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Abstract—A Network of Teams (NoT) is a set of overlapping
teams working toward a common goal. NoTs arise in several
contexts such as large software projects, sensors cooperating for
target tracking, and terrorist cell networks. Modeling a NoT as
a simplicial complex, we consider the problem of quantifying the
strength of a NoT using metrics based purely on its structure.
While the design of a metric clearly depends on the context in
question, most applications require the metric to be monotonic.
We define three kinds of monotonicity – weak, team, and structural
– depending upon whether we add/remove nodes, entire teams,
or facets, respectively We propose seven metrics and analyze
their monotonicity, both mathematically and experimentally.
Specifically, we prove that some metrics or monotonic, and show
that some or not by providing counter examples. For non-
monotonic metrics, we generate random simplicial complexes
using a number of models, and estimate the fraction of cases
for which a metric is not monotonic.

I. INTRODUCTION

A Network of Teams (NoT) is a collection of teams that
cooperate to achieve a common goal. Each team is composed
of a set of tightly-knit nodes to accomplish a specific task.
The higher level network of teams (participants may belong to
multiple teams) serves to form an overall loosely-knit but con-
nected network facilitating information flow and coordination
between the teams. A NoT arises in a variety of contexts such
as social, communication, distributed computation, transporta-
tion, etc. Examples include large software projects where each
team is responsible for a module that is then integrated into a
larger system [1], [2]; a network of sensor teams, each team
tracking a moving object at a particular range of locations [3];
an insurgent cell network [4]. In each case, the overlap may
be via nodes working as part of multiple teams, a specific case
of which is a leader or a communication hub.

In the design and management of networks of teams, a
common question that arises is: which structure is better for
performance? While this has been the subject of some study
in social and organizational science, much of the work focuses
on structure within a team, and is based on empirical analysis.
In this paper, we focus on a network of fully-connected
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teams, and take an analytical approach to develop metrics that
can quantify the strength of a NoT. Given such a “strength
function”, one can compare NoTs quantitatively, and quantify
the effects of addition/removal of nodes or teams.

The metric is clearly dependent on the context, that is,
there is unlikely to be a universal metric that is best across
different problem domains. On the other hand, any metric
should possess desirable properties, for example, monotonicity
– i.e., assuming nodes are homogeneous, if we add nodes or
teams to a NoT, its strength should not decrease1. Accordingly,
we define a number of metrics for measuring strength, and
investigate their monotonicity analytically and experimentally.

Collaboration networks are traditionally modeled by graphs,
e.g., [5], [6]. However, such graph representations do not
capture collaboration as a group. For example, consider a
complete graph on four vertices, each vertex representing a
person. This graph could represent a single team with four
members, four 3-member teams, or six 2-member teams. Each
case represents a significantly different interaction pattern and
performance, and graphs do not bring out this difference
as they only capture cardinality-2 relationships. Thus, we
need an abstraction where higher-order aggregations can be
represented distinctly from the union of pair-wise interactions.

In this paper, we use the abstract simplicial complex to
represent and analyze networks of teams. An abstract sim-
plicial complex consists of a set V and a set of subsets of
V (a subset is called a simplex or face) “closed” under the
subset operation. A simplicial complex is a generalization of
a graph and therefore admits any analysis or metric based
on graphs. Additionally it provides analytical possibilities not
possible with a graph-based representation. In section II-A
we provide a brief background on simplicial complexes as
necessary for understanding this paper. Prior works [8], [9],
[10] have established the usefulness of simplicial complexes
for analyzing collaboration networks2.

Using simplicial complexes to model NoTs, we present
seven metrics for assessing the strength of NoTs. We define
three kinds of monotonicity: weak, team, and structural,

1While one may argue that in real life performance sometimes decreases
with increasing size, this depends on the definition of strength. We shall
discuss this further in section II-C.

2The hypergraph [11] is another possible abstraction, but as argued in [9],
a simplicial complex is a better fit as it is closed under subsets, capturing the
subset closure property of the collaboration relationship.
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based on the removal, respectively, of a vertex, team or facet
of the simplicial complex representing the NoT. That is, a
metric is vertex (team) (facet) monotonic if upon removal
of any vertex (team) (facet), in any simplicial complex, the
strength of the resultant complex is no greater than that
of the original. We formalize these notions is section II.
We begin by mathematical analysis and provide proofs of
monotonicity or counter examples thereof. Since most cases
are non-monotonic, we further examine if some metrics are
almost always monotonic using two approaches: exhaustive
enumeration of small simplicial complexes; and by generating
random simplicial complexes using six generative models.
Related work. The topic of measuring team performance has
been studied from a sociology perspective [12], [13], [14],
[15]. A simple measure of the effectiveness of a team as
the graph density is proposed in [12]. Correlation between
performance measures and structure in several settings have
been studied in [13], [14]. More recently, in [16], a measure
was proposed for the robustness of social networks. These
works focused on teams and the structure within, whereas we
focus on networks of teams (NoT).

Well established in mathematics, in particular algebraic
topology [17], simplicial complexes have been used as a part
of Q-analysis in the 1970s to analyze general structure [8], and
have been applied into specific social network problems [18].
The application of simplicial complex concepts to collabora-
tion networks appears to varying extents in [9], [10].

To our knowledge, this is the first work that formulates and
studies the problem of strength metrics for a Network of Teams
(NoT) and their monotonicity analysis using a combination of
theoretical and experimental approaches.

II. PRELIMINARIES

A. Simplicial Complex

An abstract simplicial complex, or simplicial complex for
brevity, is denoted by ∆ = (V, S), where V is a set of vertices,
and S = {Si|Si ⊆ V, Sj ∈ S ∀Sj ⊆ Si} is a non-empty set of
subsets of V “closed” under the subset operation. Si ∈ S is
called a simplex or a face. The dimension of a simplex Si is
dimSi = |Si|−1, and of ∆ is dim∆ = max{dimSi |Si ∈ S}.
A facet is any simplex in a complex that is not a face of any
larger simplex.

The facet degree of a node v, denoted by d(v) is the number
of facets v is a member of. The open neighborhood of a node
denoted by N(v) is set of nodes that have pairwise relation
with v, and the closed neighborhood of a node denoted by
N [v] is N(v)∪ v. Furthermore a complex will be denoted by
the list of facets it contains with the understanding that all
sub-faces of the facet belong to the complex as well. Figure
1 shows an example complex {{1, 2}, {2, 3, 4}}.

We have only given the minimum background required
for understanding the rest of the paper. Readers interested
in learning more about simplicial complexes and algebraic
topology in general are referred to [17].

Fig. 1: Example Simplicial Complex. The dimension of the complex is
determined by the facet {2, 3, 4} which has dimension 2. Node 2 has facet
degree 2; all other nodes have facet degree 1.

B. A NoT as a Simplicial Complex
Let T be the set of overlapping teams. Then we represent the

network of teams as a simplicial complex ∆ = (V, S), where
each v ∈ V corresponds to a node (person, sensor etc.), and
each s ∈ S corresponds to a subset of a team. In particular,
each team t ∈ T corresponds to a facet in S. We assume
implicitly that each team is a fully connected network, that
is, the all nodes collaborate with each other within the team.
This follows from our assumption of a closely-knit relationship
within a team. Note that real-world teams that are not fully
connected can be represented as multiple overlapping teams,
each of which is fully connected.

C. Strength of a NoT
We define strength Ψm : ∆ 7→ R+ as a function that

estimates a positive real value for a given simplicial complex
representing a NoT. The subscript m refers to different metrics,
or different strength functions. The goal of this paper is to
propose and study different Ψm. In assessing the strength
of any network, one may take two possible approaches. In
the first, that we call manifested strength, interactions happen
along all of the links and all nodes are involved, that is, one
is not allowed to exclude any nodes or edges.

Definition II.1. Given a NoT ∆ = (V, S), the manifested
strength ΨM (∆) is a measure of the performance output of ∆
when the actors in V interact in the way prescribed by ∆’s
structure.

In the second, that we call inherent strength, the network
operates in the best possible mode given the resources, and
may exclude participation by nodes or along edges if that were
deemed necessary to maximize the performance.

Definition II.2. Given a NoT ∆ = (V, S), the inherent
strength ΨI(∆) = maxS ΨM (S), where S is a sub-complex
of ∆.

The inherent strength of a network is thus the best possible
operating point of the set of resources available, constrained
to interact along the simplices present in the complex rep-
resenting the NoT. This might be the result, for example,
of the participants or some entity figuring out a way to
exclude interactions that spoil it. We believe that the inherent
strength is closer to how teams and network thereof converge
to operating, and therefore we will use it.

Observation II.1. The inherent strength function ΨI(∆) is
monotonically non-decreasing with increasing size of ∆.

By definition, since the inherent strength captures the maxi-
mum of all possible sub-interactions, addition of resources can
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never lower it. It follows that any metric that we come up with
to measure inherent strength of a NoT is ideally monotonic.
Surprisingly, balancing monotonicity with intuition is not an
easy task, and in fact quite an interesting problem, as the
remainder of the paper will illustrate.

D. Monotonicity of Strength Functions
When a face is removed from a simplicial complex, all its

supersets are also automatically removed from the complex in
order to preserve the subset closure property. Since all facets
are faces, and each individual node is a singleton face, we can
consider the following four operations:
Node removal. When a node is removed, all the faces that
contain it are also removed. This corresponds to the situation
when a person is removed from the group, and it is ex-
pected that the group becomes weaker. For example, consider
∆ = {{1, 2, 3}, {2, 3, 4}, {1, 5, 6}}; after deleting node 1, it
becomes ∆′ = {{2, 3, 4}, {5, 6}}. Note that the face {2, 3}
that was created after deleting node 1 from the facet {1, 2, 3}
was “absorbed” by the facet {2, 3, 4} and the face {5, 6} is
the result of deleteing node 1 from the facet {1, 5, 6}.
Team removal. If facets are interpreted as teams, the removal
of a team is the removal of a facet together with all its
smaller faces that are not faces of any other facet, keeping
only the singleton faces of the removed team. For example,
consider the simplicial complex ∆ = {{1, 2, 3, 4}, {3, 4, 5}}:
removing the team {1, 2, 3, 4} creates the complex ∆′ =
{{1}, {2}, {3, 4, 5}}. In a realistic setting, it may correspond
to the removal of the communication media between the
people of a group, so they cannot collaborate anymore, unless
there is another method of communication between them.
Another interpretation of team removal is the cancelation of a
task the team is working on.
Facet removal is the removal of a single facet keeping all
its faces. Facet removal is the simplest possible reduction of
a simplicial complex, since only single simplex is deleted.
Thus mathematically, it is the simplest possible operation. Any
node removal or team removal operation can be implemented
by a sequence of facet removals. For example, consider the
simplicial complex ∆ = {{1, 2, 3}, {2, 3, 4}} after removing
the facet {1, 2, 3} it becomes ∆′ = {{1, 2}, {1, 3}, {2, 3, 4}}.
Note that the face {2, 3} that was created after deleting the
facet was “absorbed” by the facet {2, 3, 4}}.

We say that a metric Ψm is monotonic if it does not increase
when a node (a team, or a facet) is removed. Particularly, we
are interested in the following monotonicity properties:

Definition II.3. A metric m is weakly monotonic if for every
∆, deleting (adding) a node causes Ψm(∆) to go down (up)
or remain the same.

Definition II.4. A metric m is team-monotonic if for every ∆,
deleting (adding) a “team” causes Ψm(∆) to go down (up)
or remain the same.

Definition II.5. A metric m is structurally monotonic if for
every ∆, deleting (adding) a facet causes Ψm(∆) to go down
(up) or remain the same.

Observation II.2. Functions that are structurally monotonic
are also weakly monotonic.

Notice in case of structural monotonicity, in order to delete
a node, first all facets containing the node must be removed,
then the node itself becomes a facet and can be deleted.

Observation II.3. Functions that are structurally monotonic
are also “team”-monotonic.

Observation II.4. Weak monotonicity and “team”-
monotonicity do not imply each other.

III. STRENGTH METRICS AND THEIR MONOTONICITY

The following metrics are based mainly on the following
three factors: (i) the number of facets, (ii) their size, (iii)
and the facet degree of nodes, denoted by d(v). The intuition
here is that on one hand a NoT is stronger with larger facets
but on the other hand individuals would have to divide their
time according to some criteria among the tasks in which
they are concurrently involved. The following naive function
is the most natural way to capture the above intuition, In this
function the strength contribution of node v is equally divided,
1/d(v), among all the facets that contains it.

Ψ(∆) =
∑
f

(∑
v∈f

1

d(v)

)
(1)

That is, the strength of an ∆ is the sum over all facets f of the
∆, and each facet gets 1/d(v) from each of its members. The
resulting strength of the complex is obtained as the sum of
all individual contributions to all facets. This metric is simply
equal to |V |, the number of nodes in the complex, hence it is
trivially structurally monotonic. However, it is not very useful,
since it does not let us differentiate complexes with the same
number of nodes.

In what follows, we propose several modifications to this
metric. We converged on seven metrics, which we find inter-
esting and sufficiently motivated.

The following metric is weakly monotonic, and monotonic
w.r.t. “team” removal, as it will be shown later. Here, the
summations in the naive function (equation 1) are replaced
by products and 1/d(v) is replaced by 1 + 1/d(v) to avoid
products of small numbers. Unfortunately, the size of the facets
do not influence the function due to its simplified version.

Ψ1(∆) =
∏
f

∏
v∈f

(
1 +

1

d(v)

)
=
∏
v

(
1 +

1

d(v)

)d(v)

(M1)

Also we consider a variant of the previous metric, where
each vertex v contributes 2 ≤ (1+ 1

d(v) )|f | < e to the strength
of each facet it belongs to, the contributions of the vertices
are averaged for each facet, and the results are multiplied.

Ψ2(∆) =
∏
f

1

|f |
·
∑
v∈f

(
1 +

1

d(v)

)|f |
(M2)

Another metric similar to the metric (M1) is as follows.
Here, instead of focusing on the individuals, we compute the
strength of each facet and multiply them.
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Metric
1 20.25 18.96 22.78 25.63 24.0 16.0
2 21.97 24.11 22.78 25.63 26.36 16.0
3 13.72 14.55 29.1 35.53 36.91 4.74
4 1.25 1.0 0.75 1.0 0.92 2.0
5 6.0 6.0 5.5 6.0 6.0 6.5
6 7.83 7.46 7.0 8.0 7.79 10.0
7 2.94 3.16 3.12 2.83 2.96 2.73

Metric
1 20.25 22.78 36.0 48.0 106.55 91.13
2 24.17 24.89 41.71 55.88 181.57 118.85
3 6.19 14.83 5.96 37.61 42.62 15.41
4 1.0 1.0 2.0 1.25 0.74 1.5
5 7.33 6.67 9.17 8.28 11.0 11.0
6 11.66 9.83 14.66 11.94 16.93 17.49
7 2.45 2.64 3.0 3.36 3.89 3.67

TABLE I: The value of the seven metrics for some small examples of
simplicial complexes.

Ψ3(∆) =
∏
f

(
1 +

1∑
v∈f d(v)

)∑
v∈f d(v)

(M3)

The following function is motivated as a probabilistic met-
ric, where the product

∏
v(1/d(v)) is the probability that all

the team members get together.

Ψ4(∆) =
∑
f

(
(|f | − 1) ·

∏
v∈f

1

d(v)

)
(M4)

We can improve the metric defined by the equation (1) if we
make the strength of each facet grow with the number of nodes
in it. One way to do that is to make each facet f contribute
g(|f |)

∑
v∈f

1
d(v) to the total strength of the complex, where

g(·) is an increasing sublinear function. We choose it to be
equal to the harmonic number g(n) = Hn =

∑n
k=1 1/k. This

metric works correcly in the pathological case, when ∆ =
{{1, 2, . . . n}}: if the facet is removed, the result is a complex
with n facets of size n− 1.

Ψ5(∆) =
∑
f

(
H|f |

∑
v∈f

1

d(v)

)
(M5)

Better use of time: when an individual is doing many related
tasks, they may contribute 1/

√
d(v) to each, then their total

contribution is ≥ 1, and the metric is:

Ψ6(∆) =
∑
f

(∑
v∈f

1√
d(v)

)2

(M6)

Conversely, less effective use of time is made possibly due
to many unrelated tasks, contributing 1/d(v)2 to each task:

Ψ7(∆) =
∑
f

√∑
v∈f

1

d(v)2
(M7)

In Table I we record the strength of all seven metrics on
some small examples.

In the remainder of this section we provide results for the
monotonicity of some of these metrics for SCs and for the
special case of graphs.

Theorem III.1. For β > 1 and α = 1/β, the metric Ψ(∆) =∑
f∈F

(
δ +

∑
v∈f

(
1

d(v)

)α)β
is not monotonic.

Proof: When α = 1/β, β > 1 and any constant δ a generic
counter example to monotonicity can be constructed with form
∆ = {{1, 2, 3, . . . , k}, {1, k + 1}} whose aggregate strength
improves when node k + 1 is removed.

Theorem III.2. Metric 7 is weakly monotonic on graph SCs,
but not monotonic on general SCs.

The weak monotonicity on dimension 1 SC’s (graphs) is
based on the following lemma, proof omitted due to space
constraints.

Lemma III.1. If ∀i: xi > yi > 0, and α > 1, then

(
∑

1≤i≤n

xi)
1
α − (

∑
1≤i≤n

yi)
1
α ≤

∑
1≤i≤n

(x
1
α
i )−

∑
1≤i≤n

(y
1
α
i ).

Theorem III.3. Metric 7 is weakly monotonic on a graph
simplicial complex.

The main idea is to consider how the degrees of the vertices
change when a node is removed, and apply Lemma III.1. We
have omitted the proof due to space constraints.

Definition III.1 (Degeneration). Degeneration occurs when
removing a node u from an Simplicial Complex ∆, if there
exists a facet S1 = {u, v1, v2, ..., vk}, S1 ∈ ∆, k ≥ 2 (i.e.
|S1| ≥ 3) and S2 = {v1, v2, ..., vk, w1, ..., wm},m ≥ 1. In
this case after the removal of u, the S1 is absorbed by S2.

Theorem III.4. If degeneration does not happen, metric 7 is
weakly monotonic on a simplicial complex. (Proof omitted).

Theorem III.5. If degeneration happens, metric 7 is not
weakly monotonic on a simplicial complex.

The proof goes by constructing a counterexample simplicial
complex. A basic gadget is {{u, v1, v2}, {v1, v2, w}}, notice
removal of node u from the gadget will cause a degeneration
to happen. We expand this gadget in steps: We increase the
degree of w to a large number N+1 by adding a large number
of edges (w, o1), . . . , (w, oN ) to the gadget. Now the gadget is
{{u, v1, v2}, {v1, v2, w}, {w, o1}, . . . , {w, oN}}. Then we add
one neighbour s to v1 and one neighbour t to v2, besides we in-
crease the degrees of s and t to a large number N+1 by adding
a large number of edges (s, s1), . . . , (s, sN ), . . . , (t, tN ). After
that, we repeat this gadget N times and glue them together like
a star with u at the center. It can be shown that the removal
of the vertex u causes the metric to increase.

Theorem III.6. Metric 1 is weakly and team monotonic.

Proof: The function g(d) = (1 + 1/d)d is an increasing
function when the argument is positive, and for d ≥ 1 its
values are bounded between 2 ≤ g(d) < e.

When removing a node from a ∆, the number of facets does
not increase, some of them can only disappear, and so d(v)
cannot increase, g(d(v)) goes down or remains the same, and
so does the product of them. Therefore the metric is weakly
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monotonic. Similarly, when removing a “team”, although the
total number of facets may increase, the individual d(v) only
decrease or remain the same, and so does the metric. It follows
that it is monotonic w.r.t. “team” removal.

Following the same argument, we can also prove that the
metric 3 is weakly monotonic too.

IV. EXHAUSTIVE MONOTONICITY TESTS ON SMALL
SIMPLICIAL COMPLEXES.

Since many of the proposed metrics cannot be analytically
proven to be monotonic, in this section we evaluate them on
some small SCs to determine if some of them are “almost
monotonic”. We enumerate all possible complexes for n ∈
{3, 4, 5, 6} (called SC3, SC4, SC5, and SC6, respectively) and
evaluate the metrics on them. Our findings are summarized

Metrics Weak monotonicity counterexamples

4 {{1, 2}, {1, 3}, {2, 3}} delete 3−−−−→ {{1, 2}}
5 {{1, 6}, {2, 6}, {3, 6}, {4, 6}, {1, 2, 3, 4, 5}} delete 6−−−−→

{{1, 2, 3, 4, 5}}
6 {{1, 5}, {2, 5}, {1, 2, 3, 4}} delete 5−−−−→ {{1, 2, 3, 4}}

Metrics Monotonicity w.r.t. team removal counterexamples

2 {{1, 6}, {1, 2, 3}, {2, 3, 4}, {2, 3, 5}} delete {1,6}−−−−−−→
{{6}, {1, 2, 3}, {2, 3, 4}, {2, 3, 5}}

3 {{1, 2, 3}} delete {1,2,3}−−−−−−−→ {{1}, {2}, {3}}
4 and 7 {{1, 4}, {1, 2, 3}} delete {1,4}−−−−−−→ {{4}, {1, 2, 3}}

6 {{1, 5}, {1, 2, 3, 4}} delete {1,5}−−−−−−→ {{5}, {1, 2, 3, 4}}

Metrics Structural monotonicity counterexamples

1, 2, 3 {{1, 2, 3}} remove {1,2,3}−−−−−−−−→ {{1, 2}, {1, 3}, {2, 3}}
4 and 7 {{1, 2}, {1, 3}, {2, 3}} remove {2,3}−−−−−−−→ {{1, 2}, {1, 3}}
5 and 6 {{1, 4}, {2, 4}, {1, 2, 3}} remove {2,4}−−−−−−−→ {{1, 2, 3}, {1, 4}}

TABLE II: Small counterexamples exhibiting violation of the monotonicity
of the metrics 1-7 with respect to removing a node (weak monotonicity), team,
and facet (structural monotonicity).

in the Tables II and III, and in Fig 2. We tested 3 types of
monotonicity:

Node removal. We try to remove each node from a complex
and count the percentage of the removal operations that
violated monotonicity. The percentage is computed for each
SC in a group, and then they are averaged over all SCs in the
group. As shown in the Table III, all metrics except the metric
4 perform very well. And in particular, metrics 1, 2, 3, and 7
always decrease when a node is removed (although metrics 2
and 7 may fail for larger complexes).

The averaging procedure for tesing team removal and facet
removal is done the same way as for the node removal.

When removing a team, the metrics 1, 2, 4, 5, and 6
performed well, and metrics 1 and 5 were perfect in this test.

Facet removal. All metrics were making mistakes some-
times, although metrics 1, 2, 3, 5, and 6 are doing relatively
well. The Fig. 2 may explain why these metrics passed the
test better than metrics 4 and 7.

V. STATISTICAL PERFORMANCE OF METRICS

In general structural monotonicity does not hold for the
functions based on facet degree of nodes. This raises the
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Fig. 2: Structural monotonicity illustrated visually. Metrics are computed
on all SC4 complexes. Each node/point in the plot represents a simplicial
complex from SC4, and there is an edge between two nodes if they can can be
obtained from one another by adding or removing a face. In particular, con-
sider the top left panel demonstrating the factorial metric Ψ(∆) =

∑
f |f |!:

The complex with only singleton facets {{1}, {2}, {3}, {4}} has the min-
imum number of faces (the leftmost point), and the complex {{1, 2, 3, 4}}
has the maximum number of faces (the rightmost point). As expected, the
metric is structurally monotonic and therefore it always increases or remains
the same when the number of faces increases. Observe that this is not always
the case for other metrics: While metrics 5 and 6 (and to some extent 1 and 2)
do have this general trend of going up, metric 7 tends to decrease when faces
are added. Another interesting feature is that metric 3, which is otherwise
quite similar to the metrics 1 and 2, has a special maximum that corresponds
to the complex with 6 edges.
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Fig. 3: (Top row): Neighborhood ER for fixed n = 300 and varying p =
0.02, 0.03, . . . 0.07. (Bottom row): Neighborhood RGG for fixed n = 150
and varying r = 0.1, 0.15, . . . 0.4. Different lines represent different metrics.

question of how well do these types of functions perform
on average. That is, are the failures due to some small set
pathological cases? We study the average behavior of the
metrics tested (as usually) for the removal of (a) a random
node, (b) a random team, and (c) a random facet, with respect
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removing a node
Metric SC3 SC4 SC5 SC6

1 0% 0% 0% 0%
2 0% 0% 0% 0%
3 0% 0% 0% 0%
4 20% 33.75% 68.22% 91.4%
5 0% 0% 0% 0.003%
6 0% 0% 0.78% 0.26%
7 0% 0% 0% 0%

removing a team
Metric SC3 SC4 SC5 SC6

1 0% 0% 0% 0%
2 0% 0% 0% 0.009%
3 18.18% 10.77% 3.88% 0.38%
4 0% 4.62% 2.78% 0.24%
5 0% 0% 0% 0%
6 0% 0% 0.11% 0.004%
7 36.36% 27.69% 11.54% 1.25%

removing a facet
Metric SC3 SC4 SC5 SC6

1 9.09% 13.85% 18.87% 17.49%
2 9.09% 13.85% 18.65% 19.08%
3 18.18% 18.46% 19.53% 17.51%
4 27.27% 55.39% 79.58% 86.03%
5 0% 9.23% 25.53% 36.15%
6 0% 15.39% 32.19% 42.62%
7 63.64% 72.31% 75.47% 66.48%

TABLE III: Percent of error when removing a node, a team, or a facet. Tested exhaustively on small complexes of size 3, . . . 6 (SC3, SC4, SC5, and SC6).

to the following random complex generators:
• GA. General SC. Every subset S ⊆ {1, . . . n} is added

with probability p|S|−1.
• GB. General SC. Starting with singletons {1}, . . .{n}.

With probability p add a face of the dimension k, if all
its subfaces of the dimension k − 1 already exist.

• NER. Neighborhood SC of a random Erdos-Renyi graph.
Generate a random graph for the given p and n Then, for
every vertex v, its open neighborhood N(v) is a facet.

• CER. Clique SC of a random Erdos-Renyi graph. From
a random graph, each maximal clique is a facet.

• NRGG. Neighborhood SC of a random geometric graph,
parameterized by the radius r.

• CRGG. Clique SC of a random geometric graph.
Some monotonicity tests for our metrics are shown in Fig 3.
The metrics 1, 2, and 3 are quite similar, and feature good

monotonicity properties, and usually they either fare very well
(node and team removal) or rather poorly (facet removal,
especially when the facets are large, i.e. p and r are large).

Interestingly, metric 4, which is usually quite bad, turns out
to be structurally monotonic when the facets are large (that is,
when p or r are large). It can be explained as follows. When
a big facet is removed, it spawns a large number of smaller
facets, and many of these facets happen to be new, and so the
number of facets increases significantly. This change, in turn,
by the nature of the metric, reduces the strength. In terms of
their performance, metric 4 is a direct opposite of metric 1:
when one works well, the other does not, and vice versa.

Metrics 5 and 6 can be described as pragmatic – they
do not guarantee absolute monotonicity, but demonstrate a
consistently good performance overall.

Metric 7 usually does not work well, except for the random
node removal tests. A majority of the other metrics also do
well on this test.

VI. CONCLUDING REMARKS

We have investigated metrics for measuring the inherent
strength of a Network of Teams (NoT), and their monotonicity
properties of three kinds – weak, team and structural. We
have also provided experimental results on the statistics of
monotonicity violations. While there is no one metric that is
the best in all situations, the following guidelines may be fol-
lowed: when networks are small and node/team changes are of
interest, metrics 1-3 are good; for large networks metric 4 does
well for structural monotonicity (facet changes); and when not
much is known about expected size and nature of changes,
metrics 5-6 are pragmatic reasonable choices. An appropriate

choice and use of metric(s) can help determine how best to
augment a friendly network or degrade an adversarial network.

Future research directions include finding better metrics that
satisfy all three monotonicity properties, matching strength
metrics to real world applications, investigating other desirable
properties (e.g. sub-additivity), and comparing the metrics to
crowd-sourced evaluations of the same SCs.
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