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ABSTRACT

In this work we show that once a single peer-to-peer (P2P)
bot is detected in a network, it may be possible to efficiently
identify other members of the same botnet in the same net-
work even before they exhibit any overtly malicious behav-
ior. Detection is based on an analysis of connections made
by the hosts in the network. It turns out that if bots select
their peers randomly and independently (i.e. unstructured
topology), any given pair of P2P bots in a network com-
municate with at least one mutual peer outside the network
with a surprisingly high probability. This, along with the
low probability of any other host communicating with this
mutual peer, allows us to link local nodes within a P2P
botnet together. We propose a simple method to identify
potential members of an unstructured P2P botnet in a net-
work starting from a known peer. We formulate the problem
as a graph problem and mathematically analyze a solution
using an iterative algorithm. The proposed scheme is simple
and requires only flow records captured at network borders.
We analyze the efficacy of the proposed scheme using real
botnet data, including data obtained from both observing
and crawling the Nugache botnet.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.3 [Computer
Communication Networks]: Network Operations—Net-
work Monitoring
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1. INTRODUCTION
Botnets, which are networks of compromised hosts (bots)

under the control of a botmaster, have become a major
threat in recent years. Botnets are used to perform vari-
ous malicious activities such as spamming, phishing, steal-
ing sensitive information, conducting distributed denial of
service (DDoS) attacks, scanning to find more hosts to com-
promise, etc. Bots which perform such malicious activity,
occasionally go over the radar and get detected by Intru-
sion/Anomaly/Behavior Detection Systems present within
the network. In fact, network administrators routinely dis-
cover bots which are then immediately quarantined or re-
moved. However, some interesting and important questions
remain, such as: “Does the network contain more bots
of the same type which haven’t been exposed yet?”
“Can the discovered bot be leveraged to find other dor-
mant bots of the botnet before they commit any ma-
licious activity?” “Can all this be done without any
access to backbone traffic and only from netflow data
from the edge router?”
A common and fairly obvious approach to find dormant

bots is to characterize the Command and Control (C&C)
channel from the discovered bot’s recent traffic and iden-
tify hosts that exhibit similar C&C traffic characteristics.
For example, botnets with a centralized C&C architecture,
where all bots receive commands from a few central con-
trol servers, the source of the C&C messages can be used
to characterize the corresponding C&C channel and reveal
potential dormant bots [23].
However, characterizing the C&C channel is in general not

a trivial task for botnets that utilize a peer-to-peer (P2P)
architecture involving no central server. For example, this
kind of source analysis falls short for P2P botnets as here
the botmaster can use any node to inject C&C messages. To
receive and distribute C&C messages, each P2P bot com-
municates with a small subset of the botnet (i.e. peer list)
[30, 14, 18] and maintains its own peer list independently.
Hence, no obvious common source of C&C messages can be
observed, thereby preventing the linking of the discovered
bot with the dormant bots. Furthermore, features based on
packet sizes and timings, such as packets per flow, bytes per
flow, flows per hour, etc. may not be useful in characterizing
a C&C channel, since botmasters can easily randomize such
features thereby obtaining different feature values for each
bot [29]. Botnets such as Nugache, Storm, Waledac and
Conficker employ advanced encryption mechanisms [30, 14,
18, 28, 27] making characterization based on packet contents
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infeasible.
In this paper we propose an efficient technique to dis-

cover additional P2P bots in a network after one such bot
has been discovered. Specifically, the proposed technique
provides a list of hosts ordered by a degree of certainty,
that potentially belong to the same P2P botnet as the dis-
covered bot. Network administrators can use this list as a
starting point of their investigation and potentially identify
more bots in their network once they discover one. The
proposed technique is based on the simple observation that
peers of a P2P botnet communicate with other peers in or-
der to receive commands and updates. Although different
bots may communicate with different peers, we show that
for P2P botnets with an unstructured topology, where bots
randomly pick peers to communicate with, there is a sur-
prisingly high probability that any given pair of P2P bots
communicate with at least one common external bot during
a given time window. In other words, there is a significant
probability a pair of bots within a network have a mutual
contact. We present a precise mathematical derivation of
this probability as a function of the size of a botnet and the
number of peers a bot contacts. Notice that we focus on
P2P botnets with unstructured topology in this work and
the term ”P2P botnet“ refers to unstructured P2P botnets
in the rest of the paper unless stated otherwise.
In order to discover dormant bots, we first construct a mu-

tual contacts graph where every host is a node and two nodes
share an edge if they share a mutual contact. The weight or
capacity on an edge is the number of mutual contacts shared
between the corresponding hosts incident on the edge. Then
given a discovered bot or seed bot, we present an iterative
algorithm, which identifies other potential members of the
botnet by iteratively computing a level of confidence to each
host on the graph. We declare the hosts which have confi-
dence levels higher than a threshold as potential members
of the same P2P botnet as the seed-bot. We present experi-
mental results with real and simulated traffic to measure the
effectiveness of our technique. We also present mathemati-
cal analysis characterizing the structure of a mutual contact
graph.
In addition to being simple and effective the proposed

scheme has the following desirable properties:
• The proposed method is not an anomaly detection
scheme and hence doesn’t require P2P bots to exhibit
any overtly malicious activity.

• Similarly, it is not a behavior clustering algorithm and
therefore doesn’t require any common behavior exhib-
ited by all the bots.

• It utilizes the pairwise mutual-contact relationships
between pairs of bot peers, which arise due to P2P
C&C communications. We validate the existence of
such relationships both mathematically and experi-
mentally.

• The proposed method is generic and doesn’t depend
on specific properties of specific botnets. Therefore,
it doesn’t require reverse engineering bot binaries or
C&C protocols [3].

• Contrary to existing graph-based network traffic anal-
ysis methods [26] [19], the proposed method doesn’t
require any access to backbone traffic. Mutual-contact
relationships are deduced locally at an edge router.

In the rest of this paper, we explain the basic idea and de-
tails of the proposed method in Section 2. Following that,
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Figure 1: Illustration of P2P Botnet communi-
cations for a network (a) and its corresponding
mutual-contact graph (b). The network contains 2
benign hosts and 3 bots (Hosts A, B, and C). The
bots are members of a P2P botnet with 9 bots in to-
tal. Mutual-contact relationship among hosts, which
is indicated by red dashed arrows in (a), are repre-
sented by the mutual-contact graph in (b). The edge
capacities are determined by the number of mutual
contacts between nodes.

we present our experimental results with the Nugache bot-
net in Section 3. In Section 4, we present a mathematical
analysis that provides insights on why the proposed scheme
works and its limitations. Then in Section 5, we discuss
practical limitations of the proposed scheme, possible eva-
sion techniques and their implications on P2P botnets. We
present the related work in Section 6. Finally, we conclude
the paper and discuss future work in Section 7.
2. FINDING FRIENDS OF AN ENEMY
In this section, we present the basic idea and the details

of the proposed algorithm. We first begin with an intuitive
explanation in the next subsection and then provide a more
detailed and formal explanation in subsequent subsections.
2.1 Basic Idea
Consider the botnet illustrated in Figure 1(a). The basic

idea of the proposed method is that, Host A can be linked
to Host B since they both communicate with Host X (the
mutual contact). Similarly Host B and Host C are linked
together through Host Y and Host Z. As a result, if Host
A becomes known as a member of a P2P botnet, then by
examining its connections, one may suspect that Host B
is likely to be a member due to the presence of a mutual
contact with the known bot Host A. Similarly, if Host B is
likely to be a member, then Host C is likely to be a member
as well.
Now it is clear that, aside from P2P botnet traffic, le-

gitimate traffic probably includes several mutual-contacts
among hosts as well. For instance, there are some very pop-
ular servers that almost every host in the network commu-
nicates with such as google.com, microsoft.com. etc. As a
result, every host in the network would be linked to most
of the other hosts through such popular mutual-contacts.
However, if Host A is a known bot and both Host A and
Host B have been in communication with Host X, and Host
X has not talked to almost anyone else within our network,
then it is likely that Host B is a member of the same bot-
net as Host A. Hence in our mutual contact based analysis
we restrict ourselves to private mutual-contacts. Private
mutual contacts are mutual contacts which communicate
with less than k internal hosts during an observation win-
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dow. Here, k is the privacy-threshold. Private mutual
contacts capture the intuition that it is very unlikely that
external peers which are part of a botnet will be communi-
cating with many internal hosts that do not belong to the
botnet. Therefore, private mutual-contacts can be strong in-
dicators of peer relationships among hosts within a botnet.
In the rest of this paper, we use the term mutual-
contacts to mean private mutual contacts.
The question then remains that given a known bot, how

do we systematically rank all the hosts in our network based
on their likelihood of being a member of the same P2P
botnet using private mutual contact relationships they ex-
hibit? To do this, we first extract mutual-contacts from the
flow records captured at the network border for a time win-
dow prior to discovering the seed-bot. We then represent
the mutual-contact relationships among hosts by a directed
graph called the mutual-contacts graph, such that: 1. Nodes
represent the hosts in the network. 2. There is a bidirec-
tional edge between two nodes if the corresponding hosts have
at least one mutual-contact during the given time window.
3. Each edge has a capacity determined by the number of
mutual-contacts between corresponding nodes.
As an example, the mutual-contact graph for the network

illustrated in Figure 1(a) is shown in Figure 1(b). Now intu-
itively speaking, it is expected that hosts which are likely to
be P2P bots are at a short distance from the seed-bot on a
mutual-contacts graph since such hosts are expected to have
mutual-contacts with the seed-bot itself and/or with other
hosts which have mutual-contacts with the seed-bot. In fact,
we observe this behavior in various real world botnets as pre-
sented later in Table 1. Furthermore, the more the mutual
contacts that a host has with the seed bot and other sus-
pected bots, the more likely it is that this host is also a
bot. The mutual contacts graph illustrated in Figure 2(a)
displays such behavior (black edges). Based on these two
intuitions, we propose a scheme that iteratively computes a
confidence level of being a member of the same P2P botnet
as the seed bot for each node. This iterative process can
be illustrated as pumping red dye into the mutual-contacts
graph from the node representing the seed-bot as depicted in
Figure 2(b). During the process, the dye coming to a node
is distributed across its outgoing edges proportional to their
capacities. Therefore, the dye accumulated in a node reflects
our confidence for that host being a part of the same botnet
as the seed-bot. Inspired by this illustration, we named our
proposed algorithm the “Dye-Pumping Algorithm”.
In Figure 2(b), it is also observed that along with the P2P

bots, few benign hosts also share mutual-contacts with P2P
bots (via green edges in Figure 2(a)), and therefore receive
some amount of dye. Such hosts potentially result in false
positives. However, we expect the capacity of the edges con-
necting these benign hosts to P2P bots to be usually lower
thereby keeping the dye accumulated on these benign hosts
below a threshold in most cases. In later sections we provide
detailed experimental and mathematical analysis, that sup-
ports our intuition that a majority of the false positives can
be eliminated while maintaining reasonable false negatives,
by choosing a suitable threshold. But first, in the following
subsections, we present each step of this algorithm in greater
detail.
2.2 The “Mutual-Contacts” Graph
We denote the mutual-contacts graph constructed from

the flow records of a network by G = (N, E), where the
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Benign
Hosts

Benign
Hosts

(a)

Seed-Bot
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Benign
Hosts

Benign
Hosts

(b)
Figure 2: (a) Illustration of a mutual-contacts
graph. P2P bots tend to share mutual-contacts
with each other (black edges). Also some benign
hosts share mutual-contacts among themselves (blue
edges), which may be due to a legitimate P2P appli-
cation. (b) Illustration of the dye-flow in the Dye-
Pumping algorithm.

nodes correspond to hosts and the edges indicate private
mutual-contacts. Each edge on the graph has a capacity
which is determined by the exact number of mutual-contacts
between corresponding hosts. More formally, if Eij repre-
sents the capacity of the edge between nodes Ni and Nj ,
then we can write:

Eij = Eji = |S(Ni) ∩ S(Nj)|
where S(Ni) represents the set of mutual-contacts which Ni

was in communication with during the observation period
and | · | represents the cardinality of a set. Notice that,
if nodes Ni and Nj don’t share any mutual-contacts then
there is no edge between them on the graph or equivalently
Eij = 0.

2.3 The “Dye-Pumping" Algorithm
Once the mutual-contacts graph is constructed, the dye-

pumping algorithm is executed to compute the confidence
levels of hosts being part of the P2P botnet. The dye-
pumping algorithm iteratively pumps dye to the mutual-
contacts graph from the seed node and picks the nodes which
accumulates more dye than a threshold. During the process,
dye coming to a node is distributed to other nodes propor-
tional to a heuristic called the dye-attraction coefficient,
which helps the algorithm to funnel more dye towards the
nodes which are more likely to be P2P bots.

Dye-Attraction Coefficient is denoted by γji, and indi-
cates what portion of the dye arriving at Node j will be
distributed to Node i in the next iteration. Intuitively, it
represents our confidence on Node i being a P2P bot given
that Node j is a P2P bot. Such confidence gets higher as
Node i and Node j share more private mutual-contacts with
each other. On the other hand, our confidence reduces if
Node i shares mutual-contacts with many other nodes in the
graph. The reason is that we expect to have few bots in our
network and therefore if a host shares mutual-contacts with
many other hosts, then these mutual-contacts are probably
due to a different application other than botnet C&C. Con-
sequently, we compute the dye-attraction coefficient from
Node j to Node i as follows:

γji =
Eji

(Di)β
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where Di is the degree of Node Ni (i.e. number of neighbors
or edges that Ni has) and β is the Node Degree Sensitiv-
ity Coefficient. Basically, nodes with high degrees receive
less and less dye as β increases.
The Dye-pumping Algorithm has three inputs, namely
the edge capacities (Eji) of the mutual-contacts graph (E
represents the matrix containing all Eji values), the in-
dex (s) of the seed node Ns, and the number of iterations
(maxIter). Given these inputs, the dye-pumping algorithm
first computes the dye-attraction coefficients from edge ca-
pacities and forms the transition matrix T such that:

T(i, j) = γji =
Eji

(Di)β
where i = 1, ..., v and j = 1, ..., v. Also T(i, j) = 0 if i = j.
Notice that the transition matrix of a mutual-contacts graph
with v nodes is a v × v square matrix.
Following that, the algorithm normalizes T, so that each

of its columns sums to 1 (i.e. stochastic matrix). If T in-
dicates the normalized transition matrix, the normalization
procedure can be written as T(i, j) = T(i,j)∑v

i=1
T(i,j)

. After

normalization, the algorithm iteratively pumps dye to the
mutual-contacts graph from the seed node. For this purpose,
let the column vector L is the dye level vector, where L(i)
indicates the dye level accumulated at node i. The pumping
begins with filling the seed node with dye and leaving the
others empty such that:

L(i) =
{
1, if s = i
0, elsewhere

Once the seed node is filled with dye, the algorithm pumps
dye from the seed node across the mutual-contacts graph.
Since the outgoing edges distribute the dye accumulated
within a node proportional to their capacities, the dye levels
at next iteration can be computed as:

L(i) =
v∑

j=1

T(j, i)L(j)

which can be also written in matrix form as L = TL. At
each iteration, after updating L, the algorithm pumps more
dye to the graph from the seed node by updating L(s) =
L(s) + 1. Following that the vector L is normalized after
each iteration as L = L∑v

i=1
L(i)
. Finally after maxIter it-

erations, the dye-pumping algorithm outputs the dye-level
vector L. The steps of the dye-pumping algorithm are sum-
marized below:

Algorithm 1 Dye_P umping(E, s, maxIter)
1: T ← computeT ransitionMatrix(E)
2: T ← normalize(T)
3: L ← [0, 0, ..., 0]tr {initialize L as a zero vector}
4: for iter = 1 to maxIter do
5: L(s) ← L(s) + 1 {Pump dye from the seed node}
6: L ← L∑

L(i)
{Normalize dye level vector}

7: L ← TL {Distribute dye in network for one iteration}
8: end for
9: output L

Once the algorithm outputs the vector L, the dye level
of each node (L(i)) indicates the confidence level for the
corresponding host being a member of the same P2P botnet
as the seed node. To have a more conclusive result, we set a
threshold thr such that the nodes having a dye level greater

than thr are declared as potential members of the same P2P
botnet as the seed bot.
Notice that the algorithm involves a constant number of

matrix multiplications. Hence, the complexity of a naive
implementation of the algorithm is cubic in the number of
nodes. However, both dye-level vector (L) and transition
matrix (T) are sparse. Therefore one can implement the
dye-pumping algorithm asymptotically faster by using fast
sparse matrix multiplication techniques.
3. EXPERIMENTS

3.1 Detecting Nugache Peers
In order to systematically assess the performance of the

proposed scheme against a real-world botnet, one needs to
know the IP addresses of the members of a P2P botnet in
a given network. Otherwise, nothing can be said about the
true positive or false alarm rate without knowing the ground
truth. One way to obtain the ground truth is to blend real
botnet data into the network traffic and make few hosts look
as if they have been infected by the botnet. This strategy
essentially aggregates real botnet traffic and real user traf-
fic on some of the hosts and therefore provides a realistic
scenario. From the proposed scheme’s perspective, to make
a host look like a P2P bot, one can first capture the flow
records of the network, which contains the host, during a
time window. Then one can collect the flow records form a
real P2P bot during a similar time window. Following that,
one can change the bot’s IP address in these botnet flow
records to a selected host’s IP address and append them to
the flow records of the entire network so that, along with its
original traffic, the selected host will appear as if it has also
communicated with the external IP addresses that the real
bot has talked to.
In order to establish the ground truth for our experiments,

we utilize the data collected from the Nugache botnet, which
has been thoroughly studied in [30][8]. Briefly speaking,
Nugache is a P2P botnet that uses random high-numbered
ports for its communication over TCP. The data we use
in our experiments was compiled by the Nugache crawler
presented in [10] and its communication between Nugache
peers.

Nugache Botnet Data: Details on the Nugache botnet
and Nugache crawler can be found in [30] and [8]. In sum-
mary, the C&C protocol of Nugache enables querying a peer
for its list of known peers and a list of recently communi-
cated peers. Using this functionality, the crawler starts from
a series of seed peers and traverses the botnet by querying
peers for their list of known peers. The crawler maintains
the list of recently communicated peers for each accessible
Nugache peer. Consequently, when it finishes crawling, it
produces list of recently communicated peers for several Nu-
gache peers.
In our experiments, we used the data collected by the

crawler when Nugache was active. To collect data, the
crawler was executed repeatedly for 9 days, where each ex-
ecution lasted roughly 30 to 45 minutes. We used a 24-hour
observation window for our experiments. Hence, we em-
ployed several randomly selected 24-hour segments of the
crawler data from the 9-day results in our experiments to
cover the botnet dynamics during all 9 days. We observed
that in any of these 24-hour segments, 904 Nugache peers
responded to the crawler on an average. We also observed
that 34% of all possible pairs of Nugache peers communi-
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Figure 3: Node Degree and Clustering Coefficient
distributions of the mutual-contacts graph of the
background traffic for different privacy threshold (k)
values.

cated with at least one mutual-contact on average.

Background Traffic: In order to obtain background traf-
fic that we could blend with Nugache traffic, we captured
the flow records observed at the border of Polytechnic In-
stitute of NYU network during a typical weekday (i.e. the
observation window is 24 hours). Collected flow records in-
dicate that there were 2128 active IP addresses in our net-
work during the observation window. We then extracted
mutual-contacts from the recorded data. To ensure a valid
communication (i.e. not a scan flow), we only considered
external IPs which exchanged sufficient amount of data (i.e.
at least 256 bytes) in both directions with at least one inter-
nal IP. Finally we built the corresponding mutual-contacts
graph to serve as a basis for our experiments.
We immediately observed in the mutual-contacts graph

that DNS servers within the network shared a significantly
large number of mutual-contacts with each other. As a mat-
ter of fact, DNS servers constituted the highest-magnitude
entries of the first eigenvector of the matrix (E) whose en-
tries are the corresponding edge capacities (Eij). This is
not surprising since DNS servers in a network communicates
with many other DNS servers around the world. Obviously
this relationship among DNS servers dominates the mutual-
contacts graph and taints the results of the Dye-Pumping
algorithm. Hence, we removed all the edges of the 11 DNS
servers in the network from the mutual-contacts graph.
The mutual-contacts graph extracted from the background

traffic suggests that majority of the hosts share none or very
few mutual-contacts with other nodes. This can be observed
in Figure 3(a), where we plot the distribution of node de-
grees (i.e. no of edge of a node). Figure 3(a) also shows,
as expected, that nodes usually have a higher degree in the
mutual contact graph when a higher privacy threshold (k)
value is used to construct the graph.
We then looked at the clustering coefficient, which is de-

fined as the ratio of the number of the actual edges of a node
to the number of all possible edges among it’s neighbors.
We plot the clustering coefficient distribution of the nodes
in Figure 3(b). We observe that the mutual contact-graph
is a lot more clustered than a comparable random graph (i.e
same number of nodes and edges). For instance the cluster-
ing coefficient distribution of a random graph comparable to
the mutual-contacts graph with k = 5 has a mean of 0.006
and standard deviation of 0.009. This suggests that there are
communities of hosts in the observed network where commu-
nity members usually communicate with the same external
IPs that are exclusive to the corresponding community. One
can speculate that these communities may represent peers

of different P2P networks (legitimate or bot) or a group of
users visiting similar websites etc.

Experiments with Nugache: In order to assess the per-
formance of the proposed scheme in detecting Nugache bots,
we randomly picked m Nugache peers from a randomly se-
lected 24-hour segment of the crawler data. Then, we com-
puted the mutual-contacts graph corresponding to these m
Nugache peers based on the recently-communicated peers
field of the crawler data. We then randomly picked m inter-
nal hosts from the mutual-contacts graph corresponding to
the background traffic. Finally, we superposed the mutual-
contacts graph of the Nugache peers onto in the mutual-
contacts graph of the background traffic where m Nugache
peers coincide with m selected internal hosts. This proce-
dure essentially blends Nugache traffic into the background
traffic so that each of these m selected internal hosts looked
as if they communicated with the peers that the correspond-
ing m Nugache peers communicated with. Consequently,
each of these m selected hosts becomes a real Nugache peer
and constitutes the ground truth as far as the proposed
scheme is concerned.
Once we obtained the superposed mutual-contacts graph,

we randomly selected one of the m hosts as the seed bot
and ran the Dye-Pumping algorithm to detect the otherm−
1 hosts whose flow records were modified according to the
Nugache crawler data. We set the number of iterations to
maxIter = 5 for Dye-Pumping algorithm since it is almost
impossible to find P2P botnet peers more than 3 hops away
from the seed node due to the Erdős-Rényi model as will be
explained in Section 4. In the end, we returned the list of
hosts which accumulate more dye than the threshold as P2P
bots. To obtain statistically reliable results, we repeated the
experiment 100 times, each time with different selection of
m hosts and m Nugache peers. We also picked a different
24-hour segment of crawler data at every 20th repetition.

Results (Precision & Recall): To gauge the algorithm’s
performance, we computed the average precision and recall.
In our context, precision can be defined as the ratio of the
number of Nugache peers in the returned list of hosts to the
length of the returned list. On the other hand, recall can be
defined as the ratio of the number of Nugache peers in the re-
turned list to the number of all Nugache peers in the network
except the seed bot (m − 1). Figure 4 presents the average
precision and recall values for different number of Nugache
peers (m) and different threshold values (thr). We set the
privacy threshold k = 5 and node degree sensitivity coeffi-
cient β = 2. It is observed that several dormant Nugache
peers can be identified by the proposed technique when the
threshold is set to an appropriate value. For instance, in
Figure 4(c) we observe that, if there are 17 Nugache peers
in the network, the proposed scheme on average returns 35
hosts, 11 of which are Nugache peers. As a result, upon
obtaining the list of potential P2P bots, a network admin-
istrator can perform a more detailed investigation (perhaps
physically) on the hosts in the list and potentially uncover
several dormant P2P bots. Meanwhile, the returned list also
contains some hosts which are not Nugache peers since such
hosts happen to be connected to one or more Nugache bots
on the mutual-contacts graph due to mutual-contacts cre-
ated by other applications. Interestingly, it is observed in
Figure 4 that both precision and recall values increase as
the number of bots (m) increases. This is due to a property
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Figure 4: Experiment results with Nugache. The parameters are k = 5 and β = 2

of Erdős-Rényi random graphs that−as will be explained in
the next section− the probability of having a short path be-
tween two nodes increases with the number of nodes. It is
also observed that, increasing the threshold increases pre-
cision but decreases recall, as is naturally expected for any
detection system.

Effects of Privacy Threshold (k): When we repeated
the experiments for different k values, we did not observe
a major change in the precision performance. On the other
hand, we observed, as shown Figure 5(a), that recall per-
formance improves as we decrease k as long as the number
of P2P bots in the network is low. The recall performance
improves because more background traffic is filtered out for
lower k, thereby removing a significant portion of the benign
edges. However, if there are many P2P bots in the network
and if k is small (i.e. k = 3), more than k of them are
likely to communicate with several common external peers
and therefore some of the botnet communications are likely
to be filtered out as well. The effect of this phenomenon can
be observed in Figure 5(a), where recall performance dimin-
ishes for large number of Nugache peers. Hence, based on
Figure 5(a) we can say that k = 5 was an appropriate setting
for our network.

Effects Node Degree Sensitivity Coefficient (β): As
explained in Section 2.3, larger β values result in less dye-
flow towards the nodes which have high degrees on a mutual-
contacts graph. We would like to restrict the dye-flow to
high-degree nodes, because edges between bots and high-
degree nodes are probably not due to botnet communica-
tions but rather due to some other application which causes
many of the edges that high-degree nodes have. Larger β
values cause the dye to concentrate around the seed-bot and
therefore improve the precision performance as observed in
Figure 5(b). On the other hand, since the algorithm cannot
reach far in the mutual-contacts graph for larger β values,
the recall performance drops as β gets larger as observed in
Figure 5(c). According to our experiments, β = 2 turned
out to be an appropriate setting for our network.

In summary, different values of the parameters k and β
yield a tradeoff between precision and recall. When deploy-
ing the proposed scheme, a network administrator should
first decide on the minimum tolerated precision level and
then set the parameters accordingly. For this purpose, ar-
tificial P2P botnet traffic generated by the Random Peer
Selection model described in Section 4.1 could be used as
a ground truth to determine which parameter values would

result in which precision levels for a given network.

4. MATHEMATICAL ANALYSIS
The essence of the proposed algorithm is that the mem-

bers of a P2P botnet tend to have mutual-contacts and
therefore are closely connected on a corresponding private
mutual-contacts graph. In fact, the dye-pumping algorithm
performs better if P2P bots in a network are connected to
the seed node through shorter and higher-capacity paths,
which yield higher volume of dye flow from the seed node
to the other bots. Although our experimental results in
the previous section tend to validate our intuition, some
significant questions remain to be addressed to mathemati-
cally validate the approach and show its applicability to the
general problem that goes beyond specific instances of P2P
botnets. Question such as how likely is it that two peer
bots will have a mutual contact? How does this probability
vary with the size of the botnet and the number of peers
contacted by each bot. Next, how likely is it that the mu-
tual contact graph will have a connected component that
spans peer bots? How does one characterize the properties
of the mutual contacts graph? In this section we address
these questions and present a mathematical analysis that
supports our approach and validates the experimental re-
sults reported in the previous section.
4.1 Random Peer Selection Model
The first question we posed was the likelihood of peer

bots having a mutual contact. But before we answer that,
we would like to first justify the framework in which we
examine this question. Recall that our framework assumes
that bots independently and randomly select the peers with
which they communicate. How does this assumption bias
our analysis? In this subsection we address this question
and argue that this represents the worst case situation for
our analysis.
In a P2P network some peers might be more available

than others and therefore they have a higher probability of
being selected by other peers [14][18] [21] [1]. Obviously,
having such preferred peers in a P2P botnet increases the
chance finding mutual-contacts between P2P bots in a net-
work. However, the worst case, as long as unstructured
P2P botnets are considered, from our work’s point of view
is when there is no preferred peer in the botnet and all
peers have equal probability of being contacted by any other
peer, thereby minimizing the probability of private mutual-
contacts between peers.
To investigate the probability of mutual-contacts in the

worst case, we consider a generic botnet model, where each
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Figure 5: Effects of different parameters. The non-varying parameters are set to k = 5, β = 2 and thr = 5×10−4

bot picks peers independently and randomly. The model has
two configurable parameters such that; “B” is the number of
all peer in the botnet and “C” is the number of peers that
each peer communicate with during a specific observation
window. Based on these parameters, each bot (bi) in the
model communicates with a uniform random subset (Si) of
all B−1 available bots (excluding itself) in the model, where
the cardinality of each subset is C.

Bot-Edge Probability: Having justified our framework,
we now address the question about the probability of two
peer bots having a mutual contact. In the random peer se-
lection model, the probability of having an edge between
two arbitrary bots bi and bj (i.e. bot-edge probability, pe) is
actually the probability of the intersection of the correspond-
ing subsets being non-empty; such that pe = P r(Si∩Sj �= ∅).
Since the number of elements in the intersection of two uni-
form random subsets can be computed using hypergeometric
distribution, we can write the bot-edge probability as:

pe = 1−
(

C
0

)(
B−1−C

C

)
(

B−1
C

) (1)

Bot-edge probabilities are plotted in Figure 6(a). It is
observed that, similar to the Birthday Paradox, as the num-
ber of contacted peers increases, the bot-edge probability
increases very rapidly. Consequently, even for a fairly large
botnet with 50k peers, the bot-edge probability is almost
0.5 when peers contact only 200 other peers during the ob-
servation window.

Bot-Edge Capacity: Although, high bot-edge probabili-
ties works in favor of the dye-pumping algorithm, the capac-
ities of those edges are also important. It is obvious that, the
higher the bot-edge capacities the better the dye-pumping
algorithm performs. In the random peer selection model,
the probability of a peer contacted by two given peers is(

C
B

)2. Therefore, since there are B peers in total, we can
write the expected capacity of bot edges (E[Cp]) as:

E[Cp] =
(

C

B

)2
B = C2

B
(2)

which is also the expected value of the corresponding hy-
pergeometric distribution. Figure 6(b) plots the expected
bot-edge probabilities. It is observed that, regardless of the
botnet size, expected bot-edge capacity rapidly exceeds 1
and continues to increase as the number of contacted peers
increases. Figure 6 suggests that the members of a P2P bot-
net will most probably be well connected with each other
on a private mutual-contacts graph through high capacity

edges, thereby allowing the dye-pumping algorithm to iden-
tify them.

4.2 Friends Stay Closely Connected (Erdős-
Rényi Subgraphs)

Having established that it is quite likely that two peer bots
will have a mutual contact we now turn our attention on the
expected structure of the mutual contacts graph. After all,
the Dye-Pumping algorithm can only identify the P2P bots
which are connected to the seed-bot via short paths on the
mutual-contacts graph. Bots which are isolated from the
seed-bot cannot be accessed by the algorithm. In this sub-
section, given a bot-edge probability, we investigate how the
P2P bots are expected to be oriented on a private mutual-
contacts graph and what portion of the P2P nodes can be
accessed by the dye-pumping algorithm.
To understand the structure of the subgraph formed by

members of a P2P botnet on a mutual-contacts graph, sup-
pose that there are m bots in the network, and therefore
the corresponding m nodes on the graph. Let the set X =
{X1, X2, ..., Xm} denote these nodes and pe denote the prob-
ability of having an edge between any given Xi and Xj , for
i �= j where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Since pe is the
same for any pair of Xi and Xj , the subgraph formed by
the nodesX1, X2, ..., Xm on a private mutual-contacts graph
is an Erdős-Rényi random graph [11][12], where each possi-
ble edge in the graph appears with equal probability.
One interesting property shown by Erdős and Rényi is

that, Erdős -Rényi graphs have a sharp threshold of edge-
probability for graph connectivity [12]. More specifically,
if the edge-probability is greater than the threshold then
almost all of the graphs produced by the model will be con-
nected. Erdős and Rényi have shown the sharp connectivity
threshold is ln θ

θ
, where θ is the number of nodes in the

graph. Therefore, if the bot-edge probability of a P2P bot-
net is pe = ln m

m
, then the dye-pumping algorithm potentially

identifies all other P2P bots from a given seed bot with high
probability as long as there are more thanm bots in the net-
work. In other words, it gets easier for the proposed method
to reveal P2P bots as the botmaster infects more hosts in the
network. However, even if the bot-edge probability is below
the threshold, the dye-pumping algorithm can still identify
some of the P2P bots, which happen to be connected to the
seed node on the private mutual-contacts graph.
In conclusion, according to the random peer selection model,

members of a P2P botnet are expected to be closely con-
nected to each other on a private mutual contacts graph
despite large botnet sizes.
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5. LIMITATIONS AND POTENTIAL

IMPROVEMENTS
The proposed method is able to identify P2P bots in a net-

work as long as they are clustered through short and high
capacity paths on a private mutual-contacts graph. There-
fore, botmasters need to disturb this clustering structure in
order to evade the proposed method. In this section, we re-
view these possible evasion strategies, and their implications
on the creation and maintenance of P2P botnets.

Eliminating Private Mutual-Contacts: One way to elim-
inate private mutual contacts is by increasing the popular-
ity of private mutual-contacts that P2P bots in a network
communicate with. If their popularity gets higher than
the privacy threshold (k), they will be omitted by the pro-
posed scheme and will not result in edges in private mutual-
contacts graphs. However, in order to achieve this, a bot-
master has to control more than k hosts in that particular
network, so that they can collectively boost a contact’s pop-
ularity beyond the privacy threshold. To defend against this
strategy, the privacy threshold (k) needs to be set as large as
possible. Although, as discussed in Section 3, high k values
impairs the recall performance of the proposed scheme, for
smaller networks it is often possible to find an appropriate k
value since a botmaster is unlikely to have too many bots in a
small network. On the other hand, for large networks which
potentially contain many P2P bots, the proposed technique
can be applied on smaller subnets separately and indepen-
dently to increase the likelihood that the number of P2P
bots in each subnet remain below the privacy threshold.
Decreasing The Probability of Mutual-Contacts: De-
creasing the probability of observing mutual-contacts be-
tween P2P bots is equivalent to decreasing the bot-edge
probability (pe). As discussed in Section 4, a botmaster has
to either(or both) increase the botnet size (B) or decrease
the number of peers that each bot communicates with (C) in
order to lower pe. It is clear that increasing B and decreas-
ing C will inversely affect a P2P botnet’s robustness and
efficiency. Although it may be possible for a botmaster to
pull pe down to a lower value, we observed in a controlled en-
vironment that peers of today’s botnets such as Storm and
Waledac have very high bot-edge probabilities. To collect
data for Storm and Waledac, we infected two Pentium IV,
512MB RAM Windows XP hosts, which were completely
isolated from the rest of the network by a firewall. The

firewall was also set to block all SMTP traffic to prevent
any spam traffic. We observe that both Storm and Waledac
communicate with fairly high number of unique peers dur-
ing 24 hours, and therefore create many mutual-contacts as
presented in Table 1. On the contrary, Nugache peers are
less active and create far less mutual-contacts as observed
in Table 1. Nevertheless, in Section 3, the proposed scheme
is shown to successfully detect several Nugache peers, which
are introduced to the network using the crawler data, de-
spite their low communication activities. To collect data
for Nugache, the bots were installed on a Pentium IV, 1GB
RAM, running VMware Server with a Windows XP guest,
as well as on bare metal machines on comparable hardware
running Windows XP. The traces were captured within the
protected network using a customized honeywall [32] and
also using full-packet capture on an extrusion prevention
system running OpenBSD with strict packet filter rules, as
described in [10] The captured packets were converted to
flow records using the SiLK tools [4] for establishing mutual
contact sets and validating the algorithm.
Table 1: Summary of observed P2P botnet behavior.
Δ : Average number of unique IP addresses that a
bot communicates with each day. © : the number of
mutual-contacts (the bot-edge capacities) between
the two bots during 24 hours.

Day 1 Day 2 Day 3
Δ © Δ © Δ ©

Storm 5180 2861 4681 2886 4022 2323
Waledac 1145 341 775 300 1012 358
Nugache 45 0 53 1 49 0

Using a Structured P2P Topology: A botmaster can
adopt a structured P2P topology to decrease the probability
of mutual contacts by making peers in a same network to
communicate with different sets of peers from each other. To
achieve this, peers in a same network have to coordinate with
each other so that they won’t communicate with the peers in
each other’s peer list. In some sense, peers in a same network
have to form their own tiny botnet among themselves and
appear as a single node to the remaining of the P2P botnet.
These intra-network communications among the peers in a
same network, however, would potentially yield new means
of detecting P2P bots in a network. Nevertheless, even if
a botmaster manages to deploy a mutual-contact-free P2P
architecture, two or more networks can choose to share their
flow records to exploit the mutual-contacts among P2P bots
in different networks, which are unavoidable since the bot-
master cannot know which networks would collaborate in
the first place. For such mitigation strategies, cooperating
networks can use privacy-preserving set operations such as
[7] to share data between networks without revealing any
sensitive information.
Poisoning Clusters: The purpose of cluster poisoning for
P2P networks is to destroy clustering structure of a graph
by creating bogus edges [5]. Cluster poisoning appears to
be very hard to achieve in our context. In order to perform
poisoning, a botmaster has to create an edge between a P2P
bot and a benign node on a mutual-contacts graph. For this
purpose, she needs to make both the bot and the benign
host communicate with a mutual external IP. To do so, the
botmaster has to listen to the traffic of the benign host and
make the P2P bot contact with an external host which the
benign host has communicated with. But this is not a trivial
task for a botmaster, unless she also possesses a router or a
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proxy in the same network.
6. RELATED WORK
Early botnets employed centralized command and control

(C&C) servers to distribute commands and updates to in-
dividual bots, usually through IRC or HTTP protocols [9].
Although a centralized structure is simple and easy to man-
age, it suffers from a single point of failure and is susceptible
to traditional defenses such as domain revocation, DNS redi-
rection, blacklisting etc. Therefore, botmasters have begun
to adopt a P2P architecture for C&C channels. In [20], au-
thors argue that it is harder to detect P2P bots especially
with a limited view of their traffic from a single Autonomous
System. In P2P botnets each bot acts both as a server and
a client allowing botmasters to publish commands and up-
dates from any point in the botnet[14][18]. In [6], authors
investigate the effects of different botnet structures.
There have been numerous techniques proposed to detect

botnets. In [25] and [24], the authors employ machine learn-
ing techniques where they train classifiers with different fea-
tures to detect botnet C&C flows. In [31], Strayer et. al.
proposed a technique to detect botnet activity by exploiting
temporal correlations between C&C activities of the bots
belonging to the same botnet. Binkey and Singh proposed a
technique to detect IRC botnets in [2] using botnet-related
anomalies in TCP and IRC statistics. Another IRC botnet
detection scheme was proposed by Goebel and Holz in [13],
where the authors exploited the structure and evolution of
IRC nicknames used by IRC bots. In [23], Karasaridis et.
al. combined traffic aggregates with IDS alarms to identify
centralized botnets within a Tier-1 ISP. In [16], Gu et. al.
proposed BotHunter, which searches for a specific pattern
of events in IDS logs to detect successful infections caused
by centralized botnets.
All the above schemes were designed to detect either spe-

cific botnets that they were trained for, or centralized bot-
nets. In general, detecting P2P bots in a network is harder
since there is no trivial correlation that allows us to link to-
gether the P2P bots in a network, especially when bot peers
communicate with each other using encryption and through
random ports [14, 18, 10].
As a completely different problem from ours, crawler based

methods were proposed to enumerate P2P bots globally in
[22] and [18]. Since crawlers cannot enumerate P2P bots
behind NAT and/or firewall in [21] Kang et. al. proposed a
sybil attack based passive monitoring scheme to enumerate
P2P bots even behind NAT or firewall. However, P2P bot
enumeration methods are not intended to identify local P2P
bots in a network. Also, they require implantation of bot
peers which requires reverse engineering of a bot binary and
its C&C protocol.
Coming back to our problem, there have been few tech-

niques proposed which are able to detect local P2P bots
assuming that P2P bots exhibit similar malicious activities
and similar connection patterns. In [17], Gu et. al. pro-
posed BotSniffer to detect bots based on spatial-temporal
correlation between bot responses to commands. Following
that, in [15], Gu et. al. proposed BotMiner which clusters
the hosts in a network by their malicious activity and com-
munication patterns. Their results showed that members of
a botnet usually fall within the same cluster. Similarly, in
[33], Yen and Reiter proposed a scheme called TAMD, where
traffic containing similar external IPs, similar payloads and
similar internal platform types are aggregated to detect bot-

nets in a network. Although clustering based botnet detec-
tion schemes are successful in detecting many current P2P
bots, botmasters can evade them by assigning different tasks
to the bots in the same network or by randomizing their
communication patterns as acknowledged in [15]. In [29],
authors systematically investigate such evasion techniques.
Also, clustering based schemes fall short in detecting idle
P2P bots which haven’t exhibited any overt behavior yet.
7. CONCLUSION AND FUTURE WORK
In this paper, we presented a simple and efficient method

to identify local members of a P2P botnet in a network,
starting from a known member of the same botnet in the
same network. The basic idea of the proposed method is
that, the members of a botnet are more likely to have mutual-
contacts with each other than with benign hosts. We evalu-
ate the proposed method using real P2P botnet (Nugache)
data captured by a crawler. We also provide a mathematical
analysis of the C&C structure of P2P botnets to characterize
the performance of the proposed method. Both our analysis
and experiments show that the proposed scheme is able to
identify several dormant P2P bots in a network.
There are some limitations of the proposed scheme as dis-

cussed in Section 5. Perhaps the most important one is that,
a botmaster can evade detection if she employs a structured
P2P topology which ensures that her bots avoid mutual-
contacts while communicating with each other. However,
developing such a mechanism is not trivial for today’s bot-
nets and currently available P2P topologies. Nevertheless,
even if a botmaster achieves such a topology, two or more
networks can mitigate this by sharing their network traf-
fic, possibly in a privacy-preserving manner, to exploit the
mutual-contacts which will possibly occur between peers in
different networks. We leave the exploration of the bene-
fits of data-sharing as future work. In addition, we plan
to study on a new P2P botnet architectures, which poten-
tially evade the proposed scheme at least in some scenarios.
This will allow us to further improve the proposed scheme
to withstand potential evasion strategies, which might be
employed by next generation botnets.
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