
206 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Matching From the First Iteration: An Iterative
Switching Algorithm for an Input Queued Switch

Saad Mneimneh

Abstract—An iterative switching algorithm for an input queued
switch consists of a number of iterations in every time step, where
each iteration computes a disjoint matching. If input is matched
to output in a given iteration, a packet (if any) is forwarded from
to in the corresponding time step. Most of the iterative switching
algorithms use a Request Grant Accept (RGA) arbitration type (e.g.
iSLIP). Unfortunately, due to this particular type of arbitration,
the matching computed in one iteration is not necessarily maximal
(more input and output ports can still be matched). This is exactly
why multiple iterations are needed. However, multiple iterations
make the time step larger and reduce the speed of the switch.

We present a new iterative switching algorithm (based on the
RGA arbitration) called - with the underlying assumption
that the number of iterations is possibly limited to one, hence
reducing the time step and allowing the switch to run at a higher
speed. We prove that - achieves throughput and delay
guarantees with a speedup of 2 and one iteration under a constant
burst traffic model, which makes - as good as any maximal
matching algorithm in the theoretical sense. We also show by
simulation that - achieves relatively high throughput in
practice under uniform and non-uniform traffic patterns with one
iteration and no speedup.

Index Terms—Input queued switch, iterative switching algo-
rithms, matching algorithms, number of iterations, speedup.

I. INTRODUCTION

ASWITCHING algorithm for an input queued switch com-
putes a matching in every time step. If input is matched

to output , a packet (if any) is forwarded from to . In partic-
ular, an iterative switching algorithm computes its matching it-
eratively over a number of iterations within the time step, where
each iteration computes a disjoint partial matching. Therefore,
if input is matched to output in a given iteration, a packet (if
any) is forwarded from to in the corresponding time step. The
reason for such an iterative approach is to simplify the computa-
tion of the matching. In deed most iterative switching algorithms
are distributed and use a Request Grant Accept (RGA) arbitra-
tion in every iteration. Therefore, we mainly focus on this family
of iterative switching algorithms. In fact Cisco’s routers use
such algorithms [9]. Examples of these algorithms include PIM1

Manuscript received May 3, 2004; revised September 30, 2005, and January
18, 2006; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
G. Pacifici.

The author is with the Department of Computer Science, Hunter College of
CUNY and the Graduate Center of CUNY, New York, NY 10021 USA (e-mail:
saad@hunter.cuny.edu).

Digital Object Identifier 10.1109/TNET.2007.900365

1PIM uses randomness and reaches a maximal matching withO(logN) iter-
ations on average. A variation on PIM, also presented in [1] and called statistical
matching, achieves theoretically 72% throughput with 2 iterations.

[1], iSLIP [15], iLQF and iOCF[14], DRR[13], pDRR [7], and
LQD [12]. We provide a brief description of these algorithms
and a comparison between them in Section VI. The reader may
consult the following references: [2], [7], [13]–[15].

With the RGA arbitration, each iteration is composed of three
stages: Request, Grant, and Accept. In the Request stage, inputs
send matching requests to the outputs. In the Grant stage, every
output grants at most one request. Finally, in the Accept stage,
every input accepts at most one granted request.2 If input ac-
cepts a grant from output , is matched to . Unfortunately,
since different inputs might request the same output, and simi-
larly, different outputs might grant the same input, the resulting
matching is not necessarily maximal, i.e. more input and output
ports can still be matched. This is exactly why multiple itera-
tions are needed. Furthermore, this situation cannot be avoided
in general because there is no direct communication among the
input ports themselves or among the output ports themselves, as
this would lead to a more complicated hardware.

Nevertheless, with additional iterations in which previously
matched inputs and outputs do not participate in the RGA arbi-
tration, more inputs and outputs could be matched, thus leading
to a larger size matching. A larger size matching will generally
imply higher throughput of the switch, because more packets
will be transmitted in every time step. However, from the theo-
retical point of view, the required additional iterations make the
time step larger and reduce the speed of the switch. We make
the following two observations:

• Many of the iterative algorithms practically achieve accept-
able throughput with multiple iterations and no speedup.3

On average, iterations seem to be enough, see
[1] for such an analysis.

• Some of the iterative algorithms, like iSLIP and DRR, can
be proved to theoretically achieve 100% throughput with
one iteration but only when the traffic is uniform, i.e. the
rate of packets from an input to an output is the same all
over the switch.

Therefore, we would like to possibly limit the number of it-
erations to only one iteration and still provide high throughput
for an arbitrary traffic pattern (not necessarily uniform). We de-
scribe a new iterative switching algorithms (based on the RGA
arbitration) called with the underlying assumption that
the number of iterations is possibly limited to one, hence re-

2The RGA arbitration can also start from the output side like in DRR [13] and
LQD [12].

3Theoretically however, a lower bound on the speedup required to achieve
throughput can be proved for a number of iterative algorithms. For instance, it
can be shown that iSLIP, iLQF, iOCF, and DRR require a speedup of S � 1:5
to achieve throughput. Therefore, these algorithms (including ours here) cannot
achieve more than 66.67% throughput with no speedup [17].

1063-6692/$25.00 © 2008 IEEE



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 207

ducing the time step and allowing the switch to run at a higher
speed.

In fact, reducing the time step of the switch is a very im-
portant problem in today’s routers. A number of attempts have
been made in that regard. For instance, [9] describes a way to
pipeline the Request stage and the Grant Accept stages, reducing
the number of iterations by half. The WFA algorithm (and its
variant WWFA) [18], which is an iterative algorithm not based
on RGA, may be also pipelined to reduce the time step to one
iteration. We will discuss WFA in Section VII and provide a con-
ceptual connection to our algorithm . LQD [12] is a one
iteration RGA based randomized algorithm that achieves 100%
throughput with a speedup of 2. However, it has poor perfor-
mance in practice (as shown in Section VI) because its matching
may be far from maximal. Therefore, our approach is to simply
allow one iteration to with the remaining challenge of
computing a good size matching (preferably maximal) using
that one and only iteration.

With the limit to one iteration, the switching algo-
rithm attempts to maintain parts of the previously computed
matching to grow the size of the matching with successive
time steps. Therefore, instead of restarting the computation
of a matching from scratch in every time step (and hence not
attaining a good size matching with the one iteration limit),

uses information about the previous matching.
The concept of using the previous matching is not entirely

new. For instance, it was explored in [19] and [8] (and our
previous work in [16] where the matching is held constant
for a number of time steps). Both [19] and [8] use weighted
matchings where the weight contribution of matching input to
output represents the number of packets waiting at input and
destined to output . The work in [19] describes a randomized
algorithm by which the previous matching is maintained only
if the new randomly computed matching has less weight. The
work explores the established fact that computing a maximum
weighted matching in every time step achieves throughput
[5]. The work in [8] relies on the same concept and describes
variants of the above algorithm in addition to some new deter-
ministic algorithms. In this work we do not consider weighted
matchings. In fact, does not maintain information
about the quality of the matching it computes (this would re-
quire a centralized scheme that is aware of the whole matching),
but simply stabilizes a maximal matching with successive time
steps, regardless whether that matching is “good” or “bad”.
We also do not exploit randomness; however, a simple priority
scheme will trigger a change in the matching; but this will not
happen frequently, thus creating a balance between two desired
extremes: on one hand computing a maximal matching and
on the other hand avoiding starvation (possibly resulting from
keeping the same maximal matching). Moreover, our work is
different from that of [19] and [8] in that it is in the context of
iterative switching algorithms that use the RGA arbitration and
thus computes a matching in a distributed way at each port.

We describe in detail in Section II. Sections III, IV,
and V provide the necessary framework to prove that
achieves throughput and delay guarantees with a speedup of 2
and one iteration under a constant burst traffic model. To say
the least, this makes as good as any maximal matching

Fig. 1. An input queued switch.

algorithm in the theoretical sense. We also show by simulation
in Section VI that achieves relatively high throughput
in practice (better than the rest of the iterative switching algo-
rithms) under uniform and non-uniform traffic patterns with one
iteration and no speedup.

Our presentation of is for the standard input queued
switch model described in the literature. We briefly describe
the model here. Fig. 1 illustrates an input queued switch with

input ports and output ports and virtual output queues
( s). We denote by the virtual output queue at
input , which is the queue holding packets originating at input

and destined to output . We will assume that an input queued
switch with a speedup ( is not necessarily an integer) op-
erates in matching phases of time steps each, with
for no speedup. Therefore, to generalize the operation of an iter-
ative switching algorithm in the presence of speedup, multiple
iterations are performed per matching phase (as opposed to per
time step). Starting from matching phase 0, each matching phase
is composed of an iterative RGA arbitration which results in
a matching, and if input is matched to output by the itera-
tive RGA arbitration, will be served in that matching
phase (a packet will be forwarded from to output ).
Therefore, we can refer to matching phases instead of time steps.
When the switch has no speedup , matching phases and
time steps are the same.

II. THE SWITCHING ALGORITHM

The switching algorithm is an iterative RGA arbi-
tration type algorithm. Therefore, for every matching phase
(see the description of the input queued switch model above),

performs an RGA arbitration in a number of iterations
(possibly one) within the matching phase. As described earlier,
the RGA arbitration has three stages: Request, Grant, and Ac-
cept. The algorithm differentiates between two kinds
of requests: Strong and Weak requests. Requests that were
granted and accepted become Strong requests in the following



208 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Fig. 2. Example of Strong and Weak requests.

Fig. 3. The �-RGA switching algorithm (matching phase m).

matching phase. Precedence is given to the Strong requests,
and hence the matching will tend to stabilize with successive
matching phases towards a matching that grants the Strong
requests. By not competing with requests at other inputs, Weak
requests will help the stabilization process to grow the size of
the matching with successive matching phases. To guarantee
progress, an unmatched input sends only Strong requests.
Fig. 2 shows an example where the matching converges after
two matching phases (one iteration per matching phase) and
stabilizes thereafter.

A priority scheme will be used in conjunction with the
Strong and Weak modifiers in order to ensure that the stabiliza-
tion process favors connections with high priority, and hence
eliminates any possible starvation due to always granting the
same set of Strong requests. The priority scheme , therefore,
serves as a parameter to the algorithm as suggested in the name

. The properties of the priority scheme will be dis-
cussed later in the paper. We will show that with an appro-
priate choice of , the switching algorithm achieves
throughput and delay guarantees with a speedup of , under
certain traffic models.

In order to fully describe the algorithm, we introduce
the following definitions of an active and a transi-
tion.

Definition 1: A is active in matching phase iff it is
non-empty (has at least one packet) at the beginning of matching
phase .4

Definition 2: A transition in matching phase is
a transition of the from being inactive (active) in matching
phase to active (inactive) in matching phase .

We also define a priority scheme as follows:
Definition 3: A priority scheme defines for every matching

phase a strict (non-reflexive) partial order relation on the
s.

We will use the notation to denote that
has higher priority than during matching phase

( is ordered before by ). We will also use
the notation to denote that does
not have higher priority than during matching phase
( is not ordered before by ).

We will assume that for every , , , and for every matching
phase , and are ordered by , and
and are ordered by . Therefore, during matching
phase , s that share either an input or an output must be
ordered by . This assumption will be crucial for the process
of stabilizing the matching.

Definition 4: In a matching phase , a is -highest
for a set of s iff every active satisfies

; furthermore, if , we say
that is -highest in .

Note that with the RGA arbitration, a request from input to
output would eventually serve, if any, . Therefore, if
such a request exists, we say that input issues a request for

. Similarly, we use a -highest request to denote a re-
quest for a -highest .

Fig. 3 shows the switching algorithm for matching
phase . In Fig. 3, active implicitly means active in matching
phase .

The sequence input-output-input of Fig. 3 where the three
stages of an iteration are performed can be alternatively changed
to output-input-output. But since information about s is
more naturally obtained at the input side, we adopt the sequence
shown in the figure.

The most crucial aspect of the algorithm is the way
requests are prepared. Every input issues Strong requests for ac-
tive s that have high priority, where the threshold of high
priority is the priority of the previously served . Therefore,
an input attempts to request better service based on the priority
scheme . Moreover, since Weak requests, regardless of their

4We sometimes omit to mention the matching phasem when it is clear from
the context or when it is not important, for instance, when a V OQ is always
active. Note that this definition of an active V OQ does not capture the real-time
state of the V OQ. A simple example would be the following (S = 1 and,
therefore, one matching phase is the same as one time step): A packet arrives
at the beginning of matching phase m, that packet is transmitted by the end
of matching phase m, and a packet arrives at the beginning of matching phase
m + 1. In terms of whole packets, the V OQ is non-empty at the beginning
of both matching phases m and m + 1, yet there is a time in between where
the V OQ is empty. We can work with a real-time definition of an active V OQ
that would capture the above phenomenon, but we choose the current one for
simplicity of illustration.



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 209

priority, are always considered next, an input which has already
accepted a high priority granted request will not prohibit high
priority requests at other inputs from being granted (by making
its low priority requests Weak). Variations on using Weak re-
quests are possible (see the bottom note of Fig. 3).

Therefore, to summarize what has been described so far, the
approach behind can be conceptually visualized as
having three different components:

• The Strong requests help stabilize the matching by creating
requests that will always tend to be granted. Therefore, in
the absence of multiple iterations, the matching needs not
be computed from scratch.

• The priority scheme helps guide the stabilization process
of the matching by determining which requests can become
Strong (to avoid possible starvation).

• The Weak requests help grow the size of the matching with
successive matching phases by disallowing these requests,
which are unlikely to be accepted anyway, from competing
with other requests (also holds when Weak requests are
suppressed or assigned the lowest priority).

The use of Weak requests possesses a corrective mechanism
over successive matching phases: an input can be matched to
an output (and possibly unmatched from its previously matched
output) when the requests prohibiting it from matching to that
particular output become Weak. Therefore, in the absence of
multiple iterations, the use of Weak requests emulates the mech-
anism by which a matched input stops sending requests in fu-
ture iterations, thus virtually creating multiple iterations from
successive matching phases.

When the number of iterations is fairly large (and, therefore,
the emulation described above is not needed) is not the
best algorithm to use. Moreover, one expects to pro-
duce a relatively high jitter because of the process of stabilizing
the matching. Hence, in the presence of jitter sensitive traffic,

may not be the ideal choice. However, jitter sensitive
traffic usually occupies a small fraction of the whole traffic and
can be handled separately (see [10] for instance).

We have not yet specified what priority scheme may be
used. For instance, if changes frequently from one matching
phase to another (like round robin for instance), so will the
Strong requests (and hence the grants), preventing the stabiliza-
tion of the matching. This will make it difficult to realize the
main goal of the algorithm. In the following sections, we dis-
cuss formally some of the properties that may have and their
implications on the performance of the switching algo-
rithm.

III. STABLE PRIORITY SCHEME

In this section we define a stable priority scheme:
Definition 5—Stable : A priority scheme is a stable pri-

ority scheme iff it satisfies the following: if and
remain active during , then

for any matching phase .
Therefore, once two s are active in the same matching

phase, they retain their relative priorities until one of them tran-
sitions to inactive. When is stable, we claim that the
algorithm will attempt to stabilize a maximal matching that fa-
vors higher priority s. More precisely, it will attempt to

reach a -stable matching as defined below (inspired by the
stable marriage matching [6]):

Definition 6: For a given priority scheme , a matching com-
puted in matching phase is -stable iff it satisfies the fol-
lowing condition: for every , , if is active, then an
active is served, with or .

Therefore, a -stable matching implies that if an active
is not served, then this is only because it is blocked by

another served active with no less priority.5 Note that a
-stable matching is a maximal matching. In fact, Definition 6

is a special case of the stable marriage matching. Our use of the
term -stable is, therefore, in reference to the stable marriage
matching and has nothing to do with the stability of the switch
itself.

To understand the stabilization claimed above when is
stable, consider first the case where no transitions occur.

If no transitions occur, a is either active or
inactive for all matching phases. Moreover, since the priority
scheme is stable, it defines the same order relation on all ac-
tive s for all matching phases. Recall that, by assumption,
in a matching phase , s sharing an input or an output are
ordered by , and hence a -highest in matching phase

is uniquely determined at each port. Let be the set of all
active s. A -highest in will be issued a Strong
request which will be granted and accepted, say in matching
phase . Therefore, will be served in matching phase

and will continue to be served forever. Let be the subset
of all s in that can still be served while serving .
All s in are therefore blocked by a higher priority

, namely . A -highest in will be
issued a Strong request in matching phase . The reason
for this is the following: If no at input was served in
matching phase , then input will issue Strong requests for
all its active s in matching phase . If, on the other
hand, a at input was served in matching phase , then
it was a with no more priority than (possibly

itself), since all s in with higher priority than
are in . As a result, input will issue a Strong

request for in matching phase , which will be
granted and accepted; this is guaranteed by the Request stage
which will issue Weak requests for all active s of output

that are in . Therefore, will be served in
matching phase and will continue to be served forever.
Let be the subset of s in that can still be served
while serving . Again, all s in are now
blocked by a higher priority , namely, .

Since the size of a matching is at most , this continues until
the matching is stabilized after at most matching phases.
In this resulting matching (obtained in at most matching
phases), an active that is not served is blocked by a higher
priority active that is served, and hence the matching is

-stable.
The above argument assumed that no transitions occur;

however, if transitions do occur, the matching might be
perturbed every time there is such transition. This is why we

5In our case, it will be of higher priority because we assume that, for every
matching phasem, V OQs that share an input or an output must be ordered by
� .



210 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

claimed that attempts to stabilize a maximal matching,
which might not happen. Nevertheless, we can still have a notion
of stability for a particular even in the presence of
transitions. This notion is captured in the following definition.

Definition 7: For a priority scheme , a matching computed
in matching phase is -stable with respect to iff it
satisfies the following condition: If is active, then an
active is served, with or .

Note that the above definition is a relaxation of Definition
6 in the sense that the matching satisfies the property with re-
spect to only instead of all s. Note also that if
no transitions occur, as argued above, will reach
a -stable matching with respect to all s in at most
matching phases. The interesting observation is that a transi-
tion for will not affect the notion of stability in Defini-
tion 7 for if does not have higher priority than

. More precisely, we state Lemma 1 below.
Lemma 1: Given a stable priority scheme and a

that remains active during , if
all transitions during occur only in a set
of s for which is -highest during , then
the matching computed by the switching algorithm is

-stable with respect to for every matching phases
.

Proof: Let be the set containing and all
active in matching phase such that .
Let be the complement of . By the condition of the lemma,
a transition to active for a in matching phase

implies . There-
fore, any in is -highest for during .
This means that a -highest in any subset is
also -highest in (so we can ignore when consid-
ering ). Since is stable, no transitions occur for s in
during by the condition of the lemma. The proof
is now similar to the previous argument when no transi-
tions occur. This time however, starting from the first matching
phase , we only consider for the argument the s in .
The same argument works since no transitions occur in

until matching phase (except possibly for matching
phase itself). Therefore, a -stable matching with respect to
all s in will be reached in at most matching phases,
i.e. in matching phase , and remains as such during

.
Therefore, Lemma 1 establishes the property that

with a stable priority scheme will be able to sustain a -stable
(also maximal) matching for a set of highest priority s, as
long as they retain their priorities and remain active.

The following section defines another property of the priority
scheme that will be useful for the operation of the
switching algorithm.

IV. BOUNDED BYPASS PRIORITY SCHEME

In this section we define a bounded bypass priority scheme:
Definition 8—Bounded Bypass : A priority scheme is a

bounded bypass priority scheme iff it satisfies the following:

if remains active during , then tran-
sitions to active in some matching phase
with (i.e. “bypasses” ) at
most a bounded number of times .

Note that the bounded bypass property of the priority scheme
does not restrict the traffic. Therefore, a can transition to
active at any time; however, it acquires a priority that satisfies the
bounded bypass property. A trivial priority scheme that satisfies
the bounded bypass property is the one that assigns the lowest
priority to a newly active . In fact, this priority scheme will
be investigated in Section V.

As mentioned in the previous section, with only a stable pri-
ority scheme, the matching might be perturbed every time there
is a transition. The bounded bypass property limits the
number of perturbations experienced by a particular . Re-
call (from Lemma 1) that a will experience perturbation
only when a transition for a with higher priority occurs.

We can loosely bound the number of all transitions that
a experiences for higher priority s as follows:

Lemma 2: Given a stable bounded bypass priority scheme
and a that remains active during , the number
of transitions during occurring in any set of

s for which is not -highest during is at
most .

Proof: Since is a bounded bypass priority scheme,
a can “bypass” at most a bounded number
of times . More precisely, if remains active during

, can transition to active in some matching
phase with
only a bounded number of times . This implies that

can transition to inactive in some matching phase
with at most

times; since otherwise, bypasses more
than times by the following reasoning: for any two con-
secutive matching phases in which
transitions to inactive, there must exist a matching phase

in which transitions to active,
and by the
stable property of .

Since we have at most s other than ,
if remains active during , then during

at most transitions occur in a set of
s for which is not -highest during .

If the packet arrival rate of every is strictly less than
1, an active that remains -highest will be served until it
becomes inactive. With this added bounded bypass property, a

that remains active will eventually become (and remain
due to the stable property of ) -highest, since there will be
only a bounded number of transitions for s with higher pri-
ority than . As a result, with a stable bounded bypass pri-
ority scheme , guarantees that a will be empty
(more precisely inactive) infinitely many times, if the packet
arrival rate of every is strictly less than 1. Therefore,

avoids starvation (every becomes inactive infin-
itely many times) for any admissible traffic satisfying

and for every and , where is the rate
matrix. We will revisit the issue of starvation later in Section VI.



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 211

V. THEORETICAL RESULTS

Lemma 1 and Lemma 2 imply that the switching
algorithm satisfies the following local stability property with a
stable bounded bypass priority scheme .

Theorem 1—Local Stability: For any stable bounded bypass
priority scheme , if remains active during ,
then the matching computed by the switching algo-
rithm is -stable with respect to for every matching
phase except for at most a bounded number
of matching phases.

Proof: If is stable and bounded bypass, then the number
of transitions during occurring in any set
of s for which is not -highest during
is at most , by Lemma 2. Since is a stable
priority scheme, a -stable matching with respect to
can be reached in at most matching phases in the absence of
such transitions, as stated in Lemma 1. Therefore, the number of
matching phases in for which the matching is not -
stable with respect to is at most

. Hence, .
The local stability property implies a local maximality prop-

erty. For instance, it implies that, while remains ac-
tive, either input is matched or output is matched except
for a bounded number of matching phases. Note that
might not succeed in computing a maximal matching (unless
the number of iterations is sufficient); however, for a particular
active , the matching will always be “locally” maximal
except for a bounded number of matching phases.

Next, we enumerate the guarantees of under different
traffic models. We will describe three traffic models: SLLN,
Weak Constant Burst, and Strong Constant Burst. For the traffic
models described below, we let denote the number of
packets that arrive at input by time and are destined to output
. We also let denote the maximum loading at any input or

output port.

A. ASLLN Traffic

The SLLN (Strong Law of Large Numbers) traffic model sat-
isfies the following:

SLLN:
• with probability 1
•
•
•

It has been shown in [5] that a maximal matching algo-
rithm guarantees throughput with probability 1 under any
SLLN traffic with a speedup . The analysis in [5]
is based on a fluid model of the switch, and all what is
required from the maximality of the matching is the con-
dition if ,
where is the (fluid) number of packets in and

. Intuitively, the condition
states that if is not empty, the number of packets at
input and output changes at a rate
when . Note that is the combined
packet arrival rate at input and output , and (the speedup)
is the service rate for those ports. Therefore, the same is true
for any switching algorithm that satisfies the local stability

property: for a large time interval, if remains active
(and contains enough packets), is the service rate of input port

and output port , since the matching is maximal except for
a constant number of matching phases. We will not provide a
rigorous proof here since this is not the main result of the paper,
the reader may refer to [5] for details on the basic maximality
proof. We have the following result: For any stable bounded
bypass priority scheme , the switching algorithm
guarantees throughput with probability 1 under an SLLN traffic
with a speedup .

B. Weak Constant Burst Traffic

The weak constant burst traffic model satisfies the following:
Weak Constant Burst
• ,
• ,
•

The burst is a constant independent of time. It has been
shown in [4] that a maximal matching algorithm guarantees a
delay bound on every packet under a weak constant burst traffic
with a speedup . The result in [4] relies on the fact that,
with a maximal matching, if remains active, at least
packets are served in time steps (for input and output com-
bined). With a switching algorithm satisfying the local stability
property, at least packets will be served. The result
in [4] still holds as long as is a constant independent of time
(which is the case here). Therefore, we have the following result:
For any stable bounded bypass priority scheme , the
switching algorithm guarantees a delay bound on every packet
under a weak constant burst traffic with a speedup .
By strengthening the burst condition, we can provide guaran-
tees with a less stringent speedup requirement.

C. Strong Constant Burst Traffic

The strong constant burst traffic model satisfies the following:
Strong Constant Burst
• ,
•
•
•

Again, the burst is a constant independent of time. We will
prove stronger results stated in Theorem 2 and Theorem 3.

Let the priority scheme be the Earliest Activation Time6

priority scheme defined as follows: For any matching phase ,
iff has an earlier activation time

than that of , where the activation time of a is
simply the last time at which the transitioned to active.
Ties are broken arbitrarily, but consistently for to be a stable
priority scheme, e.g. using the indices and of the input and
output ports respectively. It is easy to show that is a stable
bounded bypass priority scheme. In fact, although it is not the
only stable bounded bypass priority scheme, is the most nat-
ural one: a newly active takes the lowest priority. Two
important facts about should be noted.

6If activation times are stored explicitly, and a centralized clock is not de-
sired, the effect of a centralized clock can be obtained if each port keeps a local
counter and the values of the counters are communicated in the request and grant
messages between the ports [11].



212 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

First, selecting the highest priority at a port can be done
in parallel in time using 2-input comparators:
The priorities (i.e. activation times) are compared pairwise and
the results are successively merged in a tree structure of height

. Moreover, updating the activation times and the ac-
tive/inactive status for all s at a port takes time since
at most one packet can arrive at an input port in one time step
and at most (constant) packets can be forwarded to and from
a port in one time step. Therefore, with the additional overhead
of storing the activation times, is as efficient as other
simple priority schemes like round robin (used in iSLIP and
DRR for instance).

Second, a particular concern about is the problem of un-
bounded activation times. To solve this problem, every port can
keep a balanced binary search tree of all its active s. When
a becomes active, it is inserted in the tree. Upon insertion,
the activation time of the is not needed simply because it
is the largest (it can be assumed to be ). Similarly, when a

becomes inactive, it is deleted from the tree. Upon dele-
tion, the activation time of the is not needed because dele-
tion only works on the structure of the tree. Both insertion and
deletion take time. Determining the highest priority

at a port is equivalent to finding the minimum in the tree
(leftmost ), which also takes time. Requests at
an input can be issued as follows: Given the previously served

in the tree, the sends a Strong signal to itself and
its right subtree, and a Weak signal to its left subtree. More-
over, going up the tree towards the root, each parent receives
a Strong or a Weak signal depending on whether it is reached
from its left or right child respectively, and in turn propagates
the same signal to its remaining subtree. A that receive
a Strong signal is issued a Strong request, and a that re-
ceives a Weak signal is issued a Weak request. Since the height
of the tree is , issuing all requests can be done in par-
allel in time. Therefore, with the additional overhead
of maintaining a balanced binary search tree structure, activa-
tion times can be eliminated without sacrificing performance (at
least in the theoretical sense).

Theorem 2: With the particular stable bounded bypass pri-
ority scheme , the switching algorithm achieves a
bounded length for every under a strong constant burst
traffic with a speedup .

Proof: For a given , if , then by the defini-
tion of a strong constant burst traffic, for
any time . Therefore, the length of cannot exceed . So
let us assume that . We will prove that cannot
remain active for more than a bounded number of matching
phases.

If the traffic satisfies the strong constant burst model, a
simple argument can show that if remains active for

matching phases, it acquires less than
packets (complete packets).

Let . Consider the in that
is the first to remain active for matching phases (if more than
one satisfy the property, choose one arbitrarily). There-
fore, if transitions to active in matching phase , it
remains active during .

Recall that the switching algorithm will compute a -stable}
matching with respect to in every matching phase

except for at most a bounded number of
matching phases . As a result, in every matching phase

, except for at most matching phases, an
active is served, with or .
Therefore, and by definition of , in every matching phase

, either a packet is forwarded from , or
a packet is forwarded from with an activation time no
later than , or a packet is forwarded from with
an activation time no later than .

As a result, at least packets that satisfy the above crite-
rion are forwarded from input or to output during

. A packet pertaining to a that becomes active
during does not satisfy the above criterion.
Moreover, since by the choice of , up to matching phase

, all s have been active for at most matching
phases, the number of these packets can be bounded as follows:

The bound above is obtained by the property of the strong
constant burst traffic, by the fact that all s in up to
matching phase have been active for at most
matching phases, and by the fact that all not in , i.e.
with , have always a length of at most as argued be-
fore.

We reach a contradiction if
or if

. If we define , then
. If ,

is at most and no can be
the first to remain active for more than matching phases. As a
result, the length of cannot exceed

by the property of the strong constant
burst traffic.

Theorem 3: With the particular stable bounded bypass pri-
ority scheme , the switching algorithm achieves a
bounded delay for every packet under a strong constant burst
traffic with a speedup .

Proof: If we change the definition of the set in the proof
of Theorem 2 to be the set of all s, then we prove that any

cannot remain active for more than
matching phases, where pos-

sibly now . Therefore, for any , is a well
defined bound. As a consequence, a packet cannot remain in its

for more than matching phases; otherwise, its
will remain active for more than matching phases, a contra-
diction.



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 213

If we add a technical assumption to the strong constant burst
traffic, we can obtain the delay guarantee of Theorem 3 with

(instead of ). The technical assumption is
the following: If , then at all times. By
adding this assumption, we only worry about such that

. We know from Theorem 2 that such a cannot
remain active for more than

matching phases, where . For any , this
is a well defined bound, and thus a packet cannot remain in its

for more than matching phases as argued in the proof
of Theorem 3.

Note that is a zero bypass priority scheme, i.e. a
can never bypass another ; simply because a newly active

will always have the lowest priority (the largest activation
time). Hence, once a matching is maximal, it will remain max-
imal until a transitions to inactive. This was experimen-
tally found to be useful. The following section provides some
of the experimental results comparing the relative performance
of to other iterative switching algorithms found in the
literature.

VI. EXPERIMENTAL RESULTS

While the results mentioned above hold for a speedup of 2,
we simulated the switching algorithm with no speedup
and with the priority scheme defined earlier. In the rest
of this paper, actually refers to . The simula-
tions for represent a slight variation from the algorithm
depicted in Fig. 3, namely, we chose to capture the state of a

more accurately (see footnote 4). In our simulations, if a
is empty by the end of matching phase and non-empty

at the beginning of matching phase , we count this as a
transition to active in matching phase , even if the
was active at the beginning of matching phase . Therefore, the
activation time of the is updated and, as a result, the
will have the latest activation time (i.e. lowest priority) among
all the s at the beginning of matching phase .

The simulations showed that with no speedup is ca-
pable of sustaining fairly high loads with only one iteration.
We will show performance comparisons between and
iSLIP, DRR, PIM, LQD, iLQF, pDRR, and iOCF.

iSLIP: Each input issues requests for all its non-empty
s. If an output receives any requests, it grants the one

that appears next in a fixed round robin order, starting from
the current position of the pointer. The pointer is incre-
mented to one location beyond the granted input if and only
if the grant was accepted. If an input receives any grants,
it accepts the one that appears next in a fixed round robin
order, starting from the current position of the pointer. The
pointer is incremented to one location beyond the accepted
output.
DRR: DRR is the same as iSLIP except that the RGA arbi-
tration is started at the output side.
PIM: Each input issues requests for all its non-empty

s. If an output receives any requests, it grants one
uniformly at random. If an input received any grants, it
accepts one uniformly at random.
LQD: LQD is a one iteration algorithm where the RGA
arbitration is started at the output side. Each output issues

requests for all its non-empty s. If an input receives
any requests, it grants one request, say for , with
probability .
If an output receives any grants, it accepts one uniformly
at random.
iLQF: Each input issues requests for all its non-empty

s. If an output receives any requests, it grants the
one corresponding to a with the largest number of
packets and ties are broken uniformly at random. If an
input receives any grants, it accepts the one corresponding
to the with the largest number of packets and ties
are broken uniformly at random.
pDRR: Each input issues requests for all its non-empty

s. If an output receives any requests, it grants the
one corresponding to the with the largest number
of packets and that appears next in a fixed round robin
order, starting from the current position of the pointer. The
pointer is incremented to one location beyond the granted
input if and only if the grant was accepted. If an input re-
ceives any grants, it accepts the one corresponding to the

with the largest number of packets and that appears
next in a fixed round robin order, starting from the current
position of the pointer. The pointer is incremented to one
location beyond the accepted output.
iOCF: iOCF is the same as iLQF except that instead of
using the (largest) length of a as a priority, it uses the
(smallest) timestamp of the head of line packet of a .

Our comparisons were done using a switch
with one iteration only7 and five different traffic patterns, all of
which are SLLN traffic: In each time step, a packet arrives at a
given input with probability , where represents
the loading of the switch. If a packet arrives at input , it is placed
in with probability , where . Therefore,

. The five traffic patterns are
as follows:

• Uniform Balanced: For every input and every output ,
.

• Non-uniform Balanced: For every input , it is possible to
order the outputs from 1 to such that

, where . The same
is true for every output . When , this is a uniform
balanced traffic. We used .

• Uniform Unbalanced: Each input sends packets to
outputs and each output receives packets

from inputs. For every input and every output
, if sends packets to , then .

We used and the flows
.

• Non-uniform Unbalanced: Each input sends packets to
outputs and each output receives packets from inputs.

If input sends packets to output , then call a partic-
ipating output of . A participating input is defined in a
similar way. For every input , it is possible to order the

7It is not fair to compare �-RGAwith one iteration to another algorithm with
multiple iterations. Otherwise, the latter will outperform �-RGA simply be-
cause it is likely to reach a maximal matching. Furthermore, it is not the premise
of this work to allow both algorithms to use multiple iterations, because if mul-
tiple iterations exist, one could design a better algorithm than �-RGA.



214 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Fig. 4. Throughput with uniform balanced traffic.

Fig. 5. Delay with uniform balanced traffic.

participating outputs from 1 to such that
, where . The same is

true for every output . When , this is a uniform un-
balanced traffic. We used and and
the same flows above.

• Non-admissible traffic: This traffic is used to explore the
issue of starvation that might cause when the
switch is overloaded (see last paragraph of Section IV).
It is exactly the Non-uniform Balanced traffic with one
added modification: the switch is idle in every other time
step. Therefore, if , the switch is overloaded.
For instance, if , the best throughput that can be
achieved for such traffic is 50%.

For a given value of , we compute throughput as the per-
centage of served packets, and delay as the average delay of
served packets (the delay of a packet is the difference between
its arrival time step and departure time step, i.e. zero if it de-
parts immediately). The percentage of served packets is a good
indication of throughput. Ideally speaking, if we let to be
the percentage of served packets when , then should
be the throughput of the switch. In all of our simulations, we
observed that when , the percentage of served packets
drops considerably below 100% and the average delay increases
substantially, implying that is in deed a good measure of the
throughput.

Fig. 6. Throughput with non-uniform balanced traffic.

Fig. 7. Delay with non-uniform balanced traffic.

The results for each of the traffic patterns described above are
based on an average of simulations ( time steps each).
We produce throughput and delay plots for values of varying
from 0 to 1 (21 points). Delay plots are truncated at the point
before a 10 fold increase, hence possibly reflecting a throughput
lower than the actual throughput.

A. Uniform Balanced Traffic

With a uniform balanced traffic, iSLIP and DRR perform the
best. Note that this traffic represents the theoretical condition
for the two algorithms to achieve 100% throughput. The sim-
ulation shows that this is true in deed (98.76%). has
a comparable performance to iSLIP and DRR, showing about
97.78% throughput. Both throughputs converge to 100% when
increasing the simulation time indicating that also
achieves 100% throughput under a uniform traffic. The rest
of the algorithms achieve less than 70% throughput. Refer to
Figs. 4 and 5.

B. Non-Uniform Balanced Traffic

With a non-uniform balanced traffic, the throughput of iSLIP
and DRR drops (expectedly) to below 75%. achieves
slightly above 90% throughput. The rest of the algorithms
achieve less than 80% throughput. Refer to Figs. 6 and 7.



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 215

Fig. 8. Throughput with uniform unbalanced traffic.

Fig. 9. Delay with uniform unbalanced traffic.

C. Uniform Unbalanced Traffic

With a uniform unbalanced traffic, the throughput of
is about 93.79%. Except for iSLIP and DRR, the performance
of at high loading is better than all other algorithms
(achieving less than 75% throughput). Refer to Figs. 8 and 9.

The reported throughput is the average of a 100 simulated
throughput values. This average shows that both iSLIP and DRR
achieve higher throughput ( 96.5%) than that of when

is close to 1. For instance, all active s receive packets
at the same rate (see description of a uniform unbalanced traffic
above); therefore, since is close to 1, no is likely to be-
come empty if all s are served equally. Moreover, if all

s remain non-empty, when s are served in one
matching, the round robin pointers may lock into a periodic be-
havior where s are served in every matching. Therefore,
the traffic acts like a uniform traffic for iSLIP and DRR, and all

s will be served equally. The throughput in that case is
theoretically 100%.

However, approximately 13% of the simulations (a total of
1000 simulations) show that the throughput of iSLIP and DRR
can be as low as 75% under a uniform unbalanced traffic pattern

, while the throughput
of never drops below 93%. Fig. 10 supports this ob-
servation and shows the standard deviation of a 100 simulated

Fig. 10. Standard deviations of throughputs.

Fig. 11. Throughput with non-uniform unbalanced traffic.

Fig. 12. Delay with non-uniform unbalanced traffic.

throughput values for each pair of traffic and switching algo-
rithm (standard deviations in bold are based on 1000 simula-
tions).

D. Non-Uniform Unbalanced Traffic

With a non-uniform unbalanced traffic, achieves
slightly above 90% throughput. The rest of the algorithms
achieve below 80% throughput. Refer to Figs. 11 and 12.

E. Non-Admissible Traffic

As mentioned at the end of Section IV, avoids star-
vation (every is inactive infinitely many times) with an
admissible traffic satisfying and .
However, if the traffic is not admissible, i.e. the switch is over-
loaded, can lead to starvation. For instance, if the traffic
is non-uniform such that a given receives most of the
packets, once that starts getting service, it will continue to
be served by forever because it will never be emptied.
This implies that other s at the same input (and output)



216 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 1, FEBRUARY 2008

Fig. 13. Service ratios with �-RGA under non-admissible traffic.

Fig. 14. Service ratios with modified �-RGA under non-admissible traffic.

never get a chance to be served, leading to starvation. Such be-
havior can be easily obtained with the non-admissible traffic de-
scribed earlier. Fig. 13 illustrates the service ratio (the number
of packets served divided by the total number of packets) for
every at input 1 under such traffic with .

It is obvious from Fig. 13 that the first starves all other
s at input 1. In fact, since the first receives approxi-

mately half the packets at input 1 (rates decrease geometrically
with ), the throughput ( 48%) is almost entirely due to
serving the first . Ideally, we would like the service ratio of
each to be equal to the throughput, and the throughput to
be as close as possible to 50% (which is the best we can achieve
under this non-admissible traffic).

Fortunately, we can solve the problem of starvation under a
non-admissible traffic pattern by slightly modifying the
algorithm. The modification is the following: if a is served
for successive matching phases, its activation time is set to
the current time (i.e. it is assigned the lowest priority according
to ). When this happens, other s will get a chance to be
served. The choice of must not affect the theoretical guar-
antees of . This is possible since under a speedup of

, every remains active for at most
matching phases (proof of

Theorem 2); therefore, can be set accordingly (if ,
however, the knowledge of the smallest rate is required). As
a practical choice, we set (i.e. 4096 in our case) since
this is the order of the bound mentioned above. Fig. 14 shows

Fig. 15. Throughputs of �-RGA and WFA (average of 100 simulations).

the service ratios for the s of input 1 after this modification
under the non-admissible traffic pattern. Results similar to those
in Figs. 13 and 14 were observed for the s at output 1.

Clearly, this modification to solves the starvation
problem for the non-admissible traffic pattern, although a slight
reduction in throughput is observed (but it remains better than
half the throughput achieved under a non-uniform balanced
traffic, which is the admissible version of this traffic). We
verified by simulation that this modification does not affect the
results for the other traffic patterns.

VII. A PIPELINING ARGUMENT TO

While does not explicitly use pipelining, with the
Earliest Activation Time priority scheme , one can draw a
conceptual connection to the process of pipelining a maximal
matching, in a way similar to WFA (and its variant WWFA) [18]
for instance. WFA does not belong to the RGA arbitration type
switching algorithms; it consists of crosspoints arranged
in an matrix, where crosspoint corresponds to

. The arbitration with WFA begins at the top priority
crosspoint (1,1) and proceeds in a “wave front” that moves diag-
onally from the top left to the bottom right of the matrix. There-
fore, a maximal matching is reached in iterations using
a fixed priority scheme ( has the highest priority and

has the lowest priority) [18].
In the pipelined version of WFA, crosspoint can start

working on iteration at the same time as crosspoints
and start working on iteration . Therefore, al-

though the computation of the matching takes iterations,
the pipelined version of WFA produces a maximal matching per
iteration. Moreover, if no transitions occur, this maximal
matching will be the same over successive iterations (due to the
fixed priority scheme). However, the highest priority crosspoint
(i.e. ) can rotate among the crosspoints periodically [18],
hence disturbing the pipelining (and the maximal matching) for
a number of iterations, but only to converge back to another
maximal matching.

This is conceptually similar to what does with the
Earliest Activation Time priority scheme and, therefore,
gives a strong argument to the approach: with
and , the matching converges to a maximal matching as long
as no becomes inactive. The matching is disturbed upon
such an event (this is when priorities change), only to converge
back to another maximal matching. Conceptually, the differ-
ence between the two is that assigns priorities based on
the activation times rather than using a rotating priority scheme
as in WFA. Fig. 15 shows the comparison in throughput for both
algorithms. We allow WFA to compute a maximal matching
every iteration and we rotate the priority every one iteration.



MNEIMNEH: MATCHING FROM THE FIRST ITERATION: AN ITERATIVE SWITCHING ALGORITHM FOR AN INPUT QUEUED SWITCH 217

VIII. CONCLUSION

Theoretically speaking, with a particular priority scheme
being the Earliest Activation Time, the algorithm

achieves bounded length (throughput) and a delay guar-
antee with a speedup , under a constant burst traffic.
The algorithm requires computational com-
plexity to update the priorities and select the highest priority
request, with the use of appropriate parallelism at the ports.
Since only one iteration is needed in each matching phase
(or more generally, a constant number of iterations), the com-
putational complexity of the switching algorithm is

.
Practically speaking, the algorithm achieves high

throughput with no speedup, only one iteration, and the Ear-
liest Activation Time priority scheme . We assess the relative
performance of to other iterative switching algorithms
through simulation, under the one iteration limit, and with
different traffic patterns: consistently achieves higher
throughput and lower delay than the other algorithms.

REFERENCES

[1] T. E. Anderson, S. Owicki, J. Saxes, and C. Thacker, “High speed
switch scheduling for local area networks,” ACM Trans. Comput. Syst.,
vol. 11, no. 4, pp. 319–352, Nov. 1993.

[2] J. Blanton, H. Badt, G. Damm, and P. Golla, “Iterative scheduling al-
gorithms for optical packet switches,” presented at the IEEE ICC 2001,
Helsinki, Finland, Jun. 2001.

[3] J. Blanton, H. Badt, G. Damm, and P. Golla, “Impact of polarized traffic
on scheduling algorithms for high speed optical switches,” presented at
the ITCom 2001, Denver, CO, Aug. 2001.

[4] A. Charny, P. Krishna, N. Patel, and R. Simcoe, “Algorithms for
providing bandwidth and delay guarantees in input-buffered crossbars
with speedup,” in Proc. 6th Int. Workshop on Quality of Service
(IWQOS’98), May 1998, pp. 235–244.

[5] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. IEEE INFOCOM, 2000, pp. 556–564.

[6] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly, vol. 69, pp. 9–15, 1962.

[7] G. Damm, J. Blanton, P. Golla, D. Verchere, and M. Yang, “Fast sched-
uler solutions to the problem of priorities for polarized data traffic,”
presented at the Int. Symp. Telecommunications (IST 2001), Tehran,
Iran, 2001.

[8] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-per-
formance schedulers for high-aggregate bandwidth switches,” in Proc.
IEEE INFOCOM, 2002, pp. 1160–1169.

[9] P. Gupta and N. McKeown, “Designing and implementing a fast
crossbar scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, Jan.-Feb.
1999.

[10] I. Keslassy, M. Kodialam, T. V. Lakshman, and D. Stiliadis, “On guar-
anteed smooth scheduling for input-queued switches,” in Proc. IEEE
INFOCOM, 2003, pp. 1384–1394.

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” CACM, vol. 21, no. 7, pp. 558–565, 1978.

[12] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the stability of
input-queued switches with speed-up,” IEEE/ACM Trans. Networking,
vol. 9, no. 1, pp. 104–118, Feb. 2001.

[13] Y. Li, S. Panwar, and H. J. Chao, “Saturn: a terabit packet switch using
dual round robin,” IEEE Commun. Mag., vol. 38, no. 12, pp. 78–84,
Dec. 2000.

[14] N. McKeown, “Scheduling algorithms for input queued cell switches,”
Ph.D. dissertation, Univ. California, Berkeley, May 1995.

[15] N. McKeown, “The iSLIP scheduling algorithm for input queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188–201,
Apr. 1999.

[16] S. Mneimneh, V. Sharma, and K.-Y. Siu, “Switching using parallel
input-output queued switches with no speedup,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 653–665, Oct. 2002.

[17] S. Mneimneh and K. Y. Siu, “On achieving throughput in an
input-queued switch,” IEEE/ACM Trans. Networking, vol. 11, no. 5,
pp. 858–867, Oct. 2003.

[18] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 1,
pp. 13–27, Jan. 1993.

[19] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” in Proc. IEEE IN-
FOCOM, 1998, vol. 2, pp. 533–539.

Saad Mneimneh, photograph and biography not available at the time of publi-
cation.


