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Abstract. The interaction of two RNA molecules involves a complex in-
terplay between folding and binding that warranted recent developments
in RNA-RNA interaction algorithms. However, biological mechanisms in
which more than two RNAs take part in an interaction exist. It is reason-
able to believe that interactions involving multiple RNAs are generally
more complex to be treated pairwise. In addition, given a pool of RNAs,
it is not trivial to predict which RNAs are interacting without sufficient
biological knowledge. Therefore, structures resulting from multiple RNA
interactions often cannot be predicted by the existing algorithms.

We recently proposed a system for multiple RNA interaction that
overcomes the difficulties mentioned above by formulating a combina-
torial optimization problem called Pegs and Rubber Bands. A solution
to this problem encodes a structure of interacting RNAs. In general,
however, the optimal solution obtained does not necessarily correspond
to the actual structure observed experimentally. Moreover, a structure
produced by interacting RNAs may not be unique. In this work, we ex-
tend our previous approach to generate multiple sub-optimal solutions.
By clustering these solutions, we are able to reveal representatives that
correspond to realistic structures. Specifically, our results on the U2-U6
complex in the spliceosome of yeast and the CopA-CopT complex in E.
Coli are consistent with published biological structures.

1 Introduction

The interaction of two RNA molecules has been independently formulated as a
computational problem in several works, e.g. [1–3]. In their most general form,
these formulations lead to NP-hard problems (which means computationaly in-
tractable, i.e. the running time of the algorithm that produces an optimal so-
lution increases exponentially with the problem size). To overcome this hurdle,
researchers have been either reverting to approximation algorithms, or imposing
algorithmic restrictions; for instance, the avoidance of the formation of certain
structures.
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While these algorithms had limited use in the beginning, they became impor-
tant venues for (and in fact popularized) an interesting biological fact: RNAs
interact. For instance, micro-RNAs (miRNAs) bind to a complementary part of
messenger RNAs (mRNAs) and inhibit their translation [4]. But more complex
forms of RNA-RNA interaction exist. In E. Coli, CopA binds to the ribosome
binding site of CopT, also as a regulation mechanism to prevent translation [5];
so does OxyS to fhlA [6]. In both of these structures, the simultaneous folding
(within the RNA) and binding (to the other RNA) are non-trivial to be predicted
as separate events. To account for this, most of the RNA-RNA interaction algo-
rithms calculate the probability for a pair of subsequences (one of each RNA) to
participate in the interaction, and in doing so they generalize the energy model
used for the partition function of a single RNA to the case of two RNAs [7–12].
This generalization takes into consideration the simultaneous aspect of folding
and binding.

Not surprisingly, there exist other mechanisms in which more than two RNA
molecules take part in an interaction. Typical scenarios involve the interaction
of multiple small nucleolar RNAs (snoRNAs) with ribosomal RNAs (rRNAs)
in guiding the methylation of the rRNAs [4], and multiple small nuclear RNAs
(snRNA) with mRNAs in the splicing of introns [13]. Even with the existence of a
computational framework for a single RNA-RNA interaction, it is reasonable to
believe that interactions involving multiple RNAs are generally more complex to
be treated pairwise. In addition, given a pool of RNAs, it is not trivial to predict
which RNAs interact without some prior biological information. Some attempts
for multiple RNA interaction have been considered, e.g. [14, 15], but they only
generalize the partition function algorithm of [16] by concatenation of all RNAs
into one, and so can only produce restricted structures, e.g. no kissing loops.
Even though algorithms for kissing loops exist, e.g. [17], advances in pairwise
interaction of RNAs suggest that the concatenation model is less suitable.

We recently proposed a new computational approach for handling multiple
RNA interaction based on a combinatorial optimization problem that we call
Pegs and Rubber Bands [18]. In this work, we extend this approach to gener-
ate multiple sub-optimal solutions, and show that these solutions correspond to
realistic structure.

2 Background and Approach

2.1 Pegs and Rubber Bands: A Formulation

We now present the problem of Pegs and Rubber Bands as a framework for mul-
tiple RNA interaction. The link between the two will be made shortly following
a formal description of Pegs and Rubber Bands.

Consider m levels numbered 1 to m with nl pegs in level l numbered 1 to nl.
There is an infinite supply of rubber bands that can be placed around two pegs
in consecutive levels. For instance, we can choose to place a rubber band around
peg i in level l and peg j in level l+1; we call it a rubber band at [l, i, j]. Every
such pair of pegs [l, i] and [l+1, j] contribute their own weight w(l, i, j). The Pegs
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and Rubber Bands problem is to maximize the total weight by placing rubber
bands around pegs in such a way that no two rubber bands intersect. In other
words, each peg can have at most one rubber band around it, and if a rubber
band is placed at [l, i1, j1] and another at [l, i2, j2], then i1 < i2 ⇔ j1 < j2.
We assume without loss of generality that w(l, i, j) �= 0 to avoid the unnecessary

Fig. 1. Pegs and Rubber Bands. All positive weights are equal to 1 and are represented
by dashed lines. The optimal solution achieves a total weight of 8.

placement of rubber bands and, therefore, either w(l, i, j) > 0 or w(l, i, j) = −∞.
Figure 1 shows an example.

Given an optimal solution, it can always be reconstructed from left to right
by repeatedly placing some rubber band at [l, i, j] such that, at the time of this
placement, no rubber band is around peg [l, k] for k > i and no rubber band is
around peg [l + 1, k] for k > j. This process can be carried out by a dynamic
programming algorithm to compute the maximum weight (Section 3.1).

2.2 Multiple RNA Interaction as Pegs and Rubber Bands

To provide some initial context we now describe how the formulation of Pegs
and Rubber Bands, though in a primitive way, captures the problem of multiple
RNA interaction. We think of each level as an RNA and each peg as one base
of the RNA. The weight w(l, i, j) corresponds to the negative of the energy

contributed by the binding of the ith base of RNA l to the jth base of RNA
l+ 1. This can be obtained using existing algorithms for RNA-RNA interaction
that act on pairs of RNAs. It should be clear, therefore, that an optimal solution
for Pegs and Rubber Bands represents the lowest energy conformation in a base-
pair energy model, when a pseudoknot-like restriction is imposed on the RNA
interaction (rubber bands cannot intersect). In doing so, we obviously assume
that an order on the RNAs is given with alternating sense and antisense, and
that the first RNA interacts with the second RNA, which in turn interacts with
the third RNA, and so on. We later relax this ordering and the stringency of the
interaction pattern of the RNAs. While a simple base-pairing model is not likely
to give realistic results, our goal here was simply to establish a correspondence
between the two problems.
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2.3 Windows and Gaps: A Better Formulation for RNA Interaction

In the previous section, we described our initial attempt to view the interaction
of m RNAs as a Pegs and Rubber Bands problem with m levels, where the first
RNA interacts with the second RNA, and the second with the third, and so on
(so they alternate in sense and antisense). This used a simple base-pair energy
model, which is not too realistic. We now address this issue (and leave the issues
of the ordering and the interaction pattern to the following section). A better
model for RNA interaction will consider windows of interaction instead of single
bases. For instance, subsequence [i1, i2] of RNA l can interact with subsequence
[j1, j2] of RNA l + 1. In terms of our Pegs and Rubber Bands problem, this
translates to placing rubber bands around a stretch of contiguous pegs in two
consecutive levels, e.g. around pegs [l, i1], [l, i2], [l + 1, j1], and [l + 1, j2], where
i2 ≥ i1 and j2 ≥ j1. The weight contribution of placing such a rubber band is
now given by w(l, i2, j2, u, v), where i2 and j2 are the last two pegs covered by the
rubber band in level l and level l+1, and u = i2−i1+1 and v = j2−j1+1 represent
the length of the two windows covered in level l and level l + 1, respectively.

As a heuristic, we also allow for the possibility of imposing a gap g ≥ 0 between
windows as a way to ensure that windows are energetically independent. This
gap is also taken into consideration when we perform the gap filling procedure
described in Section 3.1.

We use windows satisfying 2 ≤ u, v ≤ w = 26 and a gap g = 0. The weights
w(l, i, j, u, v) are obtained from RNAup, a tool to compute energies of pairwise
interactions [7], as (negative of energy values):

w(l, i, j, u, v) ∝ log pl(i− u+ 1, i) + log pl+1(j − v + 1, j)

+ logZI
l (i− u+ 1, i, j − v + 1, j)

where pl(i1, i2) is the probability that subsequence [i1, i2] is free (does not fold)
in RNA l, and ZI

l (i1, i2, j1, j2) is the partition function (as computed in [7]) of
the interaction of subsequences [i1, i2] in RNA l and [j1, j2] in RNA l+1 (subject
to no folding within RNAs). As such, the weight considers intra-molecular and
inter-molecular energies. The windows are filtered for sub-additivity as described
in Section 3.1.

2.4 Order and Interaction Pattern via Permutations

We now describe how to relax the ordering and the stringency of the interaction
pattern of the RNAs. We first identify each RNA as being even (sense) or odd
(antisense), but this convention can obviously be switched. Given m RNAs and
a permutation on the set {1, . . . ,m}, we map the RNAs onto the levels of a
Pegs and Rubber Bands problem as follows: We place the RNAs in the order
in which they appear in the permutation on the same level as long as they
have the same parity (they are either all even or all odd). We then increase the
number of levels by one, and repeat. RNAs that end up on the same level are
virtually considered as one RNA that is the concatenation of all. However, in
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the corresponding Pegs and Rubber Bands problem, we do not allow windows to
span multiple RNAs, nor do we enforce a gap between two windows in different
RNAs. We describe in Section 3.2 a greedy algorithm that searches heuristically
for the best permutation.

3 Algorithms

3.1 Complexity of the Problem and Approximations

We proved that Pegs and Rubber Bands is NP-hard [18]. Therefore, any algo-
rithm that finds an optimal solution generally requires exponential time. How-
ever, while our problem is NP-hard, we also proved that the same formulation
can be adapted to obtain a polynomial time approximation. A maximization
problem admits a polynomial time approximation scheme (PTAS) iff for every
fixed ε > 0 there is an algorithm with a running time polynomial in the size of
the input that finds a solution within (1 − ε) of optimal [19].

Let OPT be the weight of the optimal solution and denote by W [i . . . j] the
weight of the optimal solution when the problem is restricted to levels i, i +
1, . . . , j (a sub-problem). For a given ε > 0, let k = � 1

ε 	. Consider the following
k solutions (weights), each obtained by a concatenation of optimal solutions for
sub-problems consisting of at most k levels.

W1 = W [1 . . . 1] +W [2 . . . k + 1] +W [k + 2 . . . 2k + 1] + . . .

W2 = W [1 . . . 2] +W [3 . . . k + 2] +W [k + 3 . . . 2k + 2] + . . .

...

Wk = W [1 . . . k] +W [k + 1 . . . 2k] +W [2k + 1 . . . 3k] + . . .

The best of these solutions is a (1− ε) approximation [18], i.e.

max
i

Wi ≥ k − 1

k
OPT ≥ (1 − ε)OPT

Therefore, for a given integer k, the (1−1/k)-factor approximation algorithm
is to simply choose the best Wi = W [1 . . . i]+W [i+1 . . . i+k]+W [i+k+1 . . . i+
2k]+ . . . as a solution, where W [i . . . j] denotes the weight of the optimal solution
for the sub-problem consisting of levels i, i+1 . . . , j. Some more theoretical results
on approximation based on our formulation were obtained in [20].

As a practical step, and instead of using the Wi’s for the comparison, we can
fill in for each Wi some additional rubber bands (interactions) between (RNAs)
level i and level i + 1, between level i + k and level i + k + 1, and so on, by
identifying the pegs of these levels (regions of RNAs) that are not part of the
solution. This does not affect the theoretical guarantee but gives a larger weight
to the solution. We call it gap filling.

Figure 2 describes an algorithm for m levels based on dynamic program-
ming by defining W (i1, i2, . . . , im) to be the maximum weight when we truncate



154 S.A. Ahmed and S. Mneimneh

the levels at pegs [1, i1], [2, i2], . . . , [m, im]. The maximum weight is given by
W (n1, n2, . . . , nm) and the optimal solution can be obtained by standard back-
tracking.

W (i1, i2, . . . , im) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i1 − 1, i2, . . . , im)
W (i1, i2 − 1, i3, . . . , im)

.

.

.
W (i1, . . . , im−1, im − 1)

W ((i1 − u − g)+, (i2 − v − g)+, i3, . . . , im) + w(1, i1, i2, u, v)

W (i1, (i2 − u − g)+, (i3 − v − g)+, i4, . . . , im) + w(2, i2, i3, u, v)

.

.

.

W (i1, . . . , im−2, (im−1 − u − g)+, (im − v − g)+) + w(m − 1, im−1, im, u, v)

where x+ denotes max(0, x), w(l, i, j, u, v) = −∞ if u > i or v > j, 0 < u, v ≤ w (the
maximum window size), g ≥ 0 (the gap), and W (0, 0, . . . , 0) = 0.

Fig. 2. Dynamic programming algorithm for Pegs and Rubber Bands with the windows
and gaps formulation

The running time of the algorithm is O(mw2nm) (exponential) and

O(mw2� 1
ε 	n� 1

ε �) for the approximation scheme (polynomial), where w is the
maximum window length. If we impose that u = v in w(l, i, j, u, v), then those

running times become O(mwnm) and O(mw� 1
ε 	n� 1

ε �) respectively.
For the correctness of the algorithm, we have to assume that windows are

sub-additive. In other words, we require the following condition (otherwise, the
algorithm may compute an incorrect optimum due to the possibility of achieving
the same window by two or more smaller ones with higher total weight):

w(l, i, j, u1, v1) + w(l, i− u1, j − v1, u2, v2)

≤ w(l, i, j, u1 + u2, v1 + v2)

In our experience, most existing RNA-RNA interaction algorithms produce
weights (the negative of the energy values) of RNA interaction windows that
mostly conform to the above condition. In rare cases, we filter the windows to
eliminate those that are not sub-additive. For instance, if the above condition is
not met, we set w(l, i, j, u1, v1) = w(l, i− u1, j − v1, u2, v2) = −∞.

3.2 Heuristic for a Single Solution

A heuristic for resolving the ordering and the interaction pattern of the RNAs
is shown in Figure 3. As described in Section 2.4, the order and interaction
pattern are determined by a permutation. The main idea of this heuristic is
to first start with an arbitrary permutation, and then iteratively change it by
moving along neighboring permutations with better solutions (larger weights).
This is repeated until no more improvement can be achieved. Using the PTAS,
this algorithm finds one solution within a (1− ε)-factor of optimal (which could
itself be the optimal).
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Given ε = 1/k and m RNAs
produce a random permutation π on {1, . . . ,m}
let W be the weight of the (1 − ε)-optimal solution given π
repeat

better←false
generate a set Π of neighboring permutations for π
for every π′ ∈ Π (in any order)

let W ′ be the weight of the (1 − ε)-optimal solution given π′

if W ′ > W
then W ← W ′

π ← π′

better←true
until not better

Fig. 3. A heuristic for multiple RNA interaction using the PTAS algorithm

To generate neighboring permutations for this heuristic algorithm one could
adapt a standard 2-opt method used in the Traveling Salesman Problem (or other
techniques). For instance, given permutation π, a neighboring permutation π′

can be obtained by dividing π into three parts and making π′ the concatenation
of the first part, the reverse of the second part, and the third part. In other
words, if π = (α, β, γ), then π′ = (α, βR, γ) is a neighbor of π, where βR is the
reverse of β.

3.3 Multiple Sub-optimal Solutions

We now describe how to generate (all) solutions with a weight of at least some
threshold T .

Generation: RNAs often interact in more than one way. To explore this, we
assume that the order and interaction pattern have been already determined,
e.g. by the algorithm of Section 3.2. We then seek sub-optimal solutions. Denote
by S(i1, . . . , im) a solution where il is the smallest index at level l such that
peg [l, il] is covered by a window, l = 1 . . .m. We will also use S(i1, . . . , im)
interchangeably to represent the weight of that solution. Similarly, we will use
w(l, i, j, u, v) interchangeably to denote a window and its weight. We denote by
S(i1, . . . , im)+w(l, i, j, u, v) an extension of solution S by the addition of window
w.

We say that a window w(l, i, j, u, v) in S(i1, . . . , im) is a terminal window iff:

– i− u+ 1 = il,
– j − v + 1 = il+1, and
– no other window w(l′, i′, j′, u′, v′) in S(i1, . . . , im) satisfies i′ − u′ + 1 = il′ ,

j′ − v′ + 1 = il′+1, and l′ > l.

This imposes some order on the windows to prevent generating the same solution
in multiple ways. To that end, we can only extend a solution by adding to
it a terminal window (a window that becomes the terminal for the extended
solution). Observe that wheneverW (i1−g−1, . . . , im−g−1)+S(i1, . . . , im) < T ,
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where g is the gap parameter as described in Section 2.3, S cannot be extended
in anyway to meet the threshold.

Let φ = S(n1 + g + 1, . . . , nm + g + 1) represent the empty solution (with
zero weight). We have the following algorithm (Figure 4) for generating every
solution with weight at least T , starting with Process(φ). Because windows are
considered in order, the running time of the algorithm is linear in the size of its
output plus a crude O(2|W|) bound (all possible solutions), where W is the set
of windows.

Process(S(i1, . . . , im))
if W (i1 − g − 1, . . . , im − g − 1) + S(i1, . . . , im) < T

then return
else for every window w(l, i, j, u, v) that is

terminal in S(i1, . . . , im) + w(l, i, j, u, v)
with il − i > g and il+1 − j > g
Process(S(i1, . . . , im) + w(l, i, j, u, v))

if S(i1, . . . , im) ≥ T
then output S

Fig. 4. Generating multiple sub-optimal solutions

Clustering: The sub-optimal solutions generated above may be a lot more
than what we need. We use a pseudo-clustering algorithm to identify a small
set of representative solutions. We use the term pseudo-clustering because our
algorithm does not attempt to optimize clusters in any way. Let d(S,C) be the
distance between a solution S and a cluster C (Section 3.3.3), and assume a
threshold D. The idea is to add a solution S to a cluster C if d(S,C) < D.
Figure 5 shows an algorithm that clusters solutions until all solutions are in
clusters or the maximum number of clusters c has been reached. The running
time of this algorithm is, therefore,O(|S|cf(m,n)), where S is the set of solutions,
and f(m,n) is the time needed to compute the distance on instances with m
RNAs of length n.

Cluster
r = 0
for every solution S in decreasing order of weight

if there exists a cluster Ci such that d(S,Ci) < D
then Ci ← Ci ∪ {S}
else r ← r + 1

Cr ← {S}
output S (the best in its cluster)
if r =maximum number of clusters c

return

Fig. 5. An algorithm for pseudo-clustering the solutions

Distance. Recall that peg [l, i] represents the ith base of RNA l. Therefore, if
peg [l, i] is covered by a window in some solution for Pegs and Rubber Bands,
we say that base i is interacting. Otherwise, we distinguish between two cases:
base i is free, or there is a base j of RNA l that is not interacting such that base
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i folds onto base j (makes a bond) in the optimal folding of RNA l. Therefore,

given a solution, RNA l can be represented by a string sl where sl[i], the ith

character in sl, is one of three letters: I for interacting (with another RNA), F
for free, and B for bonding (to the same RNA).

We define a distance function d(S1, S2) between two solutions, and set d(S,C)
as the distance between S and the representative solution of cluster C. The last
paragraph in this section describes how such a representative is determined.

Jaccard: Given a solution S, convert sl for every l = 1 . . .m into a binary
vector vl by replacing I with 10, B with 01, and F with 00. Concatenate all
such vectors into one vector v = v1v2 . . . vm. If u is the vector corresponding to
solution S1 and v is the vector corresponding to solution S2, then:

d(S1, S2) =

∑
i u[i]⊗ v[i]

∑
i u[i]⊕ v[i]

where v[i] is the ith bit of vector v, and ⊗ and ⊕ stand for the binary operators
XOR (exclusive OR) and OR, respectively. Intuitively, this reflects a Hamming
distance scaled by the number of entries that can potentially differ [21]. We also
define a coarser version of this distance below.

Levenshtein: Given a solution S, collapse sl for every l = 1 . . .m by replacing
repeated consecutive letters by one occurrence of the given letter, e.g. replace
BBBBB by B. With this modification, if s1, . . . , sm correspond to solution S1

and t1, . . . , tm correspond to solution S2, then:

d(S1, S2) =

∑m
l=1 Lev(sl, tl)∑m

l=1 max(|sl|, |tl|)
where Lev(s, t) is the Levenshtein distance (in modern terms, an edit distance
where each mismatch and deletion contributes a 1 [22]), and | | denotes the
length of a string.

We either use the Jaccard distance, or the average of Jaccard and Levenshtein
when the Jaccard distance is not sensitive to small variations. In computing
d(S,C), the representative of cluster C is either the best solution in the cluster
(i.e. the one with the largest weight, which is also the one that started the
cluster), or the consensus of the cluster. The consensus can be obtained in terms
of the vector v, where v[i] = 1 for the consensus solution if and only if a strict

majority of the solutions in C have the ith bit equal to 1.

4 Results

For all of our experiments, we only show the interaction pattern (no folding
within the individual RNAs).
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4.1 Single Solutions

We use the algorithm for Section 3.2 We pick the largest weight solution among
several runs of the algorithm. The value of k and the gap filling criterion depend
on the scenario, as described below.

Fishing for Pairs. Six RNAs in E. Coli of which three pairs are known to
interact are used [8]. The interest here is to see whether the algorithm can
identify the three pairs. For this purpose, it will suffice to set k = 2 and to
ignore gap filling. Furthermore, we only consider solutions in which each RNA
interacts with at most one other RNA. The solution with the largest weight
identifies the three pairs correctly (Figure 6). In addition, the interacting sites
in each pair are consistent with the predictions of existing RNA-RNA interaction
algorithms, e.g. [10].

OxyS 5’ ...CCCUUG...GUG...UCCAG... 3’ MicA 5’ ...GCGCA...CUGUUUUC...CGU... 3’

|||||| ||| ||||| ||||| |||||||| |||

fhlA 3’ ...GGGAAC...CAC...AGGUC... 5’ lamB 3’ ...CGCGU...GAUAGAGG...GCA... 5’

CopA 5’ CGGUUUAAGUGGG...UCGUACUCGCCAAAGUUGA...UUUUGCUU 3’

||||||||||||| ||||||||||||||||||| ||||||||

CopT 3’ GCCAAAUUCACCC...AGCAUGAGCGGUUUCAACU...AAAACGAA 5’

Fig. 6. Known pairs of interacting RNAs

Structural Separation. The yeast snRNA complex U2-U6 is necessary for the
splicing of a specific mRNA intron [23]. Only the preserved regions of the intron
are considered, which consist of two structurally autonomous parts, resulting
in an instance with a total of four RNAs, U2, U6, I1, and I2. Six RNAs are
used: CopA, CopT, and the four mentioned RNAs. The interest here is to see
whether the algorithm can separate the CopA-CopT complex from that of yeast.
The algorithm is performed with k = 3 and gap filling. The solution with the
largest weight successfully predicts and separates the RNA complex CopA-CopT
of Figure 6 from the RNA structure shown in Figure 7a for the U2-U6 complex
in the splicing of its intron.

4.2 Multiple Sub-optimal Solutions

We now use the algorithm of Section 3.3 with an appropriate threshold T to
generate enough solutions. Additional parameters for this algorithms are: the
distance function d(S,C), the threshold D for adding a solution to a cluster,
and whether the cluster representative is the best solution in the cluster or the
consensus of the cluster (refer to Section 3.3.3 for computing distances). The
choice of these parameters will be given for each scenario. Only the best solution
in each cluster is reported (see Figure 5 for detail).
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Helices and Co-axial Stacking. The U2-U6 complex in yeast has been re-
ported to have two distinct experimental structures, e.g. [24]. In one conforma-
tion, U2 and U6 interact to form helix Ia (interaction as in Figure 7c). In another
conformation, the interaction reveals a structure containing an additional helix,
helix Ib. It has been conjectured in [25] that co-axial stacking is essential for
the stabilization of helix Ia in U2-U6 and, therefore, inhibition of the co-axial
stacking, possibly by protein binding, may activate the second conformation.
Regardless of what underlying mechanisms are responsible for this conforma-
tional switch, our sub-optimal solutions cluster in a way that reveal the two
conformations (Figure 7).

(a) cluster 1 (b) cluster 2

I1 3’ NNNNGUAUGUNNNN 5’ I1 3’ NNNNGUAUGUNNNN 5’

|||

U6 5’ ACAGAGAUGAUC--AGC 3’ U6 5’ ACAGAGAUGAUC--AGC 3’

||||| ||| ||||| |||

U2 3’ AUGAU-GUGAACUAGAUUCG 5’ U2 3’ AUGAU-GUGAACUAGAUUCG 5’

||||| ||| ||||| |||

I2 5’ NNNNUACUAACACCNNNN 3’ I2 5’ NNNNUACUAACACCNNNN 3’

(c) cluster 3 (d) cluster 4

I1 3’ NNNNGUAUGUNNNN 5’ I1 3’ NNNNGUAUGUNNNN 5’

|||

U6 5’ ACAGAGAUGAUC--AGC 3’ U6 5’ ACAGAGAUGAUC--AGC 3’

||||| |||||

U2 3’ AUGAU-GUGAACUAGAUUCG 5’ U2 3’ AUGAU-GUGAACUAGAUUCG 5’

||||| ||| ||||| |||

I2 5’ NNNNUACUAACACCNNNN 3’ I2 5’ NNNNUACUAACACCNNNN 3’

Fig. 7. U2 and U6 truncated up to helix Ib. Algorithm performed with the following
parameters: distance is Jaccard, threshold=0.15, representative is consensus. (a) Helices
Ia and Ib with correct binding of introns. (b) same as (a) with I1 not binding. (c) Helix
Ia only with correct binding of introns. (d) Same as (c) with I1 not binding.

Artifact Interactions and Reversible Kissing Loops. Due to the opti-
mization nature of the problem, it is sometimes easy to pick up interactions that
are biologically unreal. This is because dropping these interactions from the so-
lution would make it less optimal. The third interaction window of CopA-CopT
in Figure 6 is an example of such an artifact. As shown in Figure 8 on the Left,
our second cluster of sub-optimal solutions succeeds in dropping this window.

Reversible kissing loops represent an even harder mechanism to capture by
optimization. With this mechanism, the initial kissing complex occurs between
a subset of loop bases in both RNAs, but this interaction is fully reversible
and very unstable [26]. Therefore, in the final interaction, the kissing loop will
be missing few bases towards its center. An example of this scenario is the
middle interaction window of CopA-CopT in Figure 6 and Figure 8 on the Left
(considering the folding pattern of CopA and CopT reveals that this interaction
window is a kissing loop). By isolating this window and generating sub-optimal
solutions, our third cluster starts to reveal a separation of the interaction close
to the center, as shown in Figure 8 on the Right.
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(a) cluster 1

(a) cluster 1 CopA 5’ ...UCGUACUCGCCAAAGUUG... 3’

|||||||||||||||||

CopA 5’ CGGUUUAAGUGGG...UCGUACUCGCCAAAGUUGA...UUUUGCUU 3’ CopT 3’ ...AGCAUGAGCGGUUUCAAC... 5’

||||||||||||| ||||||||||||||||||| ||||||||

CopT 3’ GCCAAAUUCACCC...AGCAUGAGCGGUUUCAACU...AAAACGAA 5’

(b) cluster 2

(b) cluster 2 CopA 5’ ...UCGUACUCGCCAAAGUUG... 3’

|||||

CopA 5’ CGGUUUAAGUGG...UCGUACUCGCCAAAGUUGAA... 3’ CopT 3’ ...AGCAUGAGCGGUUUCAAC... 5’

|||||||||||| ||||||||||||||||||||

CopT 3’ GCCAAAUUCACC...AGCAUGAGCGGUUUCAACUU... 5’

(c) cluster 3

CopA 5’ ...UCGUACUCGCCAAAGUUG... 3’

|||||| ||||||||||

CopT 3’ ...AGCAUGAGCGGUUUCAAC... 5’

Fig. 8. Left: Algorithm performed with the following parameters: distance is average
of Jaccard and Levenshtein, threshold=0.25, representative is best. (a) As in Figure
6. (b) A less optimal but realistic structure in which the third interaction window is
dropped. Right: CopA-CopT complex truncated to its middle window. Algorithm per-
formed with the following parameters: distance is average of Jaccard and Levenshtein,
threshold=0.3, representative is best. The third cluster starts to reveal a separation
(reversible kissing loop) in the middle interaction window.

5 Conclusion

While RNA-RNA interaction algorithms exist, they are not suitable for predict-
ing RNA structures with more than two RNAs; for instance, treating the RNAs
pairwise may not lead to the best global structure. Moreover, the best structure
may not be the real structure, and the real structure may not be unique. In this
work, we build on our recent formulation for multiple RNA interaction as a com-
binatorial optimization problem, and extend it to produce multiple sub-optimal
solutions. Our experiments reveal that such an approach can provide several
candidate structures when they exist, e.g. the U2-U6 complex in the spliceo-
some of yeast, and find realistic structures that are not necessarily optimal in
the computational sense, e.g. CopA-CopT in E. Coli.
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