CopT, also
as a regulation mechanism to prevent translation [5]; so does
OxyS to fhlA [6]. In both of these structures, the simultaneous
folding (within the RNA) and binding (to the other RNA) are
non-trivial to be predicted as separate events. To account for
this, most of the RNA-RNA interaction algorithms are based on
the probability for a pair of subsequences, one of each RNA, to
participate in the interaction, and in doing so they generalize the
energy model used for the partition function of a single RNA to
the case of two RNAs [7]–[12]. This generalization takes into
consideration the simultaneous aspect of folding and binding.
Not surprisingly, however, there exist other mechanisms in

which more than two RNA molecules take part in an interac-
tion. Typical scenarios involve the interaction of multiple small
nucleolar RNAs (snoRNAs) with ribosomal RNAs (rRNAs) in
guiding the methylation of the rRNAs [4], and multiple small
nuclear RNAs (snRNA) with mRNAs in the splicing of introns
[13]. Some early attempts for multiple RNA interaction have
been considered, e.g., [14], [15], but they only generalize the
partition function algorithm of [16] applied to the concatenation
of all RNAs as one, and so can only produce structures with
no pseudoknots. While pseudoknots are rare in folded struc-
tures, they translate to kissing loops when spanning multiple
RNAs, which are quite frequent. Even though algorithms for
kissing loops exist, e.g., [17], advances in pairwise interaction
of RNAs suggest that the latter is more adequate. Neverthe-
less, even with the existence of a computational framework for
a single RNA-RNA interaction, it is reasonable to believe that
interactions involving multiple RNAs are generally more com-
plex to be treated pairwise. In addition, given a pool of RNAs, it
is not trivial to predict which RNAs interact without some prior

1536-1241 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MNEIMNEH AND AHMED: MULTIPLE RNA INTERACTION: BEYOND TWO 211

Fig. 2. Dynamic programming algorithm for Pegs and Rubber Bands.

biological information. This may lead to the following compu-
tational hurdle. When the interaction pattern is unknown, and
RNAs are treated pairwise, an immediate consequence is the
greedy nature of the algorithm: the best interacting pair of RNAs
will often dominate the solution; this in turn will lock the inter-
action pattern of the whole ensemble into a suboptimal state;
thus preventing the correct structure from presenting itself as a
solution.
We propose a mathematical formulation based on combinato-

rial optimization that overcomes the issues outlined above. The
model derives from the premise that multiple RNA interaction
may be the result of competing pairwise interactions that settle;
and yet a simple pairwise handling of the RNAs will not capture
that competition. And while the resulting problem is NP-hard
(any reasonable formulation for multiple RNA interaction will
be), it admits an approximation algorithm with provable bounds
on optimality, i.e., -factor of optimal for every . The
important feature is that we capitalize on existing pairwise inter-
action algorithms while avoiding the possible locking problem
mentioned earlier. The approach gives satisfactory prediction of
the interactions in the spliceosome involving the U2-U6 com-
plex and introns, in addition to some known pairwise interac-
tions, such as CopA-CopT in E. coli. Extending the approach
to generate multiple suboptimal solutions (as opposed to just
one -optimal solution), shows that these solutions cor-
respond to alternative observed structures in the spliceosome of
yeast and of the complex CopA-CopT in E. coli (and sometimes
a suboptimal solution is the correct one).

II. FORMULATION: PEGS AND RUBBER BANDS

We present a combinatorial optimization problem that we call
Pegs and Rubber Bands [18], [19] as a framework for multiple
RNA interaction. The link between the two will be made shortly
following a formal description of Pegs and Rubber Bands. Con-
sider rows numbers 1 to with pegs in row numbered 1
to . There is an infinite supply of rubber bands, and a rubber
band can be placed around two pegs in consecutive rows. For
instance, we may choose to place a rubber band around peg in
row and peg in row ; we call it a rubber band at . In
this case, the rubber band contributes a given weight .
The Pegs and Rubber Bands problem is to maximize the total
weight by placing rubber bands around pegs in such a way that
no two rubber bands overlap. Formally, each peg can have at
most one rubber band around it, and if a rubber band is placed
at and another at , then .
We assumewithout loss of generality that to avoid

the unnecessary placement of rubber bands and, therefore, either
or . Fig. 1 shows an example.

Given an optimal solution, it can always be reconstructed
from left to right by repeatedly placing some rubber band at

such that, at the time of this placement, no rubber band
is around peg for and no rubber band is around
peg for . This process can be carried out by
a dynamic programming algorithm to compute the maximum
weight (in exponential time), by defining to
be the maximum weight when we truncate the rows at pegs

(see Fig. 2).
The maximum weight is given by and

the optimal solution can be obtained by standard backtracking.
When all rows have pegs, this algorithm runs in
time and space.

A. Multiple RNA Interaction as Pegs and Rubber Bands

To provide some initial context, we describe how the formula-
tion of Pegs and Rubber Bands, though in a primitive way now,
can capture the problem of multiple RNA interaction. To make
the connection, RNA sequences become the rows of pegs, the
ordered pegs represent RNA bases in the order of
occurrence in their sequence, a rubber band around pegs
and is an interaction between the corresponding base
pair, the th base of RNA and the th base of RNA ,
and the weights are chosen based on the (negative) energies of
interacting bases (as base pairs). Those energies are obtained
using pairwise interaction algorithms on the pairs
of RNAs, and in their own merit account for both intra- and
inter- molecular energies. Therefore, corresponds to
the energy of binding the th base of RNA to the th base of
RNA while breaking any possible folding. This is why
we do not explicitly consider the folding within RNAs, which
is factored in the weights.
With the above analogy in mind, it should be clear that an

optimal solution for Pegs and Rubber Bands represents the
lowest energy conformation in a base-pair energy model, when
a pseudoknot-like restriction is imposed on the RNA interaction
(rubber bands cannot overlap). Such a restriction is natural for
interacting RNA molecules. We obviously assume that an order
on the RNAs is given, that they alternate in sense and antisense,
and that the first RNA interacts with the second RNA, which
in turn interacts with the third RNA, and so on. We later relax
this ordering and condition on the interaction pattern of the
RNAs. While a simple base-pairing model is not likely to give
realistic results, our goal for the moment is simply to establish
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Fig. 3. Pegs and Rubber Bands as a special instance of RNA-RNA interaction,
vertical lines indicate regions where only interaction (binding of the two RNAs)
is allowed, and curved lines indicate regions where only folding within each
RNA is allowed.

Fig. 4. Reduction from LCS for {0010111, 01010, 100101} to Pegs and Rubber
Bands (the symbol | denotes a rubber band). The optimal solution with weight

corresponds to a common subsequence of length
4, namely 0101.

Fig. 5. A rubber band can now be placed around a window of pegs, here
and in the window on the left.

a correspondence between the two problems. We will improve
on this in Section III.

B. Complexity of the Problem
With the above correspondence in mind, the problem of Pegs

and Rubber Bands can be viewed as a instance of a classical
RNA-RNA interaction, involving only two RNAs:We construct
the first as RNA 1, followed by RNA 4 reversed, followed by
RNA 5, followed by RNA 8 reversed, and so on; and the second
as RNA 2, followed by RNA 3 reversed, followed by RNA 6,
followed by RNA 7 reversed, and so on, as shown in Fig. 3.
Therefore, Pegs and Rubber Bands can be solved as an

RNA-RNA interaction problem. While this RNA-RNA in-
teraction represents a restricted instance of the more general
NP-hard problem, it is still NP-hard. In fact, Pegs and Rubber
Bands itself is NP-hard.
Theorem 1: Pegs and Rubber Bands is NP-hard.
Proof: Wemake a reduction from the longest common sub-

sequence (LCS) for a set of binary strings, which is an NP-hard

problem. In this reduction, pegs are labeled and de-
pends only on the label of peg and the label of peg .
We describe this weight as a function of labels shortly. Each bi-
nary string is modified by adding the symbol between every
two consecutive bits. A string of original length is then trans-
formed into two consecutive (identical) rows of pegs
each, where each peg is labeled by the corresponding symbol
in . For any given integer , the first and last rows con-
sist of pegs labeled . We now define the weight as a func-
tion of labels:

and other-
wise. It is easy to verify that the strings have a common sub-
sequence of length if and only if the optimal solution has a
weight of (when every
peg has a rubber band around it), where is the original length
of string and is the number of strings.

C. An Approximation Algorithm
While our problem is NP-hard, we can show that the same

formulation can be adapted to obtain a polynomial time approx-
imation. A maximization problem admits a polynomial time ap-
proximation scheme (PTAS) iff for every fixed there is
an algorithm with a running time polynomial in the size of the
input that finds a solution within of optimal [20]. We
show below that we can find a solution within of optimal
in time , where is the number of rows and
each row has pegs.
Theorem 2: Pegs and Rubber Bands admits a PTAS.
Proof: Let be the weight of the optimal solution and

denote by the weight of the optimal solution when the
problem is restricted to rows (a subproblem). For
a given , let . Consider the following solutions
(weights), each obtained by a concatenation of optimal solutions
for subproblems consisting of at most rows.

...

It is easy to verify that every pair of consecutive rows appear
in exactly of the above subproblems. Therefore, if we sum
up , we cover the optimal solution times; and
since each is optimal for the subproblem given by
rows , we have:

If is the total number of rows, then there are sub-
problems of at most rows each and, therefore, the running
time required to find when every row has pegs
is .
For a given integer , the -factor approximation al-

gorithm is to simply choose the best
as a solution. Some
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Fig. 6. Modified dynamic programming algorithm for Pegs and Rubber Bands with the windows and gaps formulation.

more theoretical results on approximation based on our formu-
lation are obtained in [21] (but they potentially suffer from the
“locking” problem mentioned in the Introduction because they
rely on matching the RNAs into pairs in such a way to maximize
the weight of the full pairwise interactions.)
As a practical step, and prior to choosing the best of the 's,

we can fill in for each some additional rubber bands (inter-
actions) between (RNAs) row and row , between row

and row , and so on, by identifying the pegs of
these rows (regions of RNAs) that are not part of the solution.
This does not affect the theoretical guarantee but gives a larger
weight to the solution. We call it gap filling.

III. WINDOWS AND GAPS: A BETTER FORMULATION FOR
RNA INTERACTION

In the previous section, we described our initial attempt to
view the interaction of RNAs as a Pegs and Rubber Bands
problem with rows, where the first RNA interacts with the
second RNA, and the second with the third, and so on (so they
alternate in sense and antisense). This used a simple base-pair
energy model, which is not too realistic. We now address this
issue (and leave the issues of the ordering and the interaction
pattern to Section IV). A better model for RNA interaction will
consider windows of interaction instead of single bases. In terms
of our Pegs and Rubber Bands problem, this translates to placing
rubber bands around a stretch of contiguous pegs in two con-
secutive rows, e.g., around pegs , , , and

, where and . The weight contribution
of placing such a rubber band is now given by ,
where and are the last two pegs covered by the rubber band
in row and row , and and
represent the length of the two windows covered in row and
row , respectively.
A window with weight represents a potential

interaction between a stretch of length ending at the th base
of RNA and a stretch of length ending at the th base of RNA

. As before, the weight can be obtained as the negative of
the energy of the corresponding interaction using a generalized
energy model.
As a heuristic, we also allow for the possibility of imposing

a gap between windows to establish a distance at which
windows may be considered energetically separate. This gap is
also taken into consideration when we perform the gap filling
procedure described at the end of Section II-B. The modified
algorithm is shown in Fig. 6, and if we set and

, then we retrieve the original algorithm of Fig. 2.

The running time of the modified algorithm is
and for the approximation scheme,
where is the maximum window length. If we impose that

, then those running times become and
respectively.

For the correctness of the algorithm, we now have to assume
that windows are subadditive (energy wise). In other words,
we require the following condition (otherwise, the algorithm
may compute an incorrect optimum due to the possibility of
achieving the same window by two or more smaller ones with
larger total weight):

In our experience, most existing RNA-RNA interaction al-
gorithms produce weights (the negative of the energy values)
of RNA interaction windows that mostly conform to the above
condition. At any rate, we filter the windows to eliminate those
that are not subadditive. For instance, if the above condition is
not met, we set

(recursively starting with smaller windows).
We use windows satisfying , . The

weights are obtained from RNAup, a tool to com-
pute energies of pairwise interactions [7], as (negative of energy
values):

where is the probability that subsequence is
free (does not fold) in RNA , and is the par-
tition function (as computed in [7]) of the interaction of sub-
sequences in RNA and in RNA (sub-
ject to no folding within RNAs). As such, the weight considers
intra-molecular and inter-molecular energies.

IV. ORDER AND INTERACTION PATTERN VIA PERMUTATIONS:
A HEURISTIC ALGORITHM

Viewing the interaction of RNAs as Pegs and Rubber
Bands with rows dictates that the first RNA interacts with
the second RNA, and the second with the third, and so on.
This not only imposes a specific order on the interaction, but
it also restricts each RNA to interact with at most two others.
Therefore, this rather arbitrary choice in the model is elimi-
nated. We first identify each RNA as being even (sense) or odd
(antisense). Given RNAs and a permutation (order) on the
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Fig. 7. Placement of the permutation {1,3,4,7,5,8,2,6} where the RNA number
also indicates its parity. The interaction pattern is less restrictive then before; for
instance, RNA 7 can interact with RNA 2, RNA 4, RNA 6, and RNA 8.

Fig. 8. A heuristic for multiple RNA interaction using the PTAS algorithm of
Section II-C.

set , we map the RNAs onto the rows as follows:
Starting with the first RNA, and moving in order, we place
RNAs on the first row as long as they have the same parity.
We then move to the next row, and perform this process for the
remaining set. This is repeated until all RNAs have been placed.
RNAs that end up on the same row are virtually considered
as one RNA that is the concatenation of all. However, in the
corresponding Pegs and Rubber Bands problem, we do not
allow a window to span multiple RNAs on the same row, nor
do we enforce a gap between two windows in different RNAs.
For example, if we consider the following permutation of

RNAs {1,3,4,7,5,8,2,6}, where the RNA number also indicates
its parity (for the sake of illustration), then we end up with the
following placement: RNA 1 and RNA 3 in that order on the
first row, followed by RNA 4 on the second row, followed by
RNA 7 and RNA 5 in that order on the third row, followed by
RNA 8, RNA 2, and RNA 6 in that order on the fourth row, re-
sulting in four virtual RNAs on four rows of pegs as shown in
Fig. 7.
Given a solution, random perturbations of the permutation

are then used to find better solutions. Fig. 8 shows a possible
heuristic that searches for the best permutation via neighboring
permutations (recall that the permutation uniquely determines
the placement).
To generate neighboring permutations for this heuristic algo-

rithm one could adapt a standard 2-opt method used in the Trav-
eling Salesman Problem (or other techniques). For instance,
given permutation , a neighboring permutation can be ob-
tained by dividing into three parts and making the concate-
nation of the first part, the reverse of the second part, and the
third part. In other words, if , then
is a neighbor of , where is the reverse of .

V. MULTIPLE SUBOPTIMAL SOLUTIONS
RNAs often interact in more than one way. We describe

how to generate (all) solutions with a weight of at least some

Fig. 9. Generating multiple suboptimal solutions.

threshold . The solutions are then clustered to limit their
number. The clustering requires a distance metric which is also
described below.

A. Generation

To explore the generation process, we assume that the order
and interaction pattern have already been determined, e.g., the
permutation given by the algorithm of Fig. 8. We then seek
suboptimal solutions. Define the boundary of a solution
as , where is the smallest index at row such
that peg is covered by a window, . We will
also use to denote the weight of that solution. We will
use interchangeably to denote a window and its
weight. We denote by an extension of solu-
tion by the addition of window .
We say that a window in with

is a terminal window iff:
• ,
• , and
• no other window in satisfies

, , and .
This imposes some order on the windows to prevent generating
the same solution in multiple ways. To that end, we can only
extend a solution by adding to it a terminal window (a window
that becomes the terminal for the extended solution). Observe
that whenever ,
where , and is the gap parameter as de-
scribed in Section III, cannot be extended in anyway to meet
the threshold.
Let with represent the empty solu-

tion (with zero weight). We have the algorithm of Fig. 9 for
generating every solution with weight at least , starting with
Process . Because windows are considered in order, the run-
ning time of the algorithm is linear in the size of its output plus
a crude bound (all possible solutions), where is the
set of windows.
Further pruning is possible to speedup the process.

For instance, if with satisfies
, every window

such that and can be skipped from being
added to .

B. Distance Metric

We use a Jaccard metric [22] to quantify how dissimilar two
solutions are. To motivate the approach below, consider two so-
lutions generated by the process function of Fig. 9. If the two
solutions are similar, we expect to have added a similar set of
windows to each; furthermore, these windows are added in the
same order.
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Given a solution , define as the number of windows in
, and let

be the windows in the order by which they were added to
using the process function of Fig. 9. Each of these windows,

say , represents two intervals on two rows, namely
on row and on row . Therefore,

define the set of interaction intervals

as an ordered sequence of intervals, and
as an ordered sequence of rows, where is the

row defining the th window. Therefore, means that we
have the following set of pairwise interactions (not necessarily
unique in terms of RNAs): RNA with RNA , RNA
with RNA , , RNA with RNA . Two so-
lutions that do not agree on this set, are considered completely
dissimilar; otherwise, their distance is given by the amount
of overlap in their interaction intervals, hence the following
definition of distance:
Given two solutions with and

with , the distance between and is

where and represent the standard intersection and union
operations on sets respectively, and intervals are treated as sets
of integers. This distance is a metric in [0,1].
Lemma 1: The distance defined above is a metric.
Proof: The distance is non-negative and symmetric. Fur-

thermore, iff because
with equality iff . Therefore, we only worry about

proving subadditivity (triangular inequality). Consider the two
solutions and , and a third solution . If ,
then or . Without loss of gen-
erality, let . This means and

and thus .
If , then either or

. In the former case
, and thus .

In the latter case, consider the sets

where the intervals are treated as sets of integers. Observe that
, which is a Jaccard distance

and is known to be a metric.

C. Clustering

The generated suboptimal solutions may be a lot more than
what we need. In addition, many of them will be similar. There-
fore, we use clustering to reduce their number. We adopt hi-
erarchical agglomerative clustering with single linkage and the

Fig. 10. A modified human snRNA U2–U6 complex in the splicing of an in-
tron, as reported in [25]. Bases indicated by small letters are missing from the
interaction. From left to right: g-c and a-u are missing due to the condition

for every window , but also due to the added
instability of a bulge loop when this condition is relaxed; c-g ends up being not
favored by RNAup. I1 is shifted (UGU should interact with ACA instead) but
this is a computational artifact of optimization that is hard to avoid. Overall,
the structure is accurate and cannot be predicted by a pairwise handling of the
RNAs.

silhouette index [23] to determine the optimal number of clus-
ters. Given a solution , let be its cluster. Let be
the average distance from to all solutions in cluster , and let

. We assume that the number of clus-
ters is at least 2, so is defined. Let be the average
distance from to all other solutions in . If is a singleton
in its cluster, we make . The silhouette of a solu-
tion is given by

and is always in the interval . A silhouette close to 1
means that solution is well situated in its cluster since

. The silhouette of a cluster is the average silhouette of all
the solutions in the cluster. The silhouette index is the average of
all the cluster silhouettes. We seek the number of clusters that
maximizes this index. The beauty of this index follows from
that it is always bounded, works for arbitrary notions of distance
(dissimilarity), and does not require the use of a cluster centroid,
which is typically not trivial to find for non-Euclidean distances.
Given a number of clusters, the optimal solution in each

cluster acts as a “representative” of the cluster. We sort the
representatives (solutions) by their weight in a decreasing
order (best to worst). The premise of this approach, in the
case where alternative structures may exist, is that the first few
representatives should reveal some of the realistic structures
that are observed in biological experiments [24].

VI. EXPERIMENTAL RESULTS

For all of our experiments, we will only show the interac-
tion pattern among the RNAs. The folding within the individual
RNAs is omitted. The windows and weights are obtained as de-
scribed in Section III using the RNAup tool [7]. As a practical
step, we filter all windows to keep only those that
satisfy . We call these balanced windows.

A. Single Solutions

The heuristic algorithm of Fig. 8 powered by the PTAS algo-
rithm is used to pick the largest weight solution among several
runs. We set a window gap as described in Section III.
The value of and the gap filling criterion (described
at the end of Section II) depend on the scenarios, as described
below:
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Fig. 11. Known pairs of interacting RNAs.

1) Structure Prediction in the Spliceosome: The human
snRNA complex U2–U6 (two snRNAs) of the spliceosome is
necessary for the splicing of an mRNA intron [13], [25]. This
intron is thousands of nucleotides long; therefore, we only
consider its functional regions, which consist of two struc-
turally autonomous parts. This gives a total of four RNAs: two
snRNAs U2 and U6; and two introns I1 and I2. We performed
the algorithm with gap filling for . In all three
cases, the solution with the largest weight consistently finds the
structure shown in Fig. 10. This structure is in agreement with
the pattern described in [13], [25]. Observe that our algorithm
avoids the “locking” problem described in the Introduction,
which would have favored the binding of U2–U6 at their left
extremities in Fig. 10 when they fully interact, leaving I1 and
I2 completely detached.
2) Fishing for Pairs: Six RNAs in E. coli of which three

pairs are known to interact are used [8]. The interest here is to
see whether the algorithm can identify the three pairs. For this
purpose, it will suffice to set and to ignore gap filling.
Furthermore, we only consider solutions in which each RNA
interacts with at most one other RNA. The solution with the
largest weight identifies the three pairs correctly (Fig. 11). In
addition, the interacting sites in each pair are consistent with
the predictions of existing RNA-RNA interaction algorithms,
e.g., [10].
3) Structural Separation: Six RNAs are used: CopA, CopT,

and the four RNAs of the human spliceosome described above.
The algorithm is performed with and gap filling. The
solution with the largest weight results in a successful prediction
that separates the RNA structure shown in Fig. 10 from the RNA
complex CopA-CopT of Fig. 11.

B. Multiple Suboptimal Solutions
The algorithm of Fig. 9 is modified to prevent the possi-

bility of generating “technically” different solutions that may
be “practically” the same. This can happen when the gap
so that a window can be generated as a combination of two or
more adjacent windows. Therefore, we extend the condition for
adding window to a solution as follows (compare
to Fig. 9):

We use and set the threshold low enough to generate
at least 1000 solutions (when they exist). The 1000 (or fewer)
solutions with the highest weights are then considered for clus-
tering as described in Section V-C to produce representative so-
lutions.
1) Structural Variation: The U2–U6 complex in the spliceo-

some of yeast has been reported to have two distinct experi-
mental structures, e.g., [26]. In one conformation, U2 and U6

Fig. 12. (a) Helix Ia and helix Ib with both introns attached. (b) Helix Ia and
helix Ib with I1 detached. (c) Helix Ia with both introns attached. (d) Helix Ia and
helix Ib with I2 partially detached. (e) Helix Ia with I1 detached. (f) Helix Ia and
helix Ib with I1 detached and I2 partially detached, moving towards detaching
both introns, as would happen when U2 and U6 are bound optimally in a full
pariwise interaction.

interact to form a helix known as helix Ia. In another conforma-
tion, the interaction reveals a structure containing an additional
helix, known as helix Ib. It has been conjectured in [27] that
coaxial stacking is essential for the stabilization of helix Ia in
U2–U6 and, therefore, inhibition of the coaxial stacking, pos-
sibly by protein binding, may activate the second conformation.
Regardless of what underlying mechanisms are responsible for
this conformational switch, our suboptimal solutions cluster in
a way that reveal the two conformations among the first few
representatives (Fig. 12 and Fig. 13). In this example, the se-
quences of U2 and U6 have been truncated up to helix Ib, thus
eliminating the Intramolecular Stem Loop ISL of U6 as in [28].
Without this truncation, helix Ib does not give rise to a balanced
window with positive weight (and hence is dropped from the
input set). Nevertheless, it can still appear as part of an unbal-
anced window that includes both helix Ia and helix Ib. When
unbalanced windows are allowed in the input set, the corre-
sponding solution containing both helices joins the cluster con-
taining the solution with helix Ia alone. Therefore, the two will
not be revealed as separate solutions as only one of them can be
the representative of the cluster.
2) Artifact Interactions: Due to the optimization nature of

the problem, it is sometimes easy to pick up interactions that
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Fig. 13. Silhouette index for clustering 1000 yeast solutions, revealing a peack
at 24 clusters.

Fig. 14. (a) The optimal solution. (b) A solution closer to the one observed in
biological experiments in which the third interaction window in non-existent.

Fig. 15. Silhouette index for clustering 1000 CopA-CopT solutions, revealing
a peak at two clusters.

are not biologically real. This is because dropping these inter-
actions from the solution would make it less optimal. The third
interaction window of CopA-CopT in Fig. 11 is an example of
such an artifact. As shown in Figs. 14 and 15, clustering pro-
duces two clusters, thus two representatives. The second repre-
sentative succeeds in dropping the undesired window.
3) Reversible Kissing Loops: Reversible kissing loops repre-

sent an even harder mechanism to capture by optimization.With

Fig. 16. (a) The optimal solution for the middle window of CopA-CopT. A
solution for the middle window that mimics the behavior of reversible kissing
loops.

Fig. 17. Silhouette index for clustering 295 solutions of the middle window of
CopA-CopT, revealing a peak at two clusters.

this mechanism, the initial kissing complex occurs between a
subset of loop bases in both RNAs, but this interaction is fully
reversible and very unstable, [29]. Therefore, in the final inter-
action, the kissing loop will be missing few bases towards its
center. A known example of this scenario is the middle interac-
tion window of CopA-CopT in Figs. 11 and 14 (considering the
folding pattern of CopA and CopT reveals that this interaction
window is a kissing loop). By isolating this window and gen-
erating suboptimal solutions, we obtain two clusters with two
representatives. The second representative reveals a separation
of the interaction close to the center, as shown in Fig. 16 and
Fig. 17.

VII. CONCLUSION
While RNA-RNA interaction algorithms exist, they are not

suitable for predicting RNA structures in which more than two
RNA molecules interact. For one thing, the interaction pattern
may not be known. Moreover, even with some existing knowl-
edge on the pattern of interaction, treating the RNAs pairwise
may not lead to the best global structure. We formulate multiple
RNA interaction as an optimization problem, characterize its
complexity (NP-hard), and provide approximation and heuristic
algorithms.
We explore three scenarios: 1) structure prediction: we pre-

dict a correct complex of two snRNAs (modified human U2 and
U6) and two structurally autonomous parts of an intron, a total
of four RNAs; 2) fishing for pairs: given a pool of RNAs, we
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identify the pairs that are known to interact; and 3) structural
separation: we successfully divide the RNAs into independent
groups of multiple interacting RNAs.
In practice, however, the best structuremay not be the real one

that is observed in biological experiments, and that in turn may
not be unique.We extend the formulation to produce suboptimal
solutions. Clustering those solutions can 1) provide several rep-
resentative structures when they exist, e.g., two conformations
of the U2-U6 complex in the spliceosome of yeast, and 2) find
realistic structures that are not necessarily optimal in the com-
putational sense, e.g., reversible kissing loops of CopA-CopT
in E. coli.

APPENDIX A
RNA SEQUENCES

MicA (even)

5 GAAAGACGCGCAUUUGUUAUCAUCAUCCCUGUUUUCAGC

GAUGAAAUUUUGGCCACUCCGUGAGUGGCCUUUU 3

lamB (odd)

5 GGCAGCGCAUGUCGUCGUCUGCAUCAAGAGCCGGGUGUU

UAAGGCCUCCAUAAAAAAACGAAACGCAAAACCAUUCGC

AGUUUUAGAAGGUGGCAGCGUUUAAAGAAAAGCAAUGAU

CUCAGGAGAUAGAAUGAUGAUUACUCUGCGCAAACUCCC

ACUGGCGGUUGCUGUCGCAGCGG 3

CopA (even)

5 CGGUUUAAGUGGGCCCCGGUAAUCUUUUCGUACUCGCCA

AAGUUGAAGAAGAUUAUCGGGGUUUUUGCUU 3

CopT (odd)

5 AAGCAAAAACCCCGAUAAUCUUUUCAACUUUGGCGAGUA

CGAAAAGAUUACCGGGGCCCACUUAAACCG 3

OxyS (even)

5 GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUG

CCCGUUUCGAGAGUUUCUCAACUCGAAUAACUAAAGCCA

ACGUGAACUUUUGCGGAUCUCCAGGAUCCGCU 3

fhlA (odd)

5 AGUUAGUCAAUGACCUUUUGCACCGCUUUGCGGUGCUUU

CCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUC

UCGGACAACAAGGGUUGUUCGACAUCACUCGGACA 3

Human Spliceosome

I1 (odd)

5 NNNNNNNNNNGUAUGUNNNNNNNNNN 3

U6 (even)

5 AUACAGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGAC

ACGCAAAUUCGUGAAGCGU 3

U2 (odd)

5 ACGCUUCACGGCCUUUUGGCUAAGAUCAAGUGUAGUAU 3

I2 (even)

5 NNNNNNNNNNUACUAACNNNNNNNNNN 3

Yeast Spliceosome

I1 (odd)

5 NNNNGUAUGUNNNN 3

U6 (even)

5 ACAGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAUGAACC

GUUUU 3

U2 (odd)

5 CUUUGCCUUUUGGCUUAGAUCAAGUGUAGUA 3

I2 (even)

5 NNNNUACUAAUANNNN 3
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