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Abstract. The interaction of two RNA molecules involves a complex
interplay between folding and binding that warranted the development
of RNA-RNA interaction algorithms. However, these algorithms do not
handle more than two RNAs. We note our recent successful formula-
tion for the multiple (more than two) RNA interaction problem based
on a combinatorial optimization called Pegs and Rubber Bands. Even
then, however, the optimal solution obtained does not necessarily corre-
spond to the actual biological structure. Moreover, a structure produced
by interacting RNAs may not be unique to start with. Multiple solu-
tions (thus sub-optimal ones) are needed. Here, a sampling approach
that extends our previous formulation for multiple RNA interaction is
developed. By clustering the sampled solutions, we are able to reveal
representatives that correspond to realistic structures. Specifically, our
results on the U2-U6 complex and its introns in the spliceosome of yeast,
and the CopA-CopT complex in E. Coli are consistent with published
biological structures.

Keywords: Multiple RNA interaction · RNA structure · Gibbs
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1 Introduction

The role of interaction between two or more RNA molecules has been increasingly
recognized in regulatory mechanisms, including gene expression, methylation, and
splicing. Pairwise interaction has been noted for regulating gene expression, e.g.
when one RNA binds to the ribosome binding site of another mRNA, thus block-
ing its translation to protein [18]. Typical scenarios of multiple RNA interaction
involve the interaction of multiple small nucleolar RNAs (snoRNAs) with riboso-
mal RNAs (rRNAs) in guiding the methylation of the rRNAs [24], and multiple
small nuclear RNAs (snRNA) with mRNAs in the splicing of introns [34].

The prediction of structures resulting from pairwise interactions is now some-
what understood, due to successful efforts in generalizing the partition function
of a single RNA to the case of two.
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Algorithms for pairwise interaction of RNAs can be found in [3,7,8,15,19,
24,25,29,31,32]. However, when carried over to multiple RNAs (more than two),
generalizing the partition function further does not necessarily lead to efficient
algorithms for computing it. Consequently, structure prediction in the context
of multiple RNAs was almost non-existent; with just a few attempts that lack
the ability to produce realistic structures. The de facto approach for multiple
RNAs has been to account for their interaction by concatenating the RNAs
into a single long RNA, which is then folded in order to predict the structure
[4,10]. On the one hand, this presents a challenge to existing folding algorithms,
which are far less reliable when the RNA is too long. On the other hand, most
folding algorithms prevent the formation of pseudoknots due to their increased
computational complexity. While pseudoknots are rare in folded structures, they
translate into kissing loops when spanning multiple RNAs, which are quite fre-
quent in interacting RNA structures. There are a few attempts for introducing
kissing loops into the concatenation model, e.g. [6], but advances in pairwise
interaction algorithms based on the generalized partition function suggest that
the latter are more adequate, so they remain the state-of-the-art for two RNAs.

Therefore, a promising approach is to adapt existing pairwise interaction
algorithms to the case of multiple RNAs. This generally leads to a computational
hurdle: when RNAs are treated pairwise, an immediate consequence is the greedy
nature of the algorithm. The best interacting pair of RNAs will dominate the
solution, as in [35,36]. Since the pair of RNAs is required to fully interact, this
will “lock” the interaction pattern of the whole ensemble into a sub-optimal
state; thus preventing the correct structure from presenting itself as a solution.

We have recently proposed in a series of works [1,2,26,28] a mathematical
formulation based on combinatorial optimization that overcomes the issues out-
lined above. The model handles multiple RNAs without having to generalize the
partition function beyond pairs. The resulting algorithms are not based on the
concatenation paradigm, so they allow the formation of kissing loops, as well as
other structures. And while they are still primarily based on an adaptation of
pairwise interaction, they avoid the “locking” problem mentioned earlier.

Even then, obtaining one (optimal) solution for a multiple RNA interac-
tion problem is not completely satisfactory. Many biological factors are hard to
account for computationally. In addition, correct biological structures are often
not unique. Therefore, some realistic solutions are ought to be sub-optimal, which
is what we address here.

2 Preliminaries

2.1 The Model: Pegs and Rubber Bands

We advocate a combinatorial optimization problem called Pegs and Rubber
Bands as a framework for multiple RNA interaction. The link between the two
will be made shortly following a formal description of Pegs and Rubber Bands.

Consider m levels numbered 1 to m with nl pegs in level l numbered 1 to nl.
There is an infinite supply of rubber bands, and a rubber band can be placed
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around pegs in consecutive levels. For instance, we may choose to place a rubber
band around pegs [i1, i2] (i.e., the set of pegs from i1 to i2, where i1 ≤ i2),
in level l, and pegs [j1, j2] in level l + 1. In this case, the rubber band defines
a window with a given weight w(l, i2, j2, u, v), where u = i2 − i1 + 1 and v =
j2 − j1 + 1 represent the lengths of the intervals covered by the window in levels
l and l + 1, respectively (as in Fig. 1). For convenience, we will use w(l, i, j, u, v)
interchangeably to denote both the window and its weight, depending on context.
As such, each window w(l, i, j, u, v) defines two intervals, [i − u + 1, i] in level l
and [j − v + 1, j] in level l + 1. Two windows overlap if any of their intervals
overlap on the same level. In addition, w(l, i, j, u, v) and w(l, i′, j′, u′, v′) overlap
if sgn(i − i′) �= sgn(j − j′) (their rubber bands cross).

Fig. 1. A rubber band around pegs defines a window. The lengths u = i2 − i1 + 1 and
v = j2 − j1 + 1 of the corresponding intervals may be different.

The Pegs and Rubber Bands problem is to maximize the total weight by
placing rubber bands around pegs in such a way that none of their corresponding
windows overlap.

To make the connection with multiple RNA interactions: RNA sequences
become the levels, the ordered pegs in each level represent RNA bases
{A,G,C,U} in the order of occurrence in their sequence, a window w(l, i, j, u, v)
is an interaction between bases [i − u + 1, i] in RNA l and bases [j − v + 1, j] in
RNA l + 1, and the weight w(l, i, j, u, v) is chosen based on the energy of that
interaction. The energies are obtained using a generalized partition function for
pairwise interaction, and account for both intra- and inter- molecular energies.
The no overlap condition reflects a typical nature of RNA interactions, and the
maximization nature of the problem corresponds to energy minimization.

2.2 An Approximation Algorithm

A polynomial time approximation scheme (PTAS) for Pegs and Rubber Bands
based on dynamic programming was described in [2,28], where n = maxl nl.

Theorem 1. Polynomial Time Approximation Scheme (PTAS) Pegs and Rub-
ber Bands is NP-hard; however, for every ε > 0, it admits a polynomial time
algorithm that runs in O(� 1

ε �mn� 1
ε �) time and achieves a total weight within a

(1 − ε)-factor of optimal.

The mapping of RNAs to levels can be obtained as in [2,28]. Figure 2 shows
an example of a structure predicted using the Pegs and Rubber Bands formula-
tion as reported in [2,28], where windows are replaced by bonds between their
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I1 3’ UGUAUG 5’

||||

U6 5’ AUAC...GAUU...GUGAAGCGU 3’

|||| |||||||||

U2 3’ UAUGAU...CUAG...CACUUCGCA 5’

|||||

I2 5’ UACUAAC 3’

Fig. 2. Multiple RNA interaction within the eukaryotic spliceosome, a large ribonu-
cleoprotein assembly responsible for the excision of intervening sequences in precursor
messenger (pre-mRNA) molecules. Showing is the spliceosomal U2-U6 small nuclear
(snRNA) and introns I1 and I2. The resulting structure is consistent with biological
experiments [34,38].

corresponding intervals. The formulation avoids the “locking” problem, since
treating the RNAs pairwise would have favored the full binding of U2-U6 to
include their left extremities in Fig. 2, leaving I1 and I2 detached.

3 Realistic Biological Factors and Sub-optimal Solutions

Most algorithms for RNA-RNA interaction compute a partition function for the
two RNAs based on loop energies in ways inspired by the basic algorithm of
McCaskill for a single RNA [21]. Thus, when it comes to multiple RNA inter-
action, the maximization of weight in the Pegs and Rubber Bands problem is
somewhat equivalent to minimization of energy.

We have successfully used weights obtained from the tool RNAup [29] as
follows: w(l, i, j, u, v) ∝ log Pl(free[i − u + 1, i]) + log Pl+1(free[j − v + 1, j]) +
log ZI

l (i − u + 1, i, j − v + 1, j) where Pl(free[i, j]) is the probability that sub-
sequence [i, j] is free (does not fold) in RNA l, and ZI

l (i1, i2, j1, j2) is the gen-
eralized partition function of the interaction of subsequences [i1, i2] in RNA l
and [j1, j2] in RNA l + 1 (subject to no folding within the RNAs subsequences).
Therefore, the method may be categorized as an MFE-like approach (Minimum
Free Energy). It is clear that such an approach does not capture “everything”.

Many biological factors affect the observed structure of interacting RNA
molecules. For instance, reversible kissing loops (where some hydrogen bonds
of the interaction between hairpins unwind) [17] are generally not captured by
MFE since a kissing loop is energetically more favorable than a partial one. We
observe such artifacts within the pairwise interaction of CopA-CopT in E. Coli,
as shown in Fig. 3.

Another example is the U2-U6 snRNA complex. There seems to be a lack
of consensus whether the U2-U6 snRNA complex forms a 4-way or a 3-way
junction (most likely both structures co-exist [5,30,33,38]). Figure 4 shows the
two possibilities. It has been conjectured in [5] that co-axial stacking is essential
for the stabilization of helix I in U2-U6 and, therefore, inhibition of the co-axial
stacking, possibly by protein binding, may activate the second conformation
(with helices Ia and Ib).



82 S. Mneimneh and S.A. Ahmed

(a)

CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

||||||||||||| |||||||||||||||||||||||| ||||||||

CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

(b)

CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

|||||||||||| ||||||||| ||||||

CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

Fig. 3. The pairwise interaction of CopA-CopT: (a) computational prediction with
artifact interactions due to the maximization nature of the problem, and (b) the actual
biologically known interaction [18], where the last window is dropped and the middle
window is split (reversible kissing loop).

Fig. 4. U2-U6 snRNA complex in humans obtained by Greenbaum’s lab [38]. The
4-way junction appears on the left hand side with Helix I, and the 3-way junction
appears on the right hand side with Helices Ia and Ib.

Therefore, correct biological structures are not always “optimal” (from the
computational perspective), and often are not unique. Sub-optimal solutions are
needed to cover the biological ground. To that end, we consider in this paper two
main modifications to our original approach based on Pegs and Rubber Bands:

– Sampling is used to produce multiple (sub-optimal) solutions instead of a
single solution (this is described in Sect. 4).

– Windows are considered to be either single or dependent. Single windows con-
tribute a weight equal to a sum of three terms as described above (our origi-
nal formulation). Recall that each window w(l, i, j, u, v) defines two intervals,
[i − u + 1, i] in level l and [j − v + 1, j] in level l + 1. If a solution con-
tains two windows that define intervals [a, b] and [c, d] in level l with b < c
and no other intervals in between, then we may consider them dependent
in level l (windows can be dependent in one or two levels) and thus replace
log Pl(free[a, b]) + log Pl(free[c, d]) (each of these two terms is coming from
the single contribution of each window) with log Pl(free[a, d]), if the latter is
larger than the former sum. This allows window splits such as the one shown
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in Fig. 3(b) to be not so detrimental to the total weight of the solution. Given
a solution, its total weight is then obtained by the optimal determination of
single and dependent windows in each level to maximize that weight (this is
achieved by a dynamic programming algorithm for each level). We denote this
modified weight of a solution S by w(S).

4 A Sampling Approach

Sampling is more efficient than exhaustive enumeration of solutions within a
certain threshold of optimal, especially that many of these solutions will be
similar. Furthermore, sampling has been successfully used in the context of a
single RNA; for instance, in [9,23,37] to mention a few examples. For the multiple
RNA interaction, we propose below an approach based on Gibbs sampling and
the Metropolis-Hastings algorithm.

4.1 The Gibbs Sampler

The described model for multiple RNA interaction, viewed as Pegs and Rub-
ber Bands with m levels, lends itself quite naturally to Gibbs sampling [13,20].
As a random variable, let Sl be a set of non-overlapping windows of the form
w(l, i, j, u, v), so Sl represents a valid interaction pattern between RNA l and
RNA l + 1. A Gibbs sampler works by sampling each random variable individu-
ally in order, conditioned on the current values of the other variables. In other
words, we work with P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1). Therefore, if we start
with S0

1 = . . . = S0
m−1 = ∅, we sample S1

1 using P (S1|S0
2 , . . . , S0

m−1), then S1
2

using P (S2|S1
1 , S0

3 , . . . S0
m−1), then S1

3 using P (S3|S1
1 , S1

2 , S0
4 , . . . , S0

m−1), and so
on until we sample S1

m−1 using P (Sm−1|S1
1 , . . . , S1

m−2). We call (S1
1 , . . . , S1

m−1)
our first sample, and we repeat to obtain (St

1, . . . , S
t
m−1) for every t. Under typ-

ical conditions of ergodicity [11], the Gibbs guarantee is that (St
1, . . . , S

t
m−1) for

large t is a sample from P (S1, . . . , Sm−1), which is not necessarily a known dis-
tribution, in contrast to P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1) which is reasonably
accessible.

This is interesting because, conditioned on S1, . . . , Sl−1, Sl+1, . . . , Sm−1, the
permissible windows of the form w(l, i, j, u, v) are exactly those which do not
overlap with windows in Sl−1 and Sl+1. As such, we assume that:

P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1) = P (Sl|Sl−1, Sl+1)

P (Sl|Sl−1, Sl+1) ∝
{

0 Sl contains a window that overlaps in Sl−1 or Sl+1

ew(Sl) otherwise

The exponential term is similar in spirit to the standard Boltzman distribution
used for RNAs, knowing that w(Sl) represents the negative of the energy.

If P (Sl|Sl−1, Sl+1) is easy to sample from, then the Gibbs sampler works
nicely given a fixed mapping of RNAs to levels 1 to m. We describe in the next
section how to sample from P (Sl|Sl−1, Sl+1).



84 S. Mneimneh and S.A. Ahmed

4.2 Gibbs Sampling with Metropolis-Hastings

The Metropolis-Hastings algorithm for sampling (also known as the Markov
Chain Monte Carlo method) was described in [14,22], and since then has been
utilized extensively in the literature. To sample from P (Sl|Sl−1, Sl+1), we first
drop all the windows of the form w(l, i, j, u, v) that overlap in Sl−1 or Sl+1.
We only work with the remaining windows of the form w(l, i, j, u, v). We then
construct a random sequence S0

l , S1
l , . . ., where St

l is a set of non-overlapping
windows of the form w(l, i, j, u, v). This can be done with a Metropolis-Hastings
strategy: Given St

l , we randomly generate St+1
l with some proposal probability

Q(St+1
l |St

l ), and either accept St+1
l with probability

min
{

1,
Q(St

l |St+1
l )

Q(St+1
l |St

l )
× ew(St+1

l )

ew(St
l )

}

or reject it and let St+1
l = St

l .
It is well known and easy to show that such a strategy results in a Markov

chain which converges to the desired probability distribution if the proposal
chain Q(St+1

l |St
l ) satisfies Q(St+1

l = y|St
l = x) > 0 ⇔ Q(St+1

l = x|St
l = y) > 0;

this also makes it irreducible [12].
For practical purposes, we limit St

l to contain only windows w(l, i, j, u, v)
where u = v. We also do not allow two adjacent windows w(l, i, j, u, v) and
w(l, i − u, j − v, u′, v′) to co-exists (since together they represent one bigger
window). With that in mind, a simple strategy is to make Q(St+1

l |St
l ) uniform

among all the neighbors of St
l (including St

l itself), where a neighbor other than
St

l can be obtained by one of the following three operations:

– a window w(l, i, j, u, v) ∈ St
l is removed from St

l

– a window w(l, i, j, u, v) �∈ St
l that does not overlap in St

l is added to St
l

– a window w(l, i, j, u, v) ∈ St
l is replaced by a window w(l, i′, j′, u′, v′) �∈ St

l

that only overlaps with w(l, i, j, u, v) in St
l

Therefore, for every St+1
l that is a neighbor of St

l , Q(St+1
l |St

l ) is the inverse of
the number of neighbors of St

l . This proposal probability defines an irreducible
Markov chain since every pair of solutions can be reached from one another
through a sequence of neighbors.

4.3 A Notion of Distance for Sub-optimal Solutions

Many of the sampled sub-optimal solutions will be similar. To quantify this
similarity/dissimilarity, we need to describe a distance function. To motivate
our approach, we first define the notion of a terminal window: Given a solution
S, the terminal window w(l, i, j, u, v) ∈ S is the window with the largest l such
that no windows appear on its right in levels l − 1, l, and l + 1:

– no window w(l − 1, i′, j′, u′, v′) ∈ S has j′ > i
– no window w(l, i′, j′, u′, v′) ∈ S has i′ > i
– no window w(l + 1, i′, j′, u′, v′) ∈ S has i′ > j
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By recursively eliminating the terminal window from a solution, we obtain a
total order on the windows of that solution.

Our approach builds on the idea that if two solutions are similar, we expect
them to have a similar set of windows; furthermore, these windows should exhibit
the same order. In more detail, given a solution S, define |S| as the number of
windows in S, and let w(l1, i1, j1, u1, v1), . . . , w(l|S|, i|S|, j|S|, u|S|, v|S|) be the |S|
windows in the order defined by terminal windows. Each of these windows, say
w(l, i, j, u, v), defines the two intervals, [i − u + 1, i] in level l and [j − v + 1, j] in
level l + 1. Define the set of interaction intervals

I(S) = (I1, . . . , I2|S|) = ([i1 − u1 + 1, i1], [j1 − v1 + 1, j1], . . .

. . . , [i|S| − u|S| + 1, i|S|], [j|S| − v|S| + 1, j|S|])

as an ordered sequence of 2|S| intervals, and L(S) = (l1, . . . , l|S|) as an ordered
sequence of |S| levels, where li is the level defining the ith window. Therefore,
L(S) means that we have the following set of pairwise interactions (not neces-
sarily unique in terms of RNAs): RNA l1 with RNA l1 + 1, RNA l2 with RNA
l2 + 1, . . ., RNA l|S| with RNA l|S| + 1. Two solutions that do not agree on
this set, or do not define overlapping interaction intervals, are considered com-
pletely dissimilar; otherwise, their distance is given by the amount of overlap
in their interaction intervals (as in the Jaccard metric [16]), hence the following
definition of distance:

Given two solutions S1 with I(S1) = (I1, I2, . . .) and S2 with I(S2) =
(T1, T2, . . .), the distance between S1 and S2 is

d(S1, S2) =

{
1 −

∑
i |Ii∩Ti|∑
i |Ii∪Ti| L(S1) = L(S2) and Ii ∩ Ti �= ∅ for all i

1 otherwise

where ∩ and ∪ represent the standard intersection and union operations on
sets respectively, and intervals are treated as sets of integers. This distance is
modified from our previous metric in [26,27], and is not a metric; however, it
works well with the clustering algorithm described below.

4.4 Clustering the Samples

The sampled sub-optimal solutions are generally more than what we need. In
addition, as mentioned above, many of them will be similar. Therefore, we use
clustering to reduce their number. To cluster the samples, we first remove dupli-
cates, so we only work with unique samples. We then drop all solutions with a
weight below 1/3 of the best. Finally, we sort the solutions to make the output
of the clustering deterministic. We adopt hierarchical agglomerative clustering
with complete linkage, and we obtain the clusters by “cutting” the tree where
distance between clusters is 1. Given the clusters, the optimal solution in each
cluster acts as a “representative” of the cluster. The representatives should reveal
some of the structures that are observed in biological experiments [1,26,27].
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5 Experimental Results

We perform 50 iterations of the Metropolis-Hastings algorithm without rejec-
tion. This allows us to start at some random solution. We then allow 50 iterations
(with rejection) for the “burn-in” time of the Metropolis-Hastings algorithm.
Finally, we generate 50 samples in 50 iterations and select one uniformly at ran-
dom. We generate 1000 solutions (Gibbs samples) by repeating this procedure,
as described in Sect. 4.1.

After clustering, we sort the representatives of the clusters by decreasing
weight. We consider the first k representatives, for a given k. To assess our app-
roach, we repeat the experiment 100 times. Given a set of candidate structures
in mind; for instance, Fig. 5 shows four candidates for the yeast spliceosome, we
then count how many times (in the 100 runs) each candidate is found among
the first k representatives, as a percentage hit. We also compute the “rank” of
each candidate, which is the first time1 that candidate is seen as representative,
averaged over the 100 experiments.

5.1 Experiment 1: Structural Variation

The U2-U6 complex in the spliceosome of yeast has been reported to have two
distinct experimental structures, e.g. [33]. In one conformation, U2 and U6 inter-
act to form a helix known as helix Ia. In another conformation, the interaction
reveals a structure containing an additional helix, known as helix Ib. Section 3
describes possible underlying mechanisms that are responsible for this confor-
mational switch. We consider the set of four candidates in Fig. 5. The results are
summarized in Table 1.

Table 1. Results for the yeast spliceosome. Each entry lists the percentage hit followed
by the average rank.

k 1 2 3 4 5 6 7 8 9 10

Helices Ia+Ib 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

Helices Ia+Ib, I1
detached

0 − 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2

Helix Ia 0 − 0 − 0 − 40 4 85 4.5 100 4.8 100 4.8 100 4.8 100 4.8 100 4.8

Helix Ia, I1
detached

0 − 0 − 0 − 0 − 40 5 85 5.5 100 5.8 100 5.8 100 5.8 100 5.8

5.2 Experiment 2: Artifact Interactions

Due to the optimization nature of the problem, it is sometimes easy to pick
up interactions that are not biologically real. This is because dropping these
interactions from the solution would make it sub-optimal (even when preferred
biologically, as described in Sect. 3). The last interaction window of CopA-CopT

1 We use “first time” because many solutions can represent the same candidate; for
instance, a window can split in different ways, but we still refer to it as a window
split.
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(a)

I1 3’ UGUAUG

|||

U6 5’ ACAGAGAUGAUC--AGC

||||| |||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(b)

I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUC--AGC

||||| |||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(c)

I1 3’ UGUAUG

|||

U6 5’ ACAGAGAUGAUCAGC

|||||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(d)

I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUCAGC

|||||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

Fig. 5. The yeast spliceosome with 4 RNAs (I1 and I2 are functionally independent
stretches of the same much longer messenger RNA). (a) Helix Ia and helix Ib with both
introns attached. (b) Helix Ia and helix Ib with I1 detached. (c) Helix Ia with both
introns attached. (d) Helix Ia with I1 detached.

in Fig. 3 is an example of such an artifact. We consider six candidate solutions
based on presence/absence of windows and window splits, as described in Table 2.
For each of the three interaction windows in Fig. 3, we consider whether the
window is present, dropped, or split. Typically, we detect a window split when
the two portions happen to be treated as dependent in some level l (see Sect. 3).
Therefore, to correctly capture reversible kissing loops, undesired splits can be
ignored if the corresponding window does not represent a kissing loop. Given the
RNA structures of CopA and CopT, only the middle window is a kissing loop.

Table 2. Results for CopA-CopT. For each of the three interaction windows in Fig. 3,
we consider whether the window is present, dropped, or split. Each entry lists the
percentage hit followed by the average rank.

k 1 2 3 4 5 6 7 8 9 1 0

First, middle, last 89.6 1 93.8 1 97.9 1.1 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2

First, middle split,
last

4.2 1 52.1 1.9 77.1 2.3 93.8 2.6 97.9 2.7 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8

First, middle, last
dropped

4.2 1 10.4 1.6 16.7 2.1 20.8 2.5 27.1 3.1 29.2 3.3 31.2 3.5 31.2 3.5 35.4 4.2 35.4 4.2

First, middle split,
last dropped

0 − 2.1 2 2.1 2 4.2 3 12.5 4.3 18.8 4.9 25 5.4 29.2 5.8 37.5 6.5 41.7 6.8

First split, middle,
last

2.1 1 8.3 1.8 20.8 2.5 27.1 2.8 43.8 3.7 54.2 4.1 70.8 4.8 79.2 5.1 83.3 5.3 83.3 5.3

First split, middle,
last dropped

0 − 0 − 0 − 0 − 2.1 5 4.2 5.5 6.2 6 6.2 6 10.4 7.2 10.4 7.2
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6 Conclusion

In RNA interaction, the optimal structure may not be the real structure, and the
real structure may not be unique. In this work, we build on our previous approach
for multiple RNA interaction using the Pegs and Rubber Bands formulation to
generate multiple sub-optimal solutions. This is developed using Gibbs sampling
and the Metropolis-Hastings algorithm.

Our sampling approach successfully computes sub-optimal solutions for the
multiple RNA interaction problem that are truthful representations of the actual
biological structures. For instance, it can provide several candidate structures
when they exist, e.g. the U2-U6 complex and its introns in the spliceosome of
yeast, and find structures that agree with the literature, but are not necessarily
optimal in the computational sense, e.g. CopA-CopT in E. Coli.
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