
The Offline Carpool Problem Revisited

Saad Mneimneh(B) and Saman Farhat

Hunter College and The Graduate Center,
City University of New York (CUNY), New York, USA

saad@hunter.cuny.edu, sfarhat@gc.cuny.edu

Abstract. The carpool problem is to schedule for every time t ∈ N l
tasks taken from the set [n] (n ≥ 2). Each task i has a weight wi(t) ≥ 0,
where

∑n
i=1 wi(t) = l. We let ci(t) ∈ {0, 1} be 1 iff task i is scheduled at

time t, where (carpool condition) wi(t) = 0 ⇒ ci(t) = 0.
The carpool problem exists in the literature for l = 1, with a

goal to make the schedule fair, by bounding the absolute value of
Ei(t) =

∑t
s=1[wi(s) − ci(s)]. In the typical online setting, wi(t) is

unknown prior to time t; therefore, the only sensible approach is to bound
|Ei(t)| at all times. The optimal online algorithm for l = 1 can guarantee
|Ei(t)| = O(n). We show that the same guarantee can be maintained for
a general l. However, it remains far from an ideal |Ei(T)| < 1 when all
tasks have reached completion at some future time t = T .

The main contribution of this paper is the offline version of the car-
pool problem, where wi(t) is known in advance for all times t ≤ T , and
the fairness requirement is strengthened to the ideal |Ei(T)| < 1 while
keeping Ei(t) bounded at all intermediate times t < T . This problem has
been mistakenly considered solved for l = 1 using Tijdeman’s algorithm,
so it remains open for l ≥ 1. We show that achieving the ideal fairness
with an intermediate O(n2) bound is possible for a general l.

Keywords: Carpool problem · Fair scheduling · Graphs · Flows ·
Online and offline algorithms

1 Introduction

The carpool problem was first systematically studied by Fagin and Williams [1]
to resolve issues of fairness related to the following scenario: There are n people.
Each day a subset of these people will participate in a carpool and only one
of them must be designated to drive. Fairness dictates that each person should
drive a number of times (approximately) equal to the sum of the inverses of the
number of people who showed up on the days that person participated in the
carpool.

The problem has been generalized (see for instance [2,3]) by introducing
weights: We schedule for every time t ∈ N one task taken from the set [n]

S. Mneimneh—Partially supported by the CoSSMO institute at CUNY.
S. Farhat—Supported by a CUNY Graduate Center Fellowship.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part II, LNCS 9235, pp. 483–492, 2015.
DOI: 10.1007/978-3-662-48054-0 40

484 S. Mneimneh and S. Farhat

(n ≥ 2). Each task i has a weight wi(t) ≥ 0, where
∑

i wi(t) = 1. We say that
ci(t) ∈ {0, 1} is 1 iff i is the scheduled task at time t. Since exactly one task is
scheduled at any time,

∑
i wi(t) =

∑
i ci(t) = 1, and

∑
i Ei(t) = 0. In addition,

the following carpool condition is enforced:

Definition 1 (Carpool condition). wi(t) = 0 ⇒ ci(t) = 0 for every i ∈ [n].

In effect, wi(t) > 0 indicates the presence of the task at time t. Translating back
to the original scenario, this is just to say a person must show up on the day he
is the designated driver. When wi(t) is the same for every i ∈ {j|wj(t) > 0}, we
retrieve the special case introduced in [1].

We generalize the carpool problem further. Assume l ∈ N (l ≤ n).

The Carpool Problem: Our version of the carpool problem is to schedule l
tasks for every time t ∈ N, where

∑n
i=1 wi(t) =

∑n
i=1 ci(t) = l and wi(t) ≤ 1,

and ci(t) ∈ {0, 1} is 1 iff task i is scheduled at time t, subject to the carpool
condition.

The typical setting is online, i.e. wi(t) is unknown prior to time t, and one
has to make immediate choices to construct a fair schedule by bounding the
absolute value of Ei(t) =

∑t
s=1[wi(s) − ci(s)] at all times. It was shown in

[3] that the online greedy algorithm that schedules at time t one (so l = 1) task
i ∈ {j ∈ [n]|wj(t) > 0} such that θi(t) =

∑t−1
s=1[wi(s)−ci(s)]+wi(t) is maximized

will achieve |Ei(t)| = O(n) at all times. In the online setting, this (deterministic)
bound is asymptotically optimal.

We consider the offline version of the carpool problem, where wi(t) is known
in advance for all times t < T for some fixed T . In this setting, the notion of
fairness is strengthened to |Ei(T)| < 1. In other words, if T is the completion
time of the schedule, each task i will have been served as closely as possible to
its share

∑T
s=1 wi(s).

Definition 2 (Fair schedule). A schedule is fair iff |Ei(T)| < 1 for every
i ∈ [n], where Ei(t) =

∑t
s=1[wi(s) − ci(s)] and

ci(t) =
{

1 i is a scheduled task at time t
0 otherwise

The above fairness property of carpool makes it attractive to many load balanc-
ing problems; however, in many applications, the correctness/guarantee of the
scheduling algorithm will also require |Ei(t)| to be bounded for all t < T (see
for instance [2]). We refer to this property in the offline context as non-bursty.
While an online algorithm is naturally non-bursty, fairness as in Definition 2
alone may not be enough when moving to the offline version. Therefore, in addi-
tion to fairness, we will require the following:

Definition 3 (Non-bursty schedule). A schedule is non-bursty iff |Ei(t)| is
bounded (independent of t) at all times t < T for every i ∈ [n].

The problem of constructing an offline schedule that is fair and non-bursty was
thought to be solved for l = 1. Section 2 covers the detail behind that miscon-
ception. For now, to further motivate our work, observe that the offline setting is

The Offline Carpool Problem Revisited 485

important not only when the instance is known in advance, but also for recovery.
For example, consider a scenario in which a backlog of T time steps has been
created as a result of an interruption in the scheduler at time t0. The scheduler
looses all information and, therefore, if |Ei(t0)| < B for every i ∈ [n], B will be
added to whatever bound is achieved after recovery. When scheduling is resumed
at time t, the scheduler works on the backlog starting with tasks presented at
t0, t0 + 1, It is then only logical to make use of the information in the back-
log. As such, an offline algorithm offers a chance to maintain the same guarantee
prior to the failure: |Ei(t + T − 1)| < B + 1, as opposed to the B + O(n) bound
of an online algorithm, which adds another O(n).

2 Related Work

The carpool problem exists in the literature only for l = 1. The work in [1,3,
4,6,9] (and their references) provide extensive treatment of the online setting.
But the offline version of the carpool problem has not been explicitly mentioned
in the literature. An exception lies in a few instances, e.g. [5,7], that model
the offline carpool problem for l = 1 as a flow problem, as in Fig. 1, where
mi = �∑T

t=1 wi(t)�, and an edge from vertex i to vertex t exists iff wi(t) > 0.

Fig. 1. The carpool problem for l = 1 as a flow.

The theory of flows, integer programs, and their linear program relaxations
suggest that an integer maximum flow of value T exists and corresponds to a
valid schedule in which |Ei(T)| < 1 for every i ∈ [n], see for instance [5,8]. In
addition, it is not hard to generalize the flow of Fig. 1 to handle any l. But this
does not immediately yield an obvious bound on |Ei(t)| for every t < T .

A short note in [4] (in the context of a problem called vector rounding) mistak-
enly claims that Tijdeman’s algorithm [10] solves the offline carpool problem (for
l = 1). Indeed, the carpool problem is closely related to the chairman assignment
problem popularized by Tijdeman in [10], where tasks are persistent (a task can
be scheduled at any time) so the carpool condition wi(t) = 0 ⇒ ci(t) = 0 is
dropped.

486 S. Mneimneh and S. Farhat

For the chairman assignment problem, Tijdeman’s algorithm guarantees
|Ei(t)| < 1 at all times. To schedule a task at time t, the algorithm considers the
set of tasks that satisfy θi(t) =

∑t−1
s=1[wi(s)−ci(s)]+wi(t) ≥ 1/(2n−2) (this set

must be non-empty), finds the smallest t0 ≤ T such that θi(t)+
∑t0

s=t+1 wi(s) ≥
1 − 1/(2n − 2) for some i in the set, and makes ci(t) = 1 (if no such t0 exists,
the algorithm schedules any task i). There is no guarantee that wi(t) > 0 for the
scheduled task i. Figure 2 shows a counterexample with n = 4 and T = 5.

task 1 2 3 4 5

1 0 1/12 1/6 0 4/5
2 1/12 0 1/6 1/100 0
3 1/2 1/2 1/4 1/100 0
4 5/12 5/12 5/12 98/100 1/5

Fig. 2. Tijdeman’s algorithm fails for carpool: weights in bold represent the schedule
of tasks over time. Task 1 is scheduled at time t = 4 so c1(4) = 1, but w1(4) = 0.

Following [4], we see no subsequent attempt in the literature to construct an
offline schedule that is both fair and non-bursty. The generalization to l tasks is
absent as well.

3 Our Contribution

We believe this is the first explicit treatment of the offline carpool problem (also
generally in the context of scheduling multiple tasks, i.e. l > 1). We show that
achieving fairness (|Ei(T)| < 1 according to Definition 2) with an intermediate
O(n2) bound (Definition 3) is possible. Our offline scheduling algorithm has a
running time with a linear dependence on T . In order to achieve the O(n2)
intermediate bound, we rely on a generalization of the online greedy algorithm
described in [3] to handle multiple tasks. The schedule obtained by this algorithm
is then used to transform a fair schedule to a fair and non-bursty one.

4 Generalizing the Online Algorithm

The online greedy algorithm described in [3] for l = 1 schedules at time t one
task i ∈ {j ∈ [n]|wj(t) > 0} such that θi(t) =

∑t−1
s=1[wi(s) − ci(s)] + wi(t) is

maximized, and achieves |Ei(t)| < (n − 1)/2 at all times. We will describe an
online algorithm with the same guarantee for a general l, called l-greedy.

The l-greedy algorithm schedules at time t the l tasks corresponding to the
l largest elements in {θi(t)|wi(t) > 0}. This online algorithm can run offline in
O(lnT) time. We will show below that this algorithm has the same guarantee as
greedy.

Theorem 1. The l-greedy algorithm has at worst the same guarantee as
greedy.

The Offline Carpool Problem Revisited 487

Proof. We construct an imaginary instance of greedy that schedules the same
tasks. Without loss of generality, assume that X = {1, 2, . . . , l} is the set of tasks
scheduled at time t by the l-greedy algorithm. Starting from t = 1, divide each
t into l times t1, . . . , tl, and define (1 ≤ i, j ≤ l)

w
′
i(tk) =

{
wi(t) i = k
0 otherwise

For all tasks i �∈ X, define w
′
i(tk) such that

∑l
k=1 w

′
i(tk) = wi(t) by dividing∑

i�∈X wi(t) arbitrarily among t1, . . . , tl to make the sum of the weights for each
time tk equal to 1. Figure 3 illustrates this construction.

t t1 t2 . . . tl
w1(t) w1(t) 0 0
w2(t) 0 w2(t) 0

...
...

...
...

wl(t) 0 0 wl(t)

wl+1(t) wl+1(t1) wl+1(t2) wl+1(tl)
...

...
...

...

wn(t) wn(t1) wn(t2) wn(tl)

Fig. 3. Constructing the greedy instance. The weights as seen by the l-greedy algo-
rithm are shown on the left, where X = {1, 2, . . . , l} are the scheduled tasks at time t.

The weights as seen by greedy at times t1, . . . , tl are shown on the right, w
′
i(ti) = wi(t)

for i ∈ X,
∑l

k=1 w
′
i(tk) = wi(t), and

∑n
i=1 w

′
i(tk) = 1.

Consider θ
′
i(tk) as seen by a greedy algorithm now acting on t1, . . . , tl. Suppose

that greedy has been scheduling the same tasks as l-greedy. If i ∈ X, then
θ

′
i(ti) = θi(t); if i �∈ X, then θ

′
i(tk) ≤ θi(t). Therefore, θ

′
i(ti) is the largest for ti

among all tasks j with w
′
j(ti) > 0. So greedy will schedule for t1, . . . , tl exactly

the tasks in X. 	

We conclude that the l-greedy algorithm achieves the same guarantee as greedy,
namely |Ei(t)| = O(n) for every i ∈ [n] and

∑n
i=1 |Ei(t)| = O(n2).

5 A Fair Schedule

As we mentioned in Sect. 2, it is possible to use flows to prove the existence of
(and obtain) a fair schedule. But for completeness, we describe in this section a
canonical algorithm to transform any arbitrary schedule, given by ci(t) for i ∈ [n]
and t ≤ T , to a fair schedule (which will also serve as a proof for the existence of
such a schedule). We construct a directed multigraph G = (V = [n],E) such that
(i, j)t ∈ E is an edge from i to j iff ci(t) = 1 and cj(t) = 0 and wj(t) > 0. Such
an edge means that task i is scheduled at time t but task j could be scheduled
instead.

488 S. Mneimneh and S. Farhat

A path {(i1, i2)t1 , (i2, i3)t2 , . . . , (ir, ir+1)tr} with Ei1(T) < 0 and Eir (T) > 0
represents a way to modify the schedule: make ci1(t1) = 0 and ci2(t1) = 1,
ci2(t2) = 0 and ci3(t2) = 1, . . . , cir (tr) = 0 and cir+1(tr) = 1. After making
the changes, update the edges of the multigraph accordingly to reflect the new
schedule. This will increase Ei1(T) by 1 and decrease Eir+1(T) by 1. Therefore,
if Ei1(T) ≤ −1 and/or Eir+1(T) ≥ 1, the schedule is improved (by decreas-
ing |Ei1(T)| and/or |Eir+1(T)|). Below we show that we can always make such
improvements until the schedule becomes fair.

Lemma 1. If Ei(T) < 0 (Ei(T) > 0), there is a path in G from i to some
j (from some j to i) with Ej(T) > 0 (Ej(T) < 0). This path may be used to
improve the schedule as stated above.

Proof. We prove the case when Ei(T) < 0, the second case is symmetric. So
assume Ei(T) < 0 and let the set A consist of all vertices j reachable from i
such that Ej(T) ≤ 0. The proof is by contradiction, so we can assume that
there are no outgoing edges from A to the rest of the multigraph. Since i ∈ A,
we know that E =

∑
j∈A Ej(T) = Ei(T) +

∑
j∈A,j �=i Ej(T) < 0. Now consider

the set B = {t|cj(t) = 1 for some j ∈ A}. Since A has no outgoing edges, if
j �∈ A and t ∈ B, then cj(t) = 0 ⇒ wj(t) = 0 (so wj(t)− cj(t) ≤ 0). Therefore, it
should be clear that e =

∑
j∈A

∑
t∈B [wj(t)−cj(t)] ≥ ∑

j∈A

∑
t∈B [wj(t)−cj(t)]+∑

j �∈A

∑
t∈B [wj(t)−cj(t)] =

∑
j

∑
t∈B [wj(t)−cj(t)] =

∑
t∈B

∑
j [wj(t)−cj(t)] =

0. But E = e +
∑

j∈A

∑
t�∈B [wj(t) − 0] ≥ 0, a contradiction. 	

Theorem 2. There exists a fair schedule for every instance of the offline carpool
problem.

Proof. If a schedule is not fair, then there exists a task i such that Ei(T) ≥ 1 or
Ei(T) ≤ −1. Therefore, one could apply Lemma 1. When we consider the sum

S =
∑

i∈[n]

�|Ei(T)|�

we observe that it will decrease by either 1 or 2 after each iteration of Lemma 1:
Ei(T) ≥ 1 decreases by 1 for some i, or Ej(T) ≤ −1 increases by 1 for some j, or
both. Therefore, the sum will eventually reach 0. When this happens, |Ei(T)| < 1
for every i ∈ [n] and the schedule is fair. 	

Since we can write the above sum in two parts

S =
∑

i∈{j|Ej(T)>0}
�Ei(T)� −

∑

i∈{j|Ej(T)<0}
�Ei(T)�

and the first part is at most
∑

i,t wi(t) = lT and the second part is at least
−∑

i,t ci(t) = −lT , we conclude that S = O(lT). This is an upper bound on
the number of iterations needed to modify any arbitrary schedule. But given a
specific initial schedule, one could refine this bound. For the schedule obtained
by the l-greedy algorithm of Sect. 4, S = O(n2). Therefore, we have O(n2)
iterations, each will process the multigraph starting from some vertex in O(lnT)
time (the size of the multigraph) leading to an O(ln3T) time algorithm.

The Offline Carpool Problem Revisited 489

6 A Non-bursty Schedule

We now describe a canonical algorithm to transform a fair schedule, given by
ci(t) for i ∈ [n] and t ≤ T , to a non-bursty schedule without affecting its fairness.
For this, we assume the existence of an auxiliary non-bursty schedule (but not
necessarily fair). Let Sorig

t and Saux
t be the set of tasks scheduled at time t

by those schedules respectively. We construct a directed multigraph G = (V =
[n],E) such that (i, j)t ∈ E is an edge from i to j if i ∈ Sorig

t − Saux
t and j ∈

Saux
t − Sorig

t . Such an edge represents a discrepancy between the two schedules
at time t; the original schedules task i but the auxiliary schedules task j. We
make all such edges (i, j)t for a given t form a maximal matching in [n] (so there
are exactly |Sorig

t − Saux
t | ≤ l of them). Consequently, the out-degree of vertex

i is the number of times task i is scheduled by the original schedule but not by
the auxiliary and, similarly, the in-degree of vertex i is the number of times task
i is scheduled by the auxiliary schedule but not by the original.

A cycle {(i1, i2)t1 , (i2, i3)t2 , . . . , (ir, i1)tr} represents a way to bring closer the
two schedules by modifying the original schedule as follows: make ci1(t1) = 0
and ci2(t1) = 1, ci2(t2) = 0 and ci3(t2) = 1, . . . , cir (tr) = 0 and ci1(tr) = 1.
After making these changes, eliminate the cycle from the multigraph. The time
needed to eliminate all cycles is O(n + lT) (the size of the multigraph), and
that’s when we obtain the modified schedule.

Given the modification to the original schedule as described above, we will use
Emod and Eaux to refer to these quantities in the modified and the auxiliary sched-
ules, respectively. Observe that Emod

i (T) = Ei(T) is kept unchanged for every
i ∈ [n]. Since the auxiliary schedule is non-bursty, one would expect that the orig-
inal schedule will be transformed as such. Below we quantify this intuition.

Let H1 = (V = [n],E1) be the subgraph of G obtained by the elimination
of all the cycles in G. This multigraph can be converted into a simple weighted
directed acyclic graph (DAG) H2 = (V = [n],E2) such that e = (i, j) ∈ E2 is an
edge from i to j iff (i, j)t ∈ E1 for some t with weight w(e) = |{t|(i, j)t ∈ E1}|.
Define w(i, j) = w(e) if e = (i, j) ∈ E2 and w(i, j) = 0 otherwise. Observe
that

∑
j w(i, j) is now the number of times task i is scheduled by the modified

schedule but not by the auxiliary and, similarly,
∑

j w(j, i) is the number of
times task i is scheduled by the auxiliary schedule but not by the modified.

Lemma 2. If the auxiliary schedule (non-bursty) guarantees an intermediate
bound |Eaux

i (t)| < f(n), then
∣
∣
∣

∑

j∈[n]

w(i, j) −
∑

j∈[n]

w(j, i)
∣
∣
∣ = Emod

i (T) − Eaux
i (T) < 1 + f(n)

for every i ∈ [n].

490 S. Mneimneh and S. Farhat

Proof. Given the above interpretation of
∑

j w(i, j) and
∑

j w(j, i), observe that
∑

j [w(i, j) − w(j, i)] = Emod
i (T) − Eaux

i (T). Therefore, the result is immedi-
ate because the modified schedule is fair (so |Emod

i (T)| < 1) and the auxiliary
schedule satisfies |Eaux

i (T)| < f(n). 	

Lemma 3. If the auxiliary schedule (non-bursty) guarantees an intermediate
bound |Eaux

i (t)| < f(n), then
∑

j∈[n]

w(i, j) <
n

2
[1 + f(n)]

∑

j∈[n]

w(j, i) <
n

2
[1 + f(n)]

for every i ∈ [n].

Proof. Given vertex i, divide the DAG into m sets of vertices V1, . . . , Vr, . . . , Vm

such that Vr = {i} and all edges are from Vk−1 to Vk for k = 1, . . . ,m (V0 = ∅),
as shown in Fig. 4.

Let
Ik =

∑

i∈Vk−1,j∈Vk

w(i, j)

and observe that
Ik+1 − Ik < |Vk|[1 + f(n)]

by Lemma 2. Therefore, by summing up these inequalities over k = 1, . . . , r − 1,
we get

Ir < (|V1| + . . . + |Vr−1|)[1 + f(n)]

By a symmetric argument, we also have

Ir+1 < (|Vr+1| + . . . + |Vm|)[1 + f(n)]

and invoking Lemma 2 on Ir − Ir+1 gives

Ir < (|Vr+1| + . . . + |Vm| + 1)[1 + f(n)]

Finally,

2Ir < (|V1| + . . . + |Vr−1| + |Vr+1| + . . . + |Vm| + 1)[1 + f(n)] = n[1 + f(n)]

and the same is true for Ir+1 by symmetry. This concludes the proof because
∑

j∈[n]

w(i, j) = Ir+1 and
∑

j∈[n]

w(j, i) = Ir 	

Lemmas 2 and 3 can be trivially generalized by changing 1+f(n) to B + f(n) if
the fair schedule is replaced by a weaker schedule that guarantees |Ei(T)| < B.
Given Lemmas 2 and 3, we just proved the following theorem.

Theorem 3. If the auxiliary schedule (non-bursty) guarantees an intermedi-
ate bound |Eaux

i (t)| < f(n) = Ω(1), then the modified schedule (fair) satisfies
|Emod

i (t)| = O(nf(n)) at all times for every i ∈ [n].

The Offline Carpool Problem Revisited 491

Fig. 4. Schematic illustration for the proof of Lemma 3.

7 The Final Algorithm

We now describe an offline algorithm for the carpool problem that is fair
(|Ei(T)| < 1) and non-bursty with an O(n2) intermediate bound (|Ei(t)| =
O(n2) for all t < T). The algorithm has a running time with a linear depen-
dence of T , which is a nice feature.

1. Obtain an initial schedule using the l-greedy algorithm of Sect. 4.
2. Modify the schedule to be fair using the canonical algorithm of Sect. 5.
3. Modify the schedule to be non-bursty (and fair) using the canonical algorithm

of Sect. 6, and the schedule of the l-greedy algorithm as the auxiliary schedule.

Since the l-greedy algorithm guarantees |Ei(t)| = O(n) at all times, Theorem 3
implies that the above algorithm is non-bursty with an intermediate bound of
O(n2).

8 Conclusion

The carpool problem is a scheduling problem where every task must receive its
fair share, but may not be available at all times. We believe this is the first
explicit treatment of the offline version of the carpool problem, which has been
only studied in the online setting. In a typical offline setting, the goal would
be to guarantee fairness by the schedule completion time T while avoiding an
unbounded deviation from fairness at all times t < T . We achieved this goal by
combining offline and online algorithms.

References

1. Fagin, R., Williams, J.H.: A fair carpool scheduling algorithm. IBM J. Res. Dev.
27(2), 133–139 (1983)

2. Mneimneh, S.: Load balancing in a switch without buffers. In: IEEE Workshop on
High Performance Switching and Routing, Poznan (2006)

3. Coppersmith, D., Nowicki, T., Paleologo, G., Tresser, C., Wu, C.W.: The optimality
of the online greedy algorithm in carpool and chairman assignment problems. ACM
Trans. Algorithms, 7(3), Article 37, July 2011

4. Ajtai, M., Aspnes, J., Naor, M., Rabini, Y., Schulman, L.J., Waarts, O.: Fairness
in Scheduling. J. Algorithms 29(2), 306–357 (1988)

492 S. Mneimneh and S. Farhat

5. Naor, M.: How to Carpool Fairly. http://www.wisdom.weizmann.ac.il/naor/
PAPERS/carpool fair.pps

6. Naor, M.: On fairness in the carpool problem. J. Algorithms 55(1), 93–98 (2005)
7. Williamson, D.: Lecture Notes on Network Flows, Chapter 3. http://people.orie.

cornell.edu/dpw/techreports/cornell-flow.pdf
8. Havet, F.: Combinatorial Optimization, Chapter 11 on Fractional Relaxation.

http://www-sop.inria.fr/members/Frederic.Havet/
9. Boavida, J.B., Kamat, V., Nakum, D., Nong, R., Wu, C.W., Zhang, X.: Algo-

rithms for the Carpool Problem. http://www.ima.umn.edu/2005-2006/MM8.9-18.
06/activities/Wu-Chai/team6 rep.pdf

10. Tijdeman, R.: The chairman assignment problem. Discrete Math. 32, 323–330
(1980)

http://www.wisdom.weizmann.ac.il/naor/PAPERS/carpool_fair.pps
http://www.wisdom.weizmann.ac.il/naor/PAPERS/carpool_fair.pps
http://people.orie.cornell.edu/dpw/techreports/cornell-flow.pdf
http://people.orie.cornell.edu/dpw/techreports/cornell-flow.pdf
http://www-sop.inria.fr/members/Frederic.Havet/
http://www.ima.umn.edu/2005-2006/MM8.9-18.06/activities/Wu-Chai/team6_rep.pdf
http://www.ima.umn.edu/2005-2006/MM8.9-18.06/activities/Wu-Chai/team6_rep.pdf

	The Offline Carpool Problem Revisited
	1 Introduction
	2 Related Work
	3 Our Contribution
	4 Generalizing the Online Algorithm
	5 A Fair Schedule
	6 A Non-bursty Schedule
	7 The Final Algorithm
	8 Conclusion
	References

