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Abstract Anomaly detection allows for the identifi-
cation of unknown and novel attacks in network traf-
fic. However, current approaches for anomaly detection
of network packet payloads are limited to the analysis
of plain byte sequences. Experiments have shown that
application-layer attacks become difficult to detect in
the presence of attack obfuscation using payload cus-
tomization. The ability to incorporate syntactic context
into anomaly detection provides valuable information
and increases detection accuracy. In this contribution,
we address the issue of incorporating protocol context
into payload-based anomaly detection. We present a

Patrick Duessel
Deloitte & Touche LLP
Cyber Risk Services | Risk Analytics
30 Rockefeller Plaza, New York, NY 10112-0015, United States
Tel.: +1 (212) 492 2332
E-mail: paduessel@deloitte.com

Christian Gehl
Trifense GmbH - Intelligent Network Defense
Germendorfer Strasse 79, 16727 Velten, Germany
Tel.: + 49 (0) 3304 360 368
E-mail: christian.gehl@trifense.de

Ulrich Flegel
Infineon Technologies AG
Am Campeon 1-12, 86579 Neubiberg, Germany
Tel.: + 49 (0) 89 234 21728
E-mail: ulrich.flegel@infineon.com

Sven Dietrich
CUNY John Jay College of Criminal Justice
Mathematics and Computer Science Department
524 W 59th St, 10019 New York, United States
E-mail: spock@ieee.org

Michael Meier
University of Bonn
Friedrich-Ebert-Allee 144, 5313 Bonn, Germany
Tel.: +49 228 73 54249
E-mail: mm@cs.uni-bonn.de

new data representation, called cn-grams, that allows
to integrate syntactic and sequential features of pay-
loads in an unified feature space and provides the ba-
sis for context-aware detection of network intrusions.
We conduct experiments on both text-based and binary
application-layer protocols which demonstrate superior
accuracy on the detection of various types of attacks
over regular anomaly detection methods. Furthermore,
we show how cn-grams can be used to interpret de-
tected anomalies and thus, provide explainable deci-
sions in practice.

Keywords Intrusion detection · machine learning ·
anomaly detection · protocol analysis · deep packet
inspection

1 Introduction

The analysis of application-layer content in network
traffic is getting increasingly important for the
protection of complex business environments which
deploy a variety of application-specific services and
allow for access and transfer of sensitive data
between untrusted communication parties. Nowadays,
the majority of attacks is carried out at the
application-layer. Therefore, monitoring the content of
a respective application-layer protocol becomes vital for
the detection of unknown and novel application-specific
attacks, so called Zero-day attacks.
Signature-based intrusion detection systems (IDS)
possess a number of mechanisms for analyzing
application-layer protocol content ranging from byte
pattern matching as provided by Snort [28] to
sophisticated protocol analysis as realized in Bro [22,
23].
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However, the major drawback of signature-based IDS
is their reliance on appropriate exploit signatures in
order to provide adequate protection. Unfortunately,
keeping signatures up-to-date is a tedious and resource
intensive task given the rapid development of new
exploits and their growing variability. This motivates
the investigation of alternative techniques.
Payload-based anomaly detection is capable to instan-
taneously detect previously unknown application-layer
attacks. Unlike signature-based systems which search
for explicit byte patterns, payload-based anomaly de-
tection systems must translate general knowledge about
patterns into a numeric measure of abnormality which
is usually defined by a distance from some model
learned over normal payloads.
Thereby, the choice of data representation which is
required to measure similarity between sequential data
strongly affects the capabilities of an anomaly detector
at hand. Sequential data representations, such as n-
grams of payload bytes [25, 34], exhibit superior
precision at the detection of unknown overflow-based
attacks. However, this type of data representation does
not adequately account for structural sensitivity needed
for detection of rather inconspicuous looking attacks
such as cross-site scripting (XSS) or SQL injection. By
accessing protocol context of attack patterns significant
improvements in the detection accuracy of unknown
application-layer attacks can be achieved [5, 9, 14].
In this article, we propose a novel representation
of network payloads that integrates protocol context
and byte sequences into an unified feature space and
thus, allows for a context-aware detection of network
intrusions. To this end, a protocol analyzer transforms a
network byte stream into the structured representation
of a parse tree. Tree nodes are extracted and inserted
as tuples of token/attributes into the cn-gram data
structure, a novel data representation of network traffic
that allows to efficiently combine sequential models
with protocol tokens. Moreover, explainability and the
capability to visualize suspicious content with respect
to protocol context is another advantage of this data
structure over sequential representations.
In order to illustrate the effectiveness of the
proposed context-aware payload analysis, we conduct
an extensive experimental evaluation in which cn-
grams are compared to conventional n-grams in the
presence of a diversity of attacks carrying various
payloads. In order to point out the strengths of the
proposed data representation, attacks not only include
buffer overflows but also web application attacks. Such
attacks, for example SQL injections, XSS injections
and other script injection attacks, are particularly
difficult to detect due to their variability and their

strong entanglement in the protocol framework, which
makes content analysis based on sequential features
ineffective. Our experiments are carried out on network
traffic containing text-based and binary application-
layer protocols.
The paper is structured as follows: The main contri-
bution of the paper is presented in Section 2 and pro-
vides details on a novel data representation for network
payloads which allows for the computation of context-
aware sequential similarity by geometric anomaly de-
tection methods. A comprehensive experimental evalu-
ation of the proposed method on network traffic featur-
ing various application-layer protocols is carried out in
Section 3. Related work on content-based anomaly de-
tection and protocol analysis is presented in Section 4.
Finally, conclusions and an outline of future work can
be found in Section 5.

2 Methodology

The following four stages outline the essential building
blocks of our approach and will be explained in detail
for the rest of this section.

1. Data Acquisition and Normalization. Inbound
packets are captured from the network, re-
assembled and forwarded to a protocol analyzer
such as binpac [21] which allows to extract
application-layer messages from both text-based
and binary protocols. A key benefit of using protocol
dissectors as part of data pre-processing is the
capability to incorporate expert knowledge in the
subsequent feature extraction process. Details on
protocol analysis can be found in Section 2.1.

2. Feature Extraction. At this stage, byte messages
are mapped into a metric space using data
representations and features which reflect essential
characteristics of a byte sequence. Our approach
allows to combine byte-level and syntax-level
features in an unified metric space. Details of
the feature extraction process can be found in
Section 2.2.

3. Similarity Computation. The similarity compu-
tation between strings is a crucial task for payload-
based anomaly detection. With the utilization of
vectorial data representations messages can be com-
pared by computing their pairwise distance in the
designated geometric space. Similarity measures are
explained in Section 2.3.

4. Anomaly Detection. In an initial training phase
the anomaly detection algorithm learns a global
normality model. At detection time a message is
compared to the learned data model and based on
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its distance an anomaly score is computed. Details
on the anomaly detection process can be found in
Section 2.4.

2.1 Protocol Analysis

Network protocol analysis is a useful technique to
decode and understand data which is encapsulated by
an application-specific protocol. Many application-level
protocols follow the notion of a common protocol design
which is reflected in a unified protocol structure [3].
The majority of application-level protocols stipulate
the concept of an application session between two
endpoints in which a series of messages is exchanged
to accomplish a specific task. Thereby, a protocol state
machine determines the structure of the application
session and specifies legitimate sequences of messages
allowed by the protocol. Another essential element of an
application protocol is the message format specification
which defines the structure of an application-layer
message. A message format specifies a sequence of
fields and their corresponding notion. The syntax of an
application-layer protocol can usually be specified by an
augmented Backus-Naur-Form which is used to express
formal grammars that generate context-free languages.
Application protocol analyzer, such as binpac [21],
allow to transform re-assembled application-layer
messages into a structured data representation,
e.g.parse trees, which entangle transferred user data
with syntactic aspects of the underlying application-
layer protocol. In this contribution, we focus on
the analysis of message format specifications and do
not address the problem of inferring protocol state
machines which has been sufficiently addressed in the
past. The proposed method is demonstrated using the
two application-layer protocols HTTP and RPC which
are explained in detail in the following sections.

2.1.1 Hyper-Text Transfer Protocol

The Hyper-Text Transfer Protocol (HTTP) is one of the
most popular text-based application-layer protocols.
An example of a typical HTTP request is given below.
Control characters are shown as ’.’.
GET /search?q=network+security&gws=ssl&pr=20 HTTP/1.1..
Host: www.google.de..User-Agent: Mozilla/5.0 (X11; ..
Linux x86_64; rv:12.0) Gecko/20100101 Firefox/12.0..
Accept:text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8..Accept-Language:en-us,en;q=0.5..
Accept-Encoding: gzip, deflate..Connection: keep-
alive....

The GET request contains CGI parameters as
well as common HTTP headers. With the protocol

specification at hand a protocol analyzer generates a
structured representation of the request sequence which
is typically realized by parse trees. An example of a
corresponding parse tree is shown in Fig. 1(a). The
tree consists of non-terminal nodes as well as pre-
terminal and terminal nodes. However, due to the
limited complexity of the underlying HTTP grammar,
relevant information resides at the pre-terminal and
terminal level only. Therefore, the tree can be shrunk
and converted into a set of key/attribute tuples.
Thereby, each pre-terminal node label serves as a
unique protocol context key whereas the associated
attribute is assembled from connected terminal nodes.

2.1.2 Remote Procedure Calls

A more opaque application-layer protocol is provided
by Remote Procedure Call (RPC). A significant part
of the Microsoft Windows architecture is composed of
services (e.g. DNS, DHCP, DCOM) that communicate
with each other in order to accomplish a particular task.
Microsoft RPC is a widely used binary application-layer
protocol and represents a powerful technology which is
utilized by a multitude of services to access functions
located at foreign address spaces.
In order to invoke methods remotely, RPC requires
to establish a session context. By submitting a BIND
request the client initiates an RPC session in which the
endpoint mapper interface is requested to bind to the
desired RPC interface. An example of a BIND request is
shown below:

0000 05 00 0b
A

03 10 00 00 00 78 00 28 00 02 00 00 00
0010 d0 16 d0 16 92 bc 00 00 01 00 00 00 01 00

B
01 00

0020 a0 01 00 00 00 00 00 00 c0 00 00 00 00 00 00 46
C

0030 00 00 00 00 04 5d 88 8a eb 1c c9 11 9f e8 08 00
0040 2b 10 48 60 02 00 00 00

D
...

The most important fields of a BIND request are
highlighted and include protocol data unit type (A)
as well as RPC session information. Each session is
essentially defined by a context identifier (B) and a
universally unique identifier (UUID) which corresponds
to the requested RPC interface (C). In order to allow
for transfer encoding negotiation, the client provides
a coding scheme (D) to the server for each session
requested.
The endpoint mapper resolves and returns the endpoint
(TCP port) in response to the interface request. Once
the client obtains the endpoint it connects to the
interface and invokes the desired method by sending
a CALL request.

0000 05 00 00
A

03 10 00 00 00 20 03 00 00 02 00 00 00
E

0010 08 03 00 00 01 00
B

04 00
F

05 00 07 00 01 00 00 00
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(a) HTTP request parse tree

<header>

<pdu-type>

00

<obj-id>

<params>

<CLSID>

<request>

<orpcthis>

00 00 00 00 
00 00 00 00
00 00 00 00
00 00 00 00

<fct-id>

B8 4A 9F 4D 
1C 7D CF 11 
86 1E 00 20 
AF 6E 7C 57

<version>

00 00 00 00

<version>

05 00 01 00

<cause-id>

F1 59 EB 61 
FB 1E D1 11 
BC D9 00 60 
97 92 D2 6C

02 00 00 10 
00 00 00 00 
00 00 00 00 
00 00 00 01

<fct-id>

00 00 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

<sec-level>

02 00 00 00

<opcode>

00

00

DCOM CALL in RPC-
Payload

02 00 00 00 04 00A0 01 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

<uuid*><pdu-type> <opnum>

<stub><header>

<call-id>

<request>

... <orpcthis>

<version> <cause-id>

23 F7 4C BE 
D7 2C 03 4C 
AD AE 70 99 
DC 31 2E 80

<params>

<if-id>...

A2 01 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

05 00 07 00

... ...

(b) RPC/DCOM request parse tree (∗context identifier is
dynamically replaced by the corresponding UUID)

Fig. 1 Generated parse trees representing application-layer protocol requests

0020 00 00 00 00 23 f7 4c be d7 2c 03 4c ad ae 70 99
0030 dc 31 2e 80 00 00 00 00 00 00 00 00 00 00 02 00
0040 d8 02 00 00 d8 02 00 00 4d 45 4f 57 04 00 00 00
0050 a2 01 00 00 00 00 00 00 c0 00 00 00 00 00 00 46

G

0060 38 03 00 00 00 00 00 00 c0 00 00 00 00 00 00 46
0070 00 00 00 00 a8 02 00 00 a0 02 00 ...

The header essentially specifies a call identifier (E), a
session context identifier (B), a method identifier (F)
and payload which contains arguments expected by
the method. Since the context identifier (B) refers to
an active application session in which the client has
bound to an interface already the UUID is not explicitly
transmitted in a CALL request but instead, referenced
by the corresponding context identifier.
With the protocol specification at hand the protocol
analyzer produces a parse tree which is shown in
Fig. 1(b). In this particular example, RPC is used to
call the ISystemActivator interface in order to request
instantiation of a class which is identified by the UUID
(G) in the parameter section of the RPC request.
Certainly, method call details can only be extracted
from the request if an appropriate RPC stub dissector
is in place which is able to analyze RPC payload
according to a list of known core interfaces and method
declarations. For our considerations, Wireshark’s [35]
DCE/RPC dissection module is used which allows
for concise and automatic parameter value extraction
of functions that are declared by well-known RPC
interfaces (e.g. LSARPC and SRVSVC).

2.2 Feature Extraction

Application payload is characterized by sequential
data which is not applicable for learning methods
that operate in metric spaces. Therefore, feature
extraction must be performed in order to map
sequences into a metric space in which similarity
between vectorial representations of sequences can be
computed. Formally, a feature map φ : X 7→ RN can
be defined which maps a data point in the domain of

application payloads X into a N -dimensional metric
space - in the following referred to as feature space F -
over real numbers:

x 7−→ φ(x) = (φ1(x), φ2(x), . . . , φN (x)), (1)

where φi(x) ∈ R≥0 represents the value of the i-
th feature. Thereby, the sole choice of the mapping
function φ(x) provides a powerful instrument to
transform data into a representation that is suitable
for a given problem.
In this section we describe feature mappings based
on different types of features. While protocol analysis
suggests to extract features from tree structures such
as parse trees, the detection of suspicious byte patterns
favors the extraction of sequential features. Once a
feature space has been designed, there are several
feature embeddings to chose from. Common feature
embeddings include binary, count as well as frequency
representations of individual features.

Syntax Features. The syntactic structure of transferred
application-level payload can be extracted by conduct-
ing protocol analysis which eventually allows to gen-
erate parse trees. An intuitive way to characterize a
parse tree structure is to consider each node indepen-
dently of its syntactic context, i.e. predecessors as well
as successors. The following feature map can be used
to determine structural similarity between sequences:

φ : s 7−→ (φτ (s))τ∈T ∗ ∈ F ,

where T ∗ denotes the set of all possible unique subtrees.
The mapping function φ(s) is defined as follows:

φt(s) =
{

1, t ∈ {τ ∈ T ∗ | n(τ) = 1}
0, otherwise,

(2)

where n(τ) is a function which returns the number
child nodes attached to a node τ . Using this mapping,
each dimension in F corresponds to a binary feature
indicating the presence of a particular pre-terminal
node t in the actual parse tree of a sequence s. For
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the rest of this paper, the set of pre-terminal nodes
as a representation of an application-level message is
referred to as bag-of-token features.

Sequential Features. An intuitive data representation
at byte-level involves the extraction of unique
substrings by moving a sliding window of length n

over a sequence. The resulting set of feature strings are
called n-grams. Each sequence s is embedded into a n-
dimensional metric space F where F ∈ Rn, using the
following feature map:

φ : s 7−→ (φw(s))w∈Σn ∈ F ,

where Σn refers to the set of all possible strings w of
length n induced by an alphabet Σ.

Context-aware Sequential Features. Protocol dissection
allows to attach syntactic information to sequential
features. By introducing a novel data representation,
so called contextual n-grams (cn-grams), syntactic
features can be combined with sequential features in
an unified feature space using the feature mapping φ(s)
below.

φ : s 7−→ (φw,τ (s))wτ∈Σn ∈ F ,

where Σn refers to the set of all possible strings wτ of
length n induced by an alphabet Σ and τ ∈ T ∗ refers to
a subtree in the set of all possible subtrees. A schematic
illustration of cn-grams is shown in Fig. 2.
The cn-gram data structure allows to efficiently store
n-grams along with syntactic labels. Each entry in
the data structure has a unique hash value. The hash
value encodes both syntactic context and sequential
information represents a cn-gram. The syntactic label
information (i.e. pre-terminal nodes from the parse
tree) is encoded using the first k-bits of the CPU’s
register size m, whereas the remaining m − k bits
are used to encode the actual n-gram (n ≤ bm−k8 c)
observed in the terminal string attached to a pre-
terminal node. As a result, a particular n-gram is
allowed to be contained in terminal strings attached
to different pre-terminal nodes which represents an
extension to the regular definition of n-grams outlined
in 2.2.
In the example shown in Fig. 2 extracted HTTP pre-
terminal nodes are encoded and combined with n-grams
from parsed terminal strings represented as cn-gram.
Finally, the set of cn-grams is convoluted in a joint
histogram H.
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Fig. 2 cn-grams: context-aware sequential data representation

2.3 Similarity Measure

Once a sequence is mapped into a feature space F a
kernel function k : X 2 → R can be applied to determine
pairwise similarity between data points {x1, ..., xn} ⊂
X . Thereby, the type of kernel function entails an
implicit mapping of a data point in F into a possibly
even higher dimensional feature space F which could,
in some situations, facilitate the learning process.
In this section we describe two different kernel functions
that are most widely used in various application
domains, the Linear Kernel and the Radial Basis
Function Kernel (RBF).

Linear Kernel. The linear kernel is defined by a dot
product between two vectors x and y and is used to
determine similarity between data points which are
linearly mapped into F :

k(x, y) = 〈φ(x), φ(y)〉

=
n∑
i=1

φi(x)φi(y).
(3)

With regard to network security, the major benefit of
this particular kernel becomes immediately clear. Due
to the bijective mapping, a pre-image of every data
point in the feature space F exists which allows to
directly deduce differences in features located in F .
Although it seems to quickly become computational
unfeasible to compute dot products over sequential
features the utilization of efficient data structures such
as suffix trees or hash tables allow to compute the
similarity k(x, y) in O(|x| + |y|) time [29, 32]. The dot
product is of particular mathematical appeal because
it provides a geometric interpretation of a similarity
score in terms of length of a vector as well as angle and
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distance between two vectors. Therefore, the Euclidean
distance deucl(x, y) can be easily derived from the above
kernel formulation:

deucl(x, y) = ‖x− y‖2

=
√
k(x, x) + k(y, y)− 2k(x, y).

(4)

RBF-Kernel. A more complex similarity measure is
provided by the RBF-Kernel which implicitly maps
data points into a feature space F which is non-linearly
related to the input space. The RBF-kernel is defined
as follows:

k(x, y) = exp
(
−‖x− y‖

2

2σ2

)
, (5)

where σ controls the width of the gaussian distribution
and directly affects the shape of the learner’s decision
surface. While a large σ results in a linear decision
surface which indicates a linearly separable problem,
a small value of σ generates a peaky surface which
strongly adapts to the distribution of the data in F .
The interpretation of RBF-kernel values is non-trivial
because, unlike linear kernel functions, an RBF-kernel
implicitly maps data points from the input space to an
infinite dimensional feature space F . As an example,
consider two data points x, y ∈ R2, where x = (x1, x2),
y = (y1, y2), the RBF-kernel can be re-formulated as
an infinite sum of inner products over features in input
space using Taylor series as shown in Eq.( 6).

k(x, y) = exp
(
−‖x− y‖2) ,

= exp
(
−(x1 − y1)2 − (x2 − y2)2) ,

= exp
(
−x2

1 + 2x1y1 − y2
1 − x2

2 + 2x2y2 − y2
2
)
,

= exp
(
−‖x‖2) · exp

(
−‖y‖2) · exp

(
2xT y

)
,

= exp
(
−‖x‖2) · exp

(
−‖y‖2) ·∑∞n=0

(2xT y)n
n! .

(6)

2.4 Anomaly Detection

The problem of anomaly detection can be solved math-
ematically considering the geometric relationship be-
tween vectorial representations of messages. Although
anomaly detection methods have been successfully ap-
plied to different problems in intrusion detection, e.g.
identification of anomalous program behavior [e.g. 7, 8],
anomalous packet headers [e.g. 17, 19] or anomalous
network payloads [e.g. 12, 25, 26, 33, 34], all methods

share the same concept – anomalies are deviations from
a model of normality – and differ in concrete notions of
normality and deviation. For our purpose we use the
one-class support vector machine (OC-SVM) proposed
in [31] which fits a minimal enclosing hypersphere to
the data which is characterized by a center θ and a
radius R. Mathematically, this can be formulated as a
quadratic programming optimization problem:

min
R∈R
ξ∈Rn

R2 + C

n∑
i=1

ξi

subject to: ||φ(xi)− θ||2 ≤ R2 + ξi,

ξi ≥ 0.

(7)

By minimizing R2 the volume of the hypersphere is
minimized given the constraint that training objects are
still contained in the sphere which can be expressed by
the constraint in Eq.(7).
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Fig. 3 Anomaly detection using one-class support vector
machine with linear and non-linear decision functions. Support
vectors are shown with red edging.

A major benefit of this approach is the control of
generalization ability of the algorithm [20], which
enables one to cope with noise in the training data and
thus dispense with laborious sanitization, as proposed
by Cretu et al. [2]. By introducing slack variables ξi
and penalizing the cost function we allow the constraint
to be softened. The regularization parameter C =

1
Nν controls the trade-off between radius and errors
(number of training points that violate the constraint)
where ν can be interpreted as a permissible fraction
of outliers in the training data. The solution of the
optimization problem shown in Eq. (7) yields two
important facts:

1. The center θ =
∑
i

αiφ(xi) of the sphere can be

expressed as a linear combination of training points.
2. Each training point xi is associated with a weight
αi, 0 ≤ αi ≤ C, which determines the contribution
of the i-th data point to the center and reveals
information on the location of xi. If αi = 0 then
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xi lies in the sphere (||xi − c||2 < R2) and the data
point can be considered as normal. In constrast,
if αi = C xi can be interpreted as an outlier
(||xi − c||2 > R2). In both cases data points are
excluded from the model of "normality". Thus, only
those training points yielding 0 < αi < C are
located on the surface of the sphere (||φ(xi)−θ||2 =
R2) and thus, define the model of normality as
illustrated in Fig. 3. These particular points are
known as support vectors.

3. The radius R which is explicitly given by the
solution of the optimization problem in Eq. (7)
refers to the distance from the center θ of the sphere
to the boundary (defined by the set of support
vectors) and can be interpreted as a threshold for
a decision function.

Finally, having determined a model of normality the
anomaly score Sz for a test data point z can be defined
as the distance from the center in the feature space:

Sz = ||φ(z)− θ||2

=
∑
w∈A

(φw(z)− θw)2

=
∑
w∈A

(φw(z)−
n∑
i=1

αiφw(xi))2

= k(z, z)− 2
∑
i

αik(z, xi) +
∑
i,j

αiαjk(xi, xj),

(8)

where the similarity measure k(x, y) between two
points x and y defines a kernel function as introduced
in Section 2.3. Depending on the similarity measure
at hand data models of different complexity can
be learned. For example, as shown in Fig. 3(a)
the application of a linear kernel always results in
an uniform hypersphere. Thus, the resulting model
provides a rather general description of the data.
However, if data happens to follow a multi-modal
distribution the risk of absorbing outliers in low
density regions of the hypersphere might increase.
On the contrary, the utilization of an RBF-kernel
allows to adopt the distribution characteristics of
the data resulting in more complex data models as
shown in Fig. 3(b). Of course, the downside of these
kind of measures is their lack of interpretability as
data points are implicitly mapped into an infinite
dimensional feature space in which the identification
of individual feature contributions to the overall
dissimilarity between two data points becomes difficult
(c.f. Section 2.3).

2.5 Feature Visualization

So far, we have discussed how payloads are extracted
and mapped into a geometric space in which anomaly
detection is carried out to identify deviations from a
previously learned model of normality. At this point
the following question might arise: why is a data
point considered as an anomaly and what constitutes
the anomaly? In this section, we derive a feature
visualization for payload-based anomaly detection
which allows to trace back an anomaly to individual
features in the payload and thus, provide a technique
that not only helps to understand the reason for an
anomaly but also means to localize suspicious pattern.
Geometrically, a feature can be considered relevant if
it has a significant impact on the norm of a vector.
Consequently, the anomaly score S(z) can be expressed
as a composition of individual dimensions of R|A|
as shown in Eq. 8. We refer to δz = (φw(x) −
θ)2
w∈A as feature differences, an intuitive visualization

technique to explore sequential disparity which has
been originally introduced to determine discriminating
q-grams in network traces [25]. The entries of δz reflect
the individual contribution of a string feature to the
deviation from normality represented by θ.
While feature differences provide sufficient means
to visualize anomalous network features, a security
practitioner might also be interested to directly
inspect the portions of the payload that constitute an
anomaly. Therefore, the concept of feature differences
is incorporated into a method known as feature
shading [27]. The idea of feature shading is to assign
a number mj ∈ R to each position j in a payload
reflecting its deviation from normality. As a result, the
payload can be overlaid with a color shading according
to the amount of deviation at a particular position.
Considering the generic definition of string features S,
each position j in the payload can be associated with
multiple feature strings. Hence, a setMj can be defined
which contains all strings s matching a position j of a
payload z:

Mj = {z[i, ..., i+ |s|] = s | s ∈ S} j− k+ 1 ≤ i ≤ j (9)

where z[i, ..., i + |s|] denotes a substring of length k in
z starting at position i . By using Mj the contribution
mj of position j to an anomaly score can be determined
as follows:

mj = 1
|Mj |

∑
s∈Mj

− θ2
s . (10)

An abnormal pattern located at j corresponds to low
frequencies in the respective dimensions of the learned
model θ and therefore, results in a small value of mj . A



8 Patrick Duessel et al.

frequent string is characterized by high values in θ and
yields a high value of mj .

3 Experimental Results

In this section we present results on experiments
involving recorded network traffic. Experiments are
designed to investigate the benefits of the proposed
data representation, specifically with regard to the
problem of detecting unknown attacks. Experiments
are carried out off-line on two data sets containing two
prominent types of network traffic: HTTP and RPC. In
our setup, inbound packets are captured, re-assembled
and forwarded to binpac, a flexible protocol analyzer
which extracts and parses application-layer messages.
As a baseline, anomaly detection is carried out on
application-layer messages using sequential features,
i.e. n-grams, and linear as well as non-linear feature
mappings. Our experiments are designed to address the
following two questions:

1. To which extent does the choice of data
representation affect the detection accuracy of an
anomaly detector with regard to different network
protocols, attack types and basic detector evasion?

2. How does the cn-gram data representation help to
explain and interpret geometric anomalies?

3.1 Data Sets

We evaluate our method on two sanitized data sets
containing traffic recorded on a publicly accessible
web server (HTTP traffic) as well in an industrial
automation testbed (RPC traffic). For both data sets,
application-level messages were extracted using the
binpac protocol parser. Furthermore, we simulated a
broad collection of application-level attacks on the
target servers and finally mixed those attacks with
the captured application-level messages. Attacks were
taken from the Metasploit framework 1 as well as from
common security forums such as securityfocus.com,
remote-exploit.org and xssed.com. Each attack class
consists of multiple attack instances carrying different
payloads.

3.1.1 BLOG09: Plain-text Protocol - HTTP

The first data set comprises a sample of 150000 HTTP
requests recorded on a blog site web server accessible
from the internet over a period of ten days. With
an average request length of 389 bytes the size of an

1 http://www.metasploit.com

HTTP request ranges between 39 and 61127 bytes
which is mainly due to the presence of a notable fraction
of web spam in the corpus. Protocol analysis reveals
317 distinct tokens including common HTTP protocol
elements as well as CGI parameters. In average, each
request consists of nine tokens whereas the average
length of a corresponding attribute is about 57 bytes.
Attacks were chosen to cover a variety of attack types
including buffer overflows (BUF), cross site scriptings
(XSS), SQL injections (SQL) and command injections
(CI). Details on the attacks can be found in Table 1.
In order to put forward a realistic setup, the majority
of attacks was customized to fit existing vulnerabilities.
For the rest of the paper this data set is referred to as
BLOG09-I. Moreover, in order to expose differences in
the detection behavior of an anomaly detector based on
various data representations we created a second, even
larger attack set (BLOG09-II ) in which the attacks
from the original attack set were tuned to increase
structural and sequential similarity to normal traffic to
impede attack detection. Therefore, HTTP header keys
and values frequently observed in normal traffic were
added to the attack instances contained in BLOG09-
II :
Host: tim.xxxxxxxx.de..User-Agent: Mozilla/5.0(X11; U
;Linux x86_64; de; rv:1.9.0.7) Gecko/2009030423 Ubunt
u/8.10 (intrepid) Firefox/3.0.7..Accept: text/html,ap
plication/xhtml+xml,application/xml;q=0.9,*/*;q=0.8..
Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3.
.Accept-Encoding: gzip,deflate..Accept-Charset: ISO-8
859-1,utf-8;q=0.7,*;q=0.7..Connection: close..

Class CVE n Description Type

1 - 5 wp_profile applet XSS
2 - 5 wp_profile embed XSS
3 - 5 wp_profile iframe XSS
4 - 5 wp_profile body XSS
5 - 11 wp_profile∗ crlf XSS
6 2005-1810 8 wp_index 1=1 SQL
7 2005-1810 5 wp_index outfile SQL
8 2008-1982 5 wp_index benchmark SQL
9 2008-4008 11 weblogic trans_enc BUF
10 2009-0921 9 openview OvOSLocale BUF
11 2004-1134 8 iis (isapi/w3who) BUF
12 2001-0241 10 iis (isapi/printing) BUF
13 2004-0798 10 ipswitch maincfgret BUF
14 2004-0798 2 edirectory_host BUF
15 2005-2848 3 barracuda_img_exec CI

Table 1 HTTP attacks

3.1.2 AUT09: Binary Protocol - RPC

The second data set consists of 765000 TCP packets
that were captured in an industrial automation testbed
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over a period of eight hours. The traffic contains mostly
DCE/RPC traffic. Details on the attack set can be
found in Table 2.

Class CVE n Description Type

1-3 2003-0352 3 RPC/DCOM BUF
4 2005-0059 1 RPC MSMQ BUF
5 2007-1748 1 RPC DNS BUF
6 2003-0533 1 LSASS BUF

7-11 2006-3439 5 SRVSVC BUF
12-14 2008-4250 3 SRVSVC BUF

Table 2 DCE/RPC attacks

3.2 Validation Metrics

Since feature extraction and anomaly detection may
require certain parameters to be set our experiments
are casted into a cross validation framework in order to
determine a parameter configuration which maximizes
the detection accuracy for the feature representation in
question. To this end, data is split into three distinct
partitions for training, validation, and testing. Since we
focus on the detection of unknown attacks validation
and test partitions contain attacks taken from distinct
attack classes. Each model is learned using a sample
of 1000 normal messages drawn from the training
partition and subsequently validated on 10 distinct
validation samples. A validation sample also consists of
1000 normal messages mixed up with attacks from the
validation partition. Finally, the model that maximizes
the detection accuracy during the validation phase is
applied on a test sample. The detection accuracy is
measured in terms of area under receiver operating
characteristic curve (ROC0.01) which integrates true
positive values over the false positive interval [0, 0.01].
For statistical reasons experiments are repeated and
results are averaged over 20 repetitions.

3.3 Impact of Data Representation on Detection
Accuracy

In this experiment we investigate the impact of different
data representations on the detection accuracy with
regard to unknown attacks.

BLOG09-I . At first, we present experimental results
on the BLOG09-I data set. Table 3 shows the model
parameters that yield the highest detection accuracy

during validation grouped by similarity measure and
feature type.
Although the cn-gram data representation clearly
outperforms the bag-of-token features the highest
detection rate is achieved by conventional n-grams.
The choice of a small n-gram length indicates a
comparably modest anomaly detection problem. This
is not surprising, since the majority of attacks in the
BLOG09-I data set is predominantly represented by an
attack vector and the respective payload which suggests
strong structural as well as sequential dissimilarity
to normal traffic. Furthermore, experiments with the
RBF-kernel demonstrate a detection behavior which is
comparable to the Linear Kernel.

Measure Feature n Embedding AUC

linear n-grams 2 bin 0.99 ±0.01
rbf10−100 n-grams 2 bin 0.99 ±0.01
linear cn-grams 2 freq 0.92 ±0.01
linear bag-of-token - bin 0.85 ±0.06

Table 3 Area under ROC0.01-curve (AUC) of best models
during validation over HTTP requests (BLOG09-I ) grouped
by measure and feature

Given the parameter settings in Table 3 data models are
learned and finally applied on separate test samples.
The results are depicted in Fig. 4(a) which shows
a comparison of ROC-curves that result from the
application of different data representations. Similar
to the validation results cn-grams clearly outperform
bag-of-token features while n-grams prevail over all
data representations. A more detailed analysis of the
results is presented in Table 6 which outlines individual
false positive rates per attack class (percentage of
“normal” test points having an anomaly score above
the smallest score achieved by instances of a particular
attack class). While the bag-of-token approach suffers
false positives around 1% for a few attack classes the
detection performance of n-grams and cn-grams can be
considered comparable. However, a major difference in
the detection behavior arises for attack class 6 which
comprises short and relatively harmless SQL injections
of the form “’ or 1=1 - -” and which are primarily
applied to escalate SQL selection statements.
Results clearly show that the utilization of cn-
grams in that particular case does not provide
significant advantages over conventional n-gram data
representations. The reason for the poor detection
accuracy of that particular attack class resides in
the fact, that the amount of suspicious characters
make up only a very small contribution to the overall
geometric norm of the attack data point embedded
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in the cn-gram feature space which is significantly
larger than the conventional n-gram feature space.
Therefore, the detection accuracy using the n-gram
data representation is significantly higher.

BLOG09-II . We now present results on the
BLOG09-II data set in which attacks are tuned to
match normal traffic characteristics. A list of best
models selected during validation is shown in Table 4.
In contrast to the validation results on BLOG09-I
the best model based on n-grams requires a larger
string length which suggests a more difficult anomaly
detection problem caused by the sole adherence of
HTTP protocol headers to the attack vector. As a
consequence, the detection accuracy deteriorates for
all data representations in comparison to the results
of the BLOG09-I validation results. As expected,
the bag-of-token features completely fail to provide
sufficient discriminating information on the attacks
yielding a detection accuracy of less than 10% within
a false positive interval of [0,0.01]. Interestingly,
the data representation providing the highest overall
detection accuracy changes for both experiments.
While in the BLOG09-I experiments the n-gram
data representation slightly prevails cn-grams clearly
outperform all other representations in the BLOG09-
II experiments. Moreover, the utilization of protocol
information in combination with sequential features
favors the choice of a much smaller string length n while
strongly improving the expressiveness of the cn-gram
features.

Measure Feature n Embedding AUC

linear cn-grams 2 freq 0.74 ±0.08
linear n-grams 4 bin 0.44 ±0.07

rbf10−100 n-grams 4 bin 0.44 ±0.07
linear bag-of-token - bin 0.10 ±0.05

Table 4 Area under ROC0.01-curve (AUC) of best models
during validation over HTTP requests (BLOG09-II ) grouped
by measure and feature

A comparison of ROC-curves for the BLOG09-II test
data set is depicted in Fig. 4(b). The corresponding
false positive rates per attack class are provided in
Table 7. While most of the buffer overflows (classes
9-14) can be reliably detected by both n-grams
and cn-grams the utilization of the cn-gram data
representation results in a superior detection accuracy
for cross site scripting attacks (classes 1-5) and SQL
injections (classes 7-8) which, on the other hand,
induces a significant increase in false positives for n-
grams. As shown in Fig. 4(b) the incorporation of

protocol information into sequential features results
in a detection rate of 80% at a false positive level
of 1% which is almost twice as high as attained by
conventional n-grams (43%).The false positive analysis
reveals that by using cn-grams the accuracy can be
strongly improved for majority of non-overflow attacks
which is reflected by a major reduction of the respective
false positive rate to a level less than 1%.
The reason for cn-grams to outperform conventional
n-grams becomes obvious by picturing document
frequency differences between normal data and
individual attack instances which is shown in Fig 5.
The plot displays 1-gram frequency differences between
10000 normal HTTP requests and two different
attacks, a buffer overflow (class 14) and a SQL
union injection (class 8). A frequency difference of 1
arises from bytes that solely appear in normal data
points whereas bytes that are exclusively found in
the attack yield a frequency difference of -1. Bytes
with a frequency difference close to zero do not
provide discriminating information. In the upper two
plots frequency differences of both attacks are shown
that result from conventional analysis at request-level,
whereas the lower two plots show frequency differences
of both attacks from token-level analysis. The boxes
in the plots mark areas with the largest amount of
differences between frequency difference distributions
attained from request-level and token-level analysis.
The buffer overflow can be easily detected due to the
presence of a large amount of non-printable characters
(a large number of points at -1 for byte values in the
range of [0,45] and [128,255]). On the other hand, the
SQL injection contains mostly ASCII characters, which
is reflected by close to zero frequency differences for
most of the printable characters. As a consequence, the
detection of this kind of attack is comparably difficult
using conventional n-gram features. On the contrary,
the lower two charts show frequency differences for
the same attacks but with regard to the respective
vulnerability. The frequency differences of the buffer
overflow become even more obvious considering the
local byte distribution in the scope of the exploited
parameter "Host". Similar clarification takes place for
the SQL injection for which many previously normal
bytes become clearly anomalous taking the respective
vulnerable protocol element ("cat") into account. This
results in a major improvement of the detection
accuracy.
In contrast to the results on the BLOG09-I data
set which demonstrate insignificant advantages of cn-
grams over conventional n-grams (with regard to the
problem of anomaly detection) experiments on the
BLOG09-II data set show that the utilization of cn-
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Fig. 4 ROC0.01-curve for attacks over binary and text-based application-layer protocols

grams results in a major improvement of detection
accuracy, predominantly for web application attacks
such as SQL injections and XSS attacks. This is mainly
due to the fact that both attack types employ portions
of the alphabet that are common with normal traffic.
However, since buffer overflows exhibit some kind
of binary shell code, the detection accuracy remains
largely unaffected for those type of attacks. The results
also suggest that in presence of payload customization
(e.g. adding frequently occurring HTTP headers) the
cn-gram data representation is more effective than n-
grams because the protocol context of a particular n-
gram becomes increasingly important if normal and
outlier classes are generated by similar alphabets and
distributions.

AUT09 . We now present results of experiments
conducted on binary network traffic. Table 5 shows

the model parameters that yield the highest detection
accuracy during validation grouped by similarity
measure and feature type. Since multiple best
parameter configurations are selected final experiments
are carried out using parameters that yield the least
complex data model. The results on the test data set are
depicted in Fig. 4(c). In contrast to the experiments on
HTTP, RPC attacks are perfectly detected using both
bag-of-token features and cn-grams. However, as shown
in Table 8 the utilization of cn-grams demonstrates
only a marginal improvement in the detection accuracy
compared to n-grams.
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Fig. 5 Byte-frequency differences at request and token level over BLOG09-II requests

Measure Feature n Embed AUC

linear bag-of-token - bin 1
linear cn-grams 2-4 bin/freq 1
linear n-grams 4-6 freq 0.99 ±0.01

rbf10−100 n-grams 4-6 freq 0.99 ±0.01
Table 5 Area under ROC0.01-curve (AUC) of best models
during validation over RPC requests (AUT09) grouped by
measure and feature

3.4 Localization of Anomalous Payloads Using
Syntax-Sensitive Features

The cn-gram data representation is not only effective
for the detection of web application attacks in network
traffic, it can also be used to pinpoint vulnerabilities
in protocols and web applications. In this section we
demonstrate the use of feature shading, an intuitive
method to explain geometric anomalies based on
feature differences (c.f. Section 2.5) in presence of
protocol context information.
The cn-grams data representation not only allows to
track down suspicious byte patterns, it also provides
a security operator with information on the syntactic
context, e.g. a potentially vulnerable protocol element
such as an HTTP header or a CGI parameter. This
constitutes a major benefit over conventional n-grams.
Geometrically, a protocol element can be considered
potentially vulnerable if its associated attribute consists
of n-grams which contribute to a large extent to
the norm of the overall feature differences vector.
An example for a SQL injection is shown in Fig. 6
which displays the contribution to the overall norm as
a function of individual protocol elements. The CGI

parameter “cat” clearly exhibits the largest fraction
of the overall feature differences norm and therefore,
might provide substantial information on the attack
vector.
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Fig. 6 Contribution of protocol tokens to overall norm of the
feature differences vector between 10000 normal HTTP requests
and a SQL injection

An example of a corresponding feature shading is given
in Fig. 7. For each byte position the corresponding
term frequency difference is calculated and graphically
highlighted using some coloring scheme. Darker regions
exhibit strong frequency differences and thereby,
indicate unusual byte patterns. As expected, the most
suspicious and longest contiguous byte pattern is
located in the attribute of the CGI parameter “cat”.
In this particular example the attacker mounts a SQL
union injection with the objective to create a file on
the web server that takes a URI as an argument to
eventually allow for remote file inclusion.
The identification of anomalous payloads transferred
over HTTP is not very difficult due to the nature
of text-based protocols. However, the localization



Detecting Zero-Day Attacks Using Context-Aware Anomaly Detection At Application-Layer 13

Fig. 7 Feature shading of a SQL union injection based on cn-
grams

of malicious byte patterns transferred over binary
protocols is more challenging because the structure
of the underlying protocol is not always obvious and
typical shell code bytes can also be found in normal
traffic. Below is an example for the identification of
a potential vulnerability exploited by a RPC buffer
overflow.
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Fig. 8 Contribution of protocol tokens to overall feature
differences norm between 10000 normal RPC requests and a
RPC buffer overflow

With 93% the largest fraction of the overall feature
differences norm is caused by the attribute associated
with the token Object_Name. The feature shading is
presented in Fig. 9 and clearly reveals a long, contiguous
byte sequence which according to the opaque coloring
suggests anomalous content.
Examination of the corresponding parse tree shows
that the attacker binds to the Microsoft Windows
remote activation interface registered by the UUID
4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 and exploits a
vulnerability located in the RemoteActivation function.
Thereby, the protocol token Object_Name which clearly
stands out in Fig. 8 corresponds to a parameter of the
RemoteActivation function which is overflown by the
attacker. Needless to say that the attack vector fits

Fig. 9 Feature shading of a RPC buffer overflow attack based
on cn-grams

the well-known RPC/DCOM vulnerability (CVE 2003-
0352).
As demonstrated in this section, protocol analysis along
with payload-based anomaly detection allows not only
to identify suspicious byte patterns in application-layer
messages, it also provides a better understanding of
attacks and helps to pinpoint potential vulnerabilities.

4 Related Work

Payload-based Anomaly Detection. Over the last
decade, a multitude of anomaly-based intrusion
detection systems have been proposed which analyze
the payload of a packet with regard to sequential
anomalies. Wang et al. proposed Payl [33] which
constructs a simple packet-length specific model of
normal traffic. The model relies on the computation of
n-gram frequencies (n ≤ 2) in a payload. The anomaly
score is defined by the simplfied Mahalanobis distance
to the previously learned n-gram distribution. In a
continuitive work, the authors presented Anagram [34]
which computes a model of normal as well as malicious
traffic based on distinct binarized n-grams stored in
different Bloom filters. Packets are scored by counting
the number of unobserved normal n-grams as well as
observed malicious n-grams. An extensive experimental
evaluation of geometric outlier detection is provided
by Rieck and Laskov [26] who investigated global and
local outlier detection methods with regard to the
problem of unknown attack detection. Perdisci et al.
proposed McPad [24] which relies on an ensemble of
One-Class SVM detectors. Their approach allows to
incorporate different types of features by combining
individual detectors in order to achieve a better trade-
off between detection accuracy and false positive rate.

Feature Extraction. A large amount of previous work in
the domain of network intrusion detection systems has
focused on features derived from network and transport
layer protocols. An example of such features can be
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found in the data mining approach of Lee and Stolfo
[15], containing packet, connection and time window
features derived from IP and TCP headers. The same
work has pioneered the use of “content” features that
comprised selected application-level properties such
as number of shell prompts, number of failed login
prompts, etc. deemed to be relevant for detection of
specific attacks. Similar features comprising selected
keywords from application-layer protocols have been
used by Mahoney and Chan for anomaly detection [18].
General content-based features using the payload
distribution of specific byte groups have been first
proposed by Kruegel et al. [13] in the context of service-
specific anomaly detection using separate normality
models for different application-layer protocols. Full
distributions of byte values have been considered by
Wang and Stolfo [33], eventually extended to models
of various languages that can be defined over byte
sequences, e.g. n-grams [25, 34]. However, the problem
of modeling n-grams is ill-posed because it entails the
estimation of distributions in exponentially growing
sample spaces. To overcome this problem, Perdisci et
al. [24] suggested to use gappy n-grams [16] which
effectively reduces the sample space for higher-order n-
grams (n > 2). Instead of explicitly modeling n-grams,
the Spectrogram detector [30] which was specifically
designed to protect web applications against malicious
user input learns a probabilistic representation of
legitimate web-layer input using a mixture of factorized
n-gram Markov models. Their approach casts n-gram
observations into products of conditional probabilities
representing transitions between individual characters
which eventually results in a linearization of the space
complexity.
The incorporation of protocol features into the
detection process has been first realized in signature-
based IDS. Robust and efficient protocol parsers have
been developed for the Bro IDS [22]; however, until
recently they were tightly coupled with Bro’s signature
engine, which has prevented their use in other systems.
The development of a stand-alone and extendable
protocol parser binpac [21] has provided a possibility
for combining protocol analysis with other detection
techniques. Incremental and bi-directional parsing as
well as error recovery are especially attractive features
of binpac. Similar properties at a more abstract level
are exhibited by the protocol analyzer GAPAL [1].
Although, protocol parsing by definition limits the
scope of analysis to known network protocols unknown
protocols can be explored using sophisticated protocol
reverse engineering techniques [3, 36].
However, the incorporation of protocol analysis into
anomaly detection remains largely unexplored. Kruegel

and Vigna [12] have developed a highly effective
system for the detection of web attacks by considering
separate models for HTTP requests. The system
combines models built over specific features such as
length, character distribution and request token order
defined for individual web applications associated with
particular URI paths. Duessel et al. [5] proposed a
method which allows to integrate protocol analysis in
payload-based anomaly detection based on composite
kernel measures. Their experiments showed that
significant improvements in the detection accuracy can
be achieved, especially for unknown web application
attacks. Our method advances this approach in that
it allows to transparently map byte sequences into a
unique geometric space which reflects sequential as well
as syntactical features. Hence, instead of calculating
multiple kernels the cn-gram data structure eventually
requires to compute one kernel only.

Evasion. Attack obfuscation is a common practice
among attackers to avoid detection. Blending-based
evasion of byte frequency-based network anomaly
IDS has been first addressed by Kolesnikov and
Dagon [11] who suggest to blend malicious attack
packets with normal traffic using advanced obfuscation
techniques such as spectrum analysis [4]. Although
Fogla et al. [6] present a proof of NP-hardness of
the problem a comprehensive experimental evaluation
reveals practical feasibility of blending-based attacks
in a continuative study. Resistance of payload-
based online anomaly detectors against poisoning-based
evasion schemes has been investigated by Kloft and
Laskov [10].

5 Conclusion

In this contribution we propose a general method
that facilitates the combination of protocol analysis
and payload-based anomaly detection. To this end, we
present a novel data representation, so called cn-grams,
that allows to integrate protocol features and sequential
features in an unified geometric feature space.
We conduct extensive experiments on recorded
network traffic featuring both text-based and binary
application-layer protocols which demonstrate superior
accuracy on the detection of unknown attacks. Our
proposition shows that novel attacks can be identified
reliably and the detection accuracy can be boosted from
44% using unsupervised anomaly detection with plain
sequential features to 80% using combined features
in the presence of attack obfuscation. Although the
additional effort of protocol analysis does not seem
to pay off for simple SQL injections the method
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proves to be especially useful for the detection of web
application attacks such as XSS and SQL injections
in the presence of attack obfuscation by payload
customization. Moreover, we show how cn-grams can
be used to explain geometric anomalies to security
experts and also provide insight into vulnerabilities by
identifying and pinpointing meaningful features in a
payload stream using the feature shading technique.
Due to its general nature, the proposed feature
extraction method can be applied on any protocol for
which a protocol analyzer is available. While in this
contribution we focus on the utilization of protocol
features derived from message format specifications,
future work should address the problem of how to
incorporate protocol state machines into sequential
feature representations and investigate the identified
limitation of both data representations regarding the
accurate detection of local anomalies in sparse feature
spaces.
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Type Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

XSS

1 0.0187 ±0.0077 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
2 0.0137 ±0.0074 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
3 0.0140 ±0.0042 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
4 0.0150 ±0.0070 0.0007 ±0.0008 0.0007 ±0.0008 0.0005 ±0.0012
5 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

SQL
6 0.0152 ±0.0053 0.0027 ±0.0015 0.0027 ±0.0015 0.6820 ±0.0478
7 0.0118 ±0.0015 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
8 0.0147 ±0.0057 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

BUF

9 0.0150 ±0.0072 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
10 0.0010 ±0.0007 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
11 0.0139 ±0.0068 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
12 0.0003 ±0.0005 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
13 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
14 0.1698 ±0.0438 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

CI 15 0.0037 ±0.0022 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

Table 6 False positive rates for unknown HTTP attacks (BLOG09-I ) on test data

Type Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

XSS

1 0.4044 ±0.0858 0.0802 ±0.0301 0.0798 ±0.0316 0.0004 ±0.0005
2 0.4250 ±0.0000 0.1260 ±0.0000 0.1260 ±0.0000 0.0000 ±0.0000
3 0.4248 ±0.0686 0.2683 ±0.0523 0.2682 ±0.0511 0.0017 ±0.0014
4 0.3750 ±0.0516 0.1223 ±0.0154 0.1220 ±0.0166 0.0007 ±0.0006
5 0.4452 ±0.0637 0.2074 ±0.0502 0.2078 ±0.0505 0.0012 ±0.0008

SQL
6 0.4357 ±0.0796 0.4143 ±0.0291 0.4143 ±0.0289 0.9263 ±0.0159
7 0.6779 ±0.1752 0.1333 ±0.0356 0.1330 ±0.0358 0.0034 ±0.0020
8 0.4697 ±0.1048 0.0389 ±0.0160 0.0386 ±0.0158 0.0019 ±0.0012

BUF

9 0.4113 ±0.0660 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
10 0.1677 ±0.0347 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
11 0.4054 ±0.0489 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
12 0.1274 ±0.0728 0.0000 ±0.0000 0.0002 ±0.0004 0.0012 ±0.0008
13 0.0005 ±0.0007 0.0000 ±0.0000 0.0000 ±0.0000 0.0005 ±0.0007
14 0.8547 ±0.0412 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004

CI 15 0.5048 ±0.0758 0.3335 ±0.0784 0.3318 ±0.0757 0.0008 ±0.0010

Table 7 Average false positive rates for unknown HTTP attacks (BLOG09-II ) on test data

Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

1 0 0 0.0010 ±0.0012 0.0010 ±0.0012 0 0
2 0 0 0.0012 ±0.0010 0.0012 ±0.0010 0 0
3 0 0 0.0008 ±0.0008 0.0008 ±0.0008 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0.0008 ±0.0009 0.0001 ±0.0003 0 0
8 0 0 0.0008 ±0.0010 0.0008 ±0.0009 0 0
9 0 0 0.0008 ±0.0007 0.0009 ±0.0011 0 0

10 0 0 0.0006 ±0.0005 0.0006 ±0.0005 0 0
11 0 0 0.0008 ±0.0008 0.0008 ±0.0008 0 0
12 0 0 0.0006 ±0.0007 0.0006 ±0.0007 0 0
13 0 0 0.0009 ±0.0008 0.0009 ±0.0008 0 0
14 0 0 0.0004 ±0.0005 0.0004 ±0.0005 0 0

Table 8 False positive rates for unknown RPC attacks (AUT09) on test data


