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Abstract 
Currently, the de facto representational choice for 
networks is graphs which capture pairwise relationships 
between entities. This dyadic approach fails to 
adequate capture the array of group relationships that 
are more than the sum of their parts and prevalent in 
real-world situations. For example, collaborative teams, 
wireless broadcast, and political coalitions all contain 
unique group dynamics that need to be captured. In 
this paper, we use simplicial complexes to model these 
supra-dyadic relationships in networks. We argue that a 
number of problems within social and communications 

networks such as network-wide broadcast and 
collaborative teams can be elegantly captured using 
simplicial complexes in a way that is not possible with 
graphs. In this study, we operationalize several types 
of simplicial complexes in an online-based experiment 
using the Wildcat Wells paradigm. We then run subjects 
in these experiments to investigate measures of team 
strength and hub behavior using simplicial complex 
models. 
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Introduction 

Research on networks is largely driven by graph-based 

models of network structure. These models define 

networks as the set of dyadic connections between a 

collection of nodes. The inability of this dyadic approach 

to operationalize higher order structures like groups, 

communities, and collaborations has long been noted 

[1,2]. However, alternative approaches to network 

analysis have remained largely within algebraic 

topology [3,4]. Our research attempts to apply these 

models to empirical phenomena. In this presentation, 

we focus on laboratory experiments using simplicial 

complexes in both the design and analysis of the study. 

We show how simplicial complexes can be 

operationalized in a laboratory setting and how network 

effectiveness and structure can be observed within the 

simplicial framework. 

An Alternative Approach of Networks 

Network science is based on graphical models which 

theorize networks as a set of dyadic relations among 

nodes. Simplicial models add to this a grouping concept 

called faces (or simplex). Faces are collections of dyads 

which interact concurrently. Faces aggregate further to 

form Facets which are faces that are not subsets of 

other faces. Figure 1 shows an example of a graphical 

model of networks and a simplicial complex model of a 

similar network.  

In the graphical model, all nodes are related dyadically 

via edges. In the simplicial model, nodes may be 

related dyadically and by a face. For example, Face 1 

connects nodes A, C, D, and E while Face 2, a subset of 

Face 1, connects A, C, and D. In Face 2, E can 

communicate with A only when E communicates with A,  

Figure 1: Comparison of Graph and Simplicial Representations 

of Networks. 

C, and D as well. Note, because Face 2 is a subset of 

Face 1, it is not a facet. However, Face 1 is a facet 

because it is not a subset of a larger face.   

The primary alternative to simplicial complexes is 

hypergraphs [5]. The difference between hypergraphs 

and simplicial complexes is that simplicial complexes do 

not assume that subsets of a face can interact 

independently. For example, in Figure 1, nodes D and E 

can interact only when Face 1 is activated. That is, D 

and E can interact only when A and C are involved 

simultaneously. If we were using a hypergraph model, 

then D and E would be able to interact. This property 

that members of the group must be dyadically 

connected is called “closure” and hypergraphs assume 

closure while simplicial complexes do not. In this study, 

we limit ourselves to simplicial model. Elsewhere we 

investigate hypergraphs. 

Empirical Application of Simplicial Complexes 

Models based on simplicial complexes are needed to 

handle the kinds of real-world networks which involve 

collective synchronous behavior such as broadcasting, 

collaboration, friend groups, and committee decision-

making [6,7,8]. In this research, we operationalize one 
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such situation using the Wildcat Wells experimental 

framework [11].  

In the Wildcat Wells experiment, users are tasked with  

finding oil on a map over a series of rounds. Users do 

not know the distribution of oil on the map and must 

drill wells to find the most oil. Users are connected to 

others in networks such that neighbors can see the well 

locations and amount of oil found by their neighbors 

each round. Thus, if neighbors find high-value wells, 

subjects can drill in the same location in the next round 

and receive the same amount of oil. The reason for 

using this framework is that it operationalizes the effect 

of communication patterns on success. That is, 

individuals and networks succeed when they share 

information and learn from one another.  

In our version of the experiment we implement two 

graph-based network structures, which we call 

“skeletal” networks and two simplicial networks.  In this 

study, we test the performance of teams in simplicial 

networks against teams in the skeletal networks 

(Figure 3). The goal is to see whether these different 

approaches produced different patterns of success. 

In Experiment 1, we test behavioral differences 

between skeletal and synchronous simplicial networks. 

In the skeletal version, users are able to see wells 

drilled by their neighbors. In the synchronous model, 

individuals see the wells drilled by other members of 

their face. For example, in Experiment 1, if the face 

containing (A,B,D) is selected, then A sees the wells of 

B and D. If not, A only sees his or her own wells. Our 

hypothesis based on preliminary analysis is that more 

oil will be found in the simplicial networks. 

 

Figure 3: Experimental Network Structures 

In Experiment 2, we test the same skeletal and 

simplicial networks but examine brokerage behavior. In 

the skeletal model, individuals see the wells drilled by 

their neighbors randomly each round. In the simplicial 

model, individuals see the wells of members of their 

face. However, faces are exclusive. For example, 

because Face 1 and Face 2 share node B, Face 1 and 

Face 2 cannot “convene” simultaneously. Node B 

cannot be in two places at once as the saying goes. 

Given our preliminary results described below, we 

expect simplicial networks to produce more oil on 

average than skeletal networks. 

Finally, in a third variant of Experiment 2, we retain the 

simplicial structure, but add dyadic connection between 

nodes D and E. This enables us to examine how 

brokerage influences performance in simplicial 

complexes.  

Preliminary Results 

We are currently implementing these experiments on 

the Volunteer Science research platform. However, we 

have performed preliminary experiments with human 

subjects. The goal was to build a simple model of 

individual behavior in order to create an agent based 

model for simulating behavior in this experiment.  

 

Figure 2: Wildcat Wells Interface 

 

Wildcat Wells 

Participants: Participants 

will be recruited from 

Mechanical Turk using the 

Volunteer Science platform. 

Methods: Experiments 1 and 

2 (Figure 3) will be run as 

separate experiments and 

Turkers will be able to 

participate multiple times. 

Procedure: Within each 

experiment, Turkers will be 

matched randomly into the 

skeletal and simplicial 

conditions.  They will be told 

to find as much oil as 

possible in 10 rounds but 

they will not be informed of 

their network condition.  
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Similar to [9] we found that individuals tend to ignore 

their neighbors’ wells until later rounds unless a 

neighbor finds a particularly high-value well in which 

case they immediately start drilling in that location. 

Based on these behaviors, we created a series of 

agent-based models to simulate human behavior in an 

array of networks to determine what features of 

networks would maximize the amount of oil found. We 

found that monotonicity held in all but the fewest cases 

(Figure 2). That is, the more connections between 

nodes and the more faces in a network, the more oil 

tended to be discovered. 

Following monotonicity, for Experiment 1 and 2, we 

expect that subjects in the simplicial condition will find 

more oil on average than subjects in the skeletal 

condition. In the brokerage test in Experiment 2, we 

expect subjects in the condition with the extra tie to 

find more oil on average.  
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Figure 2: Measures of 

Monotonicity.  Each graph shows 

the correlation in the amount of 

oil found (x-axis) and different 

measurements of network 

structures (y-axis) 
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