
V0Finder: Discovering the Correct Origin of Publicly Reported
Software Vulnerabilities

Seunghoon Woo†, Dongwook Lee†, Sunghan Park†, Heejo Lee†∗, Sven Dietrich‡

†Korea University, {seunghoonwoo, dongwook2014, sunghan-park, heejo}@korea.ac.kr
‡City University of New York, spock@ieee.org

Abstract
Common Vulnerabilities and Exposures (CVEs) are used to
ensure confidence among developers, to share information
about software vulnerabilities, and to provide a baseline for
security measures. Therefore, the correctness of CVE reports
is crucial for detecting and patching software vulnerabilities.

In this paper, we introduce the concept of “Vulnerability
Zero” (VZ), the software where a vulnerability first originated.
We then present V0Finder, a precise mechanism for discov-
ering the VZ of a vulnerability, including software name
and its version. V0Finder utilizes code-based analysis to
identify reuse relations, which specify the direction of vulner-
ability propagation, among vulnerable software. V0Finder
constructs a graph from all the identified directions and traces
backward to the root of that graph to find the VZ.

We applied V0Finder to 5,671 CVE vulnerabilities col-
lected from the National Vulnerability Database (NVD) and
popular Bugzilla-based projects. V0Finder discovered VZs
with high accuracy of 98% precision and 95% recall. Further-
more, V0Finder identified 96 CVEs with incorrect informa-
tion related to their respective VZs. We confirmed that the
incorrect VZ causes prolonged patch updates of vulnerable
software; the patch update of CVEs with the incorrect VZ
information takes 2 years, while the patch update of CVEs
with the correct VZ takes less than a year on average. Such in-
correctly identified VZ hinders the objective of the CVE and
causes confusion rather than “ensuring confidence” among
developers. Our analysis shows that V0Finder can enhance
the credibility of information provided by the CVEs.

1 Introduction
The growing number of software made it possible for develop-
ers to share their code with one another in the form of a public
library and open-source software (OSS). This code-sharing
culture provides high productivity, yet causes the transfer of
vulnerable code [18, 26, 58]. To mitigate this issue, informa-
tion about known vulnerabilities is shared through channels

*Heejo Lee is the corresponding author.

such as the National Vulnerability Database (NVD) [39] in
the form of Common Vulnerabilities and Exposures (CVE).

Despite such collective efforts, mistakes can cause a trans-
fer of a vulnerability from one software to another without any
interruption, as the quality and correctness of these vulnera-
bility reports are not guaranteed. Therefore, quality control of
public vulnerability reports has become a major research in-
terest in software security [2, 5, 8, 34, 36]. Of the many pieces
of information in the public vulnerability report, we paid par-
ticular attention to the origin of the vulnerable software where
the vulnerability is coming from. We coin this origin of vul-
nerable software as Vulnerability Zero (VZ), a reference to
the medical term patient zero (or primary case) [56].

One of the main problems with current vulnerability reports
is the lack of verifying the correctness of VZ information. A
third-party OSS vulnerability in a software program is occa-
sionally reported as the entire program’s vulnerability. Such
reports with the incorrect VZ lead other developers, who
reuse the vulnerable third-party software, to unintentionally
overlook the propagated vulnerabilities within their software,
causing transfer of the vulnerability to other software, and de-
laying patch deployment. Thus, without proper verification of
VZ correctness in CVEs, incorrect VZs may create confusion
and hinder the core objective of the CVE.

In other research fields, e.g., medical [57] and malicious
software [15, 19], the importance of discovering a primary
case has already been introduced. To the best of our knowl-
edge, however, no existing approaches have attempted to dis-
cover the VZ of a software vulnerability and further to reveal
its importance. Recent studies can be classified into three
categories: (1) identifying missing information in the report
to efficiently mitigate vulnerabilities [2,3,5,36], (2) analyzing
the reproducibility of vulnerabilities [14,34], and (3) ensuring
consistency between the vulnerability description and the af-
fected software information [8]. However, if those studies are
based on public vulnerability reports with an incorrect VZ,
the credibility of their results can be challenged.

Although a VZ literally means the vulnerable software
with the earliest birth date, a method that solely relies on the

timestamp metadata can often fail to discover the VZ; this is
because the reliability of the timestamp metadata is not always
guaranteed. Since software code can be modified after its
release, we cannot always determine that the earliest-released
software among the vulnerable software is the VZ. Moreover,
a code-generation time could be changed due to operations
such as copying and pasting of source files [51]. Thus, this
approach yields considerable false alarms (see Section 5.2).

To overcome such shortcomings, we propose a novel mech-
anism called V0Finder (Vulnerability Zero Finder), to pre-
cisely discover a VZ assisting in detecting and patching soft-
ware vulnerabilities. To discover a VZ precisely, we face
two main technical challenges: (1) addressing syntax-variety
of a vulnerable code and (2) selecting proper features that
can be utilized to discover a VZ in the large-scale software
pool. The syntax of a vulnerable code introduced in the VZ
could be modified when it propagates to other software or
when the VZ is updated to a newer version. Hence, we need
a technique to discover the VZ while being aware of the va-
riety of vulnerable code. Furthermore, among the software
containing vulnerable codes with various syntax, we need to
select proper features that can pinpoint the correct VZ; as
mentioned earlier, timestamp metadata alone is insufficient.

Our approach. To discover a VZ, V0Finder (1) detects a
set of vulnerable software that contains a particular vulnerabil-
ity, (2) identifies propagation directions of this vulnerability
among the vulnerable software, and then (3) determines the
VZ of the vulnerability by backtracing propagation directions.

First, for detecting vulnerable software, V0Finder uses
function-level vulnerable-clone detection for best accuracy
and speed [26,58]. To address the syntax-modified vulnerable
clones, we utilize Locality Sensitive Hashing (LSH) [12, 41]
and the patch code of the vulnerability (see Section 3.1).

Next, V0Finder identifies propagation direction of the vul-
nerability among the detected vulnerable software. In partic-
ular, we pay attention to the reuse relation between the two
vulnerable software, because the reuse relation can be used
to indicate the vulnerability propagation directions: when S
is reused in S′ and they share the same vulnerable code, we
can infer that the vulnerable code was propagated from S
to S′ (i.e., S→ S′). Thus, V0Finder performs a code-based
analysis between the two vulnerable software to identify a
reuse relation, more specifically, factors used for code-based
analysis include (1) source code of the software, (2) location
of the source code, and (3) metadata files (see Section 3.2).

Accordingly, V0Finder constructs a vulnerability propaga-
tion graph, where nodes indicate the vulnerable software and
edges represent the propagation directions. Then V0Finder
discovers the VZ by finding the root of the constructed graph.

Evaluation and observations. We collected 5,671 CVEs
from the NVD and popular Bugzilla-based projects, including
all the C/C++ related CVEs that released patches via Git. For
each CVE, we compared the VZ discovered by V0Finder

with the Common Platform Enumeration (CPE) [40], which
specifies the software affected by each CVE. As a result,
V0Finder discovered VZs with 98% precision and 95% re-
call for the collected CVEs (see Section 5.1).

Further analysis demonstrates the importance and need for
VZ discovery. From the experiment, we found that the public
reports of 96 CVEs (1.7%) provided the incorrect VZ infor-
mation. It is worth noting that they are rarely patched once
these vulnerabilities are propagated; 64% of the latest version
of software affected by the 96 CVEs still contain the propa-
gated CVE, whereas the ratio is much lower (15%) for CVEs
with the correct VZ information. To make matters worse,
many popular software programs have been released with
unpatched vulnerabilities due to the incorrect VZ information
(see Section 6.1). Even if developers succeeded in detecting
the CVE’s vulnerability in their programs, the elapsed time
for patching doubled in the case of the CVE with the incorrect
VZ information, compared to the case with the correct VZ
information (see Section 6.2).

This paper makes the following three main contributions:

• We coin the term VZ, which represents the software and
its version where the vulnerability originated, and show
the importance of VZ discovery for the first time.

• We present V0Finder, a precise mechanism to discover
the VZ using a vulnerability propagation graph. It is
shown that V0Finder provides high accuracy with 98%
precision and 95% recall.

• From the 96 CVEs with the incorrect VZ information
discovered by V0Finder, we show a significant impact
of the incorrect VZ information on the affected software
programs including the delay of patch updates.

2 Motivation

In this section, we clarify the terminology used in this paper,
and then discuss the motivation for VZ discovery.

2.1 Basic terminology
Software. We consider software as a source code-level project
(rather than binaries) that contains source files and functions
because our mechanism is based on the source code com-
parison. Furthermore, we only focus on the software that is
publicly managed by hosting services (e.g., GitHub).

Vulnerable code. We define vulnerable code to be source
code causing a vulnerability that has not been fixed, i.e., un-
patched. If a copy of vulnerable code exists in a particular
software program, the software is defined as vulnerable irre-
spective of the exploitability of the copied vulnerable code.
We then define vulnerability propagation to occur when vul-
nerable code in a software program (S) propagates to another
software (S′) via software forks or OSS reuse.

JPEG-compressor (0, 11)

*Android (1, 0)

LibGDX

(1, 1)

zxing (1, 2)

MixedRealityToolkit

(2, 0)

crunch

(1, 2)

Xenia

(2, 0)
rbfx

(2, 0)

Minko (1, 0)

node-dv

(2, 0)

Godot

(1, 0)

Renderdoc (1, 0)

vogl (1, 0)

* Software name (indegree, outdegree)

Figure 1: Illustration of the vulnerability propagation graph
for CVE-2017-0700.

Vulnerability propagation graph. Since V0Finder discov-
ers a VZ using the vulnerability propagation direction, we
need a data structure that is able to show direction. In addition,
as the propagation direction is one-way, there should be no
cycle. Therefore, we derive a vulnerability propagation graph
by leveraging a directed acyclic graph-based structure:

• A vulnerability propagation graph (G) is a directed
acyclic graph, and is represented as G = (V , E), where
V denotes a set of nodes (i.e., vulnerable software) with
indegree and outdegree labels for each vertex. For v ∈V ,
the indegree of v is denoted as IN, and its outdegree is
denoted as OUT. E denotes a set of edges (E ⊆ V ×V)
and shows the vulnerability propagation directions.

Vulnerability Zero (VZ). VZ refers to the software and its
version where a vulnerability originated. Note that a VZ is
not the software that first detected or reported the vulnera-
bility. Specifically, the VZ is regarded as the beginning of
vulnerability propagation, and thus, the root of a vulnerability
propagation graph is the VZ.

2.2 Problem statement
In this paper, we focus on the problem that occurs when the
index case (i.e., the first case discovered, and possibly be-
lieved to be the source) and the primary case (i.e., the actual
source) of a vulnerability are different. Let S be a software
program and L be a third-party library, which is embedded in
S. If a vulnerability is detected in L, it should be considered
the vulnerability in L (i.e., VZ). However, this vulnerability
is occasionally reported as that of in P. For such case, the vul-
nerability that is fixed in P is usually not reported upstream L.
Consequently, L not only remains unpatched, but also over-
looked by developers of software, which is embedding L,
furthering vulnerability propagation and hindering prompt
detection and patches for the vulnerability.

The correctness of the VZ is important to software devel-
opers, as many parts of the vulnerability management process
still rely on public vulnerability reports [1, 54]. However, the
interests of existing approaches are far from this issue. In-
stead, they attempt to solve other problems by assuming that

the VZ of a vulnerability was provided correctly (see Section
7). For instance, Dong et al. [8] identified the inconsistency
between the CVE description and the CPE [40], which speci-
fies a set of software affected by the CVE, but did not consider
the possibility of the CPE containing an incorrect VZ.

Moreover, a method to scan vulnerabilities using static or
dynamic tools (e.g., fuzzing tools) cannot be a fundamental
solution to the presented problem. As such method focuses
only on the internal vulnerabilities of a particular software,
to resolve the problem caused by incorrect VZ, it should be
applied repeatedly to all affected software programs. Instead
of such an inefficient solution, we need a one-stop solution
that can detect the correct VZ for a vulnerability and notify
all the affected software programs of the vulnerability once.

Technical challenges. Discovering a VZ is not a simple task
mainly due to the following two technical challenges: (1)
addressing syntax-variety of vulnerable code and (2) selecting
proper features for discovering a VZ.

First, the syntax of a vulnerable code frequently changes
while the software that contains the code is updated or
when the code is reused in other software. When discov-
ering a VZ, we should be aware that such a vulnerable
code with various syntax exists in various software. Sev-
eral vulnerable-code clone detection approaches can cope
with syntax-changes [26, 58], but we cannot say that their
techniques are still effective for VZ discovery.

Second, we need proper features to determine a vulnerable
software as VZ. It is easy to assume that vulnerable software
with the earliest birth date is the VZ. However, in practice, the
source code of software may change after its release, and fur-
ther, a code-generation time can also be changed easily owing
to operations such as copying and pasting [51]; this approach
often fails to discover the correct VZ (see Section 5.2). We
need a method to discover VZ through a more appropriate
feature than mere timestamp metadata.

2.3 A motivating example
We introduce the CVE-2017-0700 case, a remote code execu-
tion vulnerability reported by Android (see Listing 1), where
the vulnerability originated in the JPEG-compressor1 source
code (i.e., “jpgd.cpp” file), and not in the actual Android code
(see Listing 3). The vulnerability propagation graph for CVE-
2017-0700 is illustrated in Figure 1.

Listing 1: The description of CVE-2017-0700.
A remote code execution vulnerability in the Android
system ui. Product: Android. Versions: 7.1.1, 7.1.2.
Android ID: A-35639138.

Listing 2: The CPE of CVE-2017-0700.
cpe:2.3:o:google:android:7.1.1:*:*:*:*:*:*:*
cpe:2.3:o:google:android:7.1.2:*:*:*:*:*:*:*

1https://github.com/richgel999/jpeg-compressor

https://github.com/richgel999/jpeg-compressor

Listing 3: A patch snippet for CVE-2017-0700.
1 --- a/gdx/jni/gdx2d/jpgd.cpp
2 +++ b/gdx/jni/gdx2d/jpgd.cpp
3 @@ -2282,3 +2304,4 @@void jpeg_decoder::

make_huff_table(int index, huff_tables *pH){..
4 for (l = 1 << (8 - code_size); l > 0; l--){
5 - JPGD_ASSERT(i < 256);
6 + JPGD_ASSERT(i < JPGD_HUFF_CODE_SIZE_MAX_LENGTH);
7 + JPGD_ASSERT(code < JPGD_HUFF_CODE_SIZE_MAX_LENGTH);

The software programs affected by this vulnerability can
be classified into the following two groups:

(1) Software reusing Android: Because the vulnerability
was reported by Android, software programs that reused the
specified Android 7.1.1 or 7.1.2, or distributions of those An-
droid versions, can easily resolve the vulnerability, e.g., up-
dating Android to the later version.

(2) Software reusing only JPEG-compressor: Software
programs belonging to this group are not only uninterested in
this vulnerability reported by Android but also barely attempt
to determine whether their codebase is affected by the vulner-
ability. Thus, most of these software programs fail to detect
and patch the vulnerability in a timely manner.

Surprisingly, all of the software shown in Figure 1, except
Android, contained the vulnerable code up to their latest ver-
sion. We succeeded in reproducing this vulnerability in the
latest versions of three popular software by using a crafted im-
age file as an input: JPEG-compressor, Godot2 and LibGDX3.
In other software, the failure to the reproduction was due to a
compilation error and failure to call vulnerable functions. As
soon as we reported this vulnerability, Godot and LibGDX
patched it (July 2019); JPEG-compressor, which has not been
developed any further in recent years, did not respond yet.

3 Methodology of V0Finder

In this section, we describe the methodology of V0Finder.
The high-level workflow of V0Finder is depicted in Figure 2.
V0Finder discovers the VZ by means of finding the root
of a vulnerability propagation graph (see Section 2.1). Sub-
sequently, V0Finder comprises the following three phases:
node discovery phase (P1), edge connection phase (P2), and
root finding phase (P3).

Let V be a set of vulnerable functions for a given CVE.
In P1, V0Finder detects vulnerable software that contains a
clone of V by using a vulnerable-clone detection technique.
Let D represent the software dataset, Si indicate a software
program in D, and “‡” denote the software is vulnerable. Then
the output of P1 is represented as follows:

P1 (V , D) = {S‡
1, S‡

2, ..., S‡
m}

In P2, for the given set of vulnerable software programs,
V0Finder identifies reuse relations between every pair of

2https://github.com/godotengine/godot
3https://github.com/libgdx/libgdx

Software
pool

a CVE

V P1. Node

Discovery

P2. Edge

Connection

Vulnerable
software programs

Vulnerability
propagation graph

P3. Root

Finding
VZ of the CVE (V)

CVE
pool

Figure 2: High-level workflow of V0Finder.

vulnerable software programs. When S‡
i is reused in S‡

j , the
relation between them is expressed as follows:

S‡
i ≺ S‡

j (S‡
i is reused in S‡

j)

The identified reuse relations that exist between vulnerable
software pairs are expressed as follows:

P2 ({S‡
1, S‡

2, ..., S‡
m}) = {(S‡

1 ≺ S‡
2), (S‡

1 ≺ S‡
3), ...}

Using this information, V0Finder constructs the vulnerabil-
ity propagation graph for V , which is the output of P2. Here,
the propagation paths are reverse directions of the reuse rela-
tions; this is because, if S‡

i is reused in S‡
j (S‡

i ≺ S‡
j), then the

vulnerability has propagated from S‡
i to S‡

j (S‡
i → S‡

j).
Finally, in P3, V0Finder discovers the VZ of V by finding

the root of the constructed graph.

3.1 Node discovery phase (P1)
Given a vulnerability patch as input, V0Finder reconstructs
the vulnerable functions, and further detects vulnerable soft-
ware using the vulnerable-clone detection technique. The
detected vulnerable software programs become nodes in the
vulnerability propagation graph.

Vulnerable-clone detection. For efficient VZ discovery, we
value the following three factors in vulnerable-clone detec-
tion: robustness to syntax-modified clones, accuracy, and scal-
ability. As the syntax of a vulnerable code introduced in a
VZ can be modified when it propagates to other software,
our vulnerable-clone detection scheme must be robust to the
variable syntax. In fact, detecting vulnerable clones is not
the core idea of this paper, and many relevant studies have
already been conducted [18, 26, 30, 31, 42, 58]. Each of them
has distinct advantages and disadvantages, e.g., VUDDY [26]
is scalable yet barely detects vulnerable clones with modified
syntax, while MVP [58] detects syntax-modified clones well,
but it is less scalable than other approaches.

Therefore, we decided to incorporate techniques special-
ized for VZ discovery while leveraging the advantages of
existing vulnerable-clone detection techniques as follows:

• Referenced features from existing techniques:
→ Function-level granularity [26, 58];
→ Text-preprocessing [18, 26, 58];
→ Function hashing [18, 26, 58].

• Features specific to V0Finder:
+ Using Locality Sensitive Hashing (LSH) [12, 41];
+ Detection mechanism for syntax-modified clones.

https://github.com/godotengine/godot
https://github.com/libgdx/libgdx

Since we selected function-level granularity as the basis,
a software program and a CVE can be represented as a set
of functions. Note that a patch for a vulnerability usually
consists of several code block changes [29], meaning there
can be multiple vulnerable functions causing a vulnerability.
Using function-level granularity, the scale of comparison be-
tween entire software and vulnerability can be reduced to the
comparison between a pair of functions set, which improves
comparison performance and scalability [26, 48, 58].

Software and CVE pools. A software pool comprises a set
of software source code, which becomes a search area for
vulnerable-clone detection and contains the source code of all
versions for each software program. The CVE pool contains
a set of vulnerable codes and pieces of patch information as
the source code form (details are explained in Section 4.1).

Detecting vulnerable software programs. Let s j denote the
version j of Si. We define s j as vulnerable when it contains a
vulnerable clone from a set of vulnerable functions V , and this
is determined by performing preprocessing and comparison.

Step 1. Preprocessing: Considering the syntax variety of
vulnerable clones, we apply the following two preprocessing
tasks to all the functions in the software and CVE pools: text-
preprocessing and LSH [12, 41]. During text-preprocessing,
the code part that maintains function semantics even upon
introducing changes, such as spaces, newline characters, and
comments, was removed from each function, and all the char-
acters in the function were converted to lower cases [26, 58].
We then apply LSH to all text-preprocessed functions, which
generates similar hashes for similar inputs and returns a low
distance value when the two input hashes are similar [27, 41].
Unlike previous approaches, which store only the hash values,
we store the preprocessed string value of each function, which
will be utilized to detect syntax-modified vulnerable clones.

Step 2. Comparison: We then compare all the hashed func-
tions of s j and those of V by employing the comparison
method provided by LSH [28]. As a result, we can obtain
the distance (Φ) of all function pairs between s j and V ; this
distance shows the syntactic difference between the source
code of the two functions. Furthermore, LSH configures a
cut-off value (θ) [28], and the two inputs are similar if the Φ

is less than or equal to θ. Let fs be a function in s j and fv be
a function in V .

1) Exact clone: If Φ is zero (i.e., the syntax of both func-
tions is exactly the same), this indicates that fs is the
unpatched vulnerable clone of fv.

2) Modified clone: If Φ is obtained as a value between zero
and θ (0 < Φ≤ θ), this indicates that fs is the modified
clone of fv. However, since the modification could be a
patch for a vulnerability, an additional verification step
must be performed.

3) No clone: If Φ is greater than θ, it means that fs is not a
clone of fv.

To determine whether a modified clone is vulnerable, we
utilize the vulnerability patch of V from the CVE. A patch
consists of a set of deleted codes (e.g., line 5 in Listing 3),
which might be seen as vulnerable code, and a set of newly
inserted codes (e.g., line 6 and 7 in Listing 3). If fs is the mod-
ified clone of fv, and if all the deleted codes of the patch are
contained in the preprocessed fs without any of the inserted
codes, we conclude that fs is a vulnerable clone of fv.

By applying these two steps to all the CVEs in the CVE
pool, we can discover a set of vulnerable s j containing vul-
nerable clones of V . Consequently, a software (Si) becomes
the node of the vulnerability propagation graph for V when at
least one version (s j) contains the vulnerable clone of V .

3.2 Edge connection phase
In this phase, V0Finder identifies vulnerability propagation
directions among the detected vulnerable software.

As we discussed in Section 2.2, the method of tracking
VZ by relying solely on the timestamp metadata is prone to
false alarms. Therefore, rather than relying on such times-
tamp metadata, we focused on a relation between the two
vulnerable software. More specifically, V0Finder identifies
reuse relations between every vulnerable software pair. We
represent the relation in which Si is reused in S j as Si ≺ S j.

We particularly paid attention to the reuse relation as it can
indicate the vulnerability propagation direction. If Si is reused
in S j and they share the same vulnerable code, then we can
infer that the vulnerable code has propagated from Si to S j,
expressed as Si→ S j. Hence, the oldest ancestor-software of
the vulnerability propagation, i.e., the starting point of the
propagation, becomes the VZ of the vulnerability.

If the dependency information is provided, e.g., node pack-
age manager in JavaScript [38], we can simply parse and
utilize the dependency information to identify reuse relations
(e.g., GitHub dependency graph [13]). However, some other
languages such as C, do not provide any dependency informa-
tion. Therefore, we devise a method to identify reuse relations
without relying on the given dependency information.

Modified software reuse. V0Finder identifies reuse rela-
tions between the two vulnerable software by employing
code-based analysis. However, in the case of Si ≺ S j, the code-
base of S j may not be reused as it is. We thus define the two
modification patterns that can arise from software reuse to ef-
ficiently identify reuse relations: (1) code modification refers
to that Si is reused in S j with source code changes or when
only part of the codebase is reused; (2) structure modification
refers to that Si is reused in S j with structural changes, specifi-
cally, name (e.g., file and function name changes) and location
changes (e.g., reused in a different directory) of reused code.

Key factors. Considering modified software reuse, we select
three key factors utilized in reuse relation identification: (1)
source code of the software, (2) location of the source code,
and (3) a set of metadata files.

The source code of the software is used to identify reuse
relations without code modification; specifically, V0Finder
measures shared code (i.e., common functions) ratio between
two software. To identify a case in which software is reused
with code modification, we use the location of the source code
(i.e., file paths) in the reused code. Finally, when the code
and structure are simultaneously modified while being reused,
we utilize the metadata files to identify reuse relations, which
should be reused without modifications, e.g., license files.

When V0Finder identifies the reuse relation, it compares
all vulnerable version pairs between the two vulnerable soft-
ware; if any reuse relation between the two versions is identi-
fied, we conclude that the reuse relation exists between the
two software. Let sv and s′v denote the vulnerable versions of
Si and S′i, respectively. We introduce how to identify the reuse
relation between sv and s′v by using the three key features.

Shared code ratio-based identification. We define two no-
tations, α and β for measuring the ratio of the shared code
from the perspectives of sv and s′v, respectively:

α =
|sv∩ s′v|
|sv|

and β =
|sv∩ s′v|
|s′v|

Here, |sv∩ s′v| denotes the number of common functions be-
tween sv and s′v. Because α and β are a feature in identify-
ing reuse relations without code modification, the number of
hashed functions that are exactly the same between sv and s′v
is measured to obtain |sv ∩ s′v|. If sv reuses s′v without code
modification, the entire codebase of s′v should be contained in
the sv. Therefore, V0Finder determines that sv is reusing s′v
when α < 1.0 and β = 1.0 (i.e., s′v ≺ sv and s′v→ sv).

Source code location-based identification. The original
code path of s′v is included in the path of the reused code
in sv when sv is reusing s′v without any structural modification.
V0Finder compares both file paths of the common functions
between the two software by string comparison to determine
which one belongs to the other. For example, the function
containing the vulnerable code of JPEG-compressor is reused
in Godot (CVE-2017-0700, see Section 2.3), and their paths
are as follows (see Listing 4):

Listing 4: The path of the vulnerable code of CVE-2017-0700.
JPEG-compressor: "./jpgd.cpp"

Godot : "./thirdparty/jpeg-compressor/jpgd.cpp"

If the file path of a function (that belongs to both sv and s′v) in
s′v is included in that of sv, we conclude that sv reuses s′v (i.e.,
s′v ≺ sv and s′v→ sv).

Metadata file-based identification. If both code and struc-
ture are modified while being reused, V0Finder utilizes meta-
data files, which should be reused without modifications, to

(a) A single root (b) Two or more roots (c) No root

IN: 0
OUT: 2

IN: 0
OUT: 1

IN: 0
OUT: 1

IN: 0
OUT: 0

Figure 3: Depiction for the three root cases.

identify the reuse relation. Specifically, README, LICENSE,
and COPYING files defined as metadata files, and the software
reuse relation is identified based on whether these three meta-
data files are cloned into other software (refer to [16, 24]).

1. V0Finder first traverses the files in sv and s′v and extracts
all metadata files with their path information.

2. V0Finder then checks whether each software has a
metadata file in the root-source directory, and if it does,
checks that the other software has exactly the same files
in the other directory except for the root directory.

When comparing two metadata files, the entire content of
each file is compared using string comparison. In addition,
we determine whether a metadata file in the root directory of
a particular software is its own metadata file; therefore, if the
own metadata file of s′v is cloned to sv, then we can infer that
sv reuses s′v (i.e., s′v ≺ sv and s′v→ sv).

Tiebreaking. In both shared code ratio-based and metadata
file-based identifications, s′v ≺ sv and sv ≺ s′v relations cannot
be satisfied at the same time; however, this case can appear in
source code location-based identification. Thus, we establish
the tiebreaking rule: if the paths of a common function of sv
and s′v are exactly the same, the reused relation is not estimated
and no edge is constructed between them.

We assume that the software reuse follows the general
code reuse convention. In particular, metadata files are data
containing copyrights of the original software and must be
specified when reused the software. If this code reuse conven-
tion is not followed, it is currently out of the V0Finder scope
(these cases hardly appeared in experimental observations);
covering even anomalous code reuse is left as a future work.
Upon connecting all the nodes where the reuse relation ex-
ists, a vulnerability propagation graph is constructed for each
vulnerability, and then we label the indegree and outdegree
values of each node of the graph.

3.3 Root finding phase
Lastly, V0Finder discovers VZ by finding the root of the
constructed vulnerability propagation graph. Based on the
indegree (deg–) and outdegree (deg+) values specified for
each node, the condition that a node v is a root is as follows:(

deg–(v) = 0
)
∧
(
deg+(v) > 0

)
However, the constructed graph does not always contain a

single root (see Figure 3); hence, we discover the VZ using
different approaches depending on the number of graph roots:

1. Single root: This case indicates that V0Finder pin-
points the VZ, i.e., the root of the graph. Specifically,
this graph is generated when the VZ is included in the
software pool and V0Finder has successfully identified
reuse relations between vulnerable software.

2. Two or more roots: This case refers to V0Finder failed
to pinpoint the VZ. If the VZ is not contained in the
software pool or if V0Finder failed to identify some
reuse relations, more than one root may appear.

3. No root: This implies one of the following cases: (1)
the VZ does not exist; (2) the vulnerability has not been
propagated to other software; (3) V0Finder failed to
identify reuse relations. First, in the cases of algorith-
mic vulnerabilities (e.g., a vulnerability in cryptographic
code), VZ discovery is infeasible because an algorithmic
code has an ambiguous reuse relation; thus this case can
be ignored. Next, if the vulnerability has not been propa-
gated, there is only one node in the graph; we consider
this node to be VZ. Last, V0Finder failed to identify
reuse relations and thus there is no root in the graph, i.e.,
a false negative of V0Finder.

To identify the VZ when a graph has two or more roots,
we decided to take advantage of human intervention. Specifi-
cally, V0Finder examines the common functions of all roots,
where each path of the common function contains strong hints
about the VZ. For example, in the case of CVE-2019-12900,
we found that the generated graph has three roots: GnuPG,
PCSX2, and GR. V0Finder examined 58 common functions
from the three software, of which, 56 were discovered under
the path named “Bzip2” (i.e., the VZ of CVE-2019-12900,
which was not included in the software pool). Thus, we aim
to solve the multi-root problem by providing common func-
tion information. This corner case currently requires human
intervention and its automation is left for future work.

Lastly, if there is more than one vulnerable version in the
discovered VZ, we determine the version the vulnerability
first appeared to be the VZ of the vulnerability.

4 Dataset and Implementation of V0Finder

In this section, we introduce dataset construction, and then
summarize the implementation of V0Finder.

4.1 Dataset
We introduce how to construct our dataset, i.e., the CVE and
software pools, for evaluation and further experiments.

CVE patch collection. To collect CVE patches, we lever-
aged the method used in Li et al. [29], where extracting a
NVD referenced URL of a CVE that related to Git commits
(i.e., URL containing the term github, gitlab, cgit, or
gitweb). Because these URLs provide the CVE patches in

Table 1: CVE pool overview.
Collection source #CVEs #Vul. functions
NVD 3,246 12,587
Issue trackers

Android 1,340 9,581
Chromium 366 5,807

Mozilla 719 4,598
Total 5,671 32,573

Table 2: Software pool overview.
Collection source #Software programs
Popular software programs 10,241
CVE-registered software* 460
Total software programs 10,701
Total versions 229,326
Total lines of codes 80 billion

*: Software that has been reporting at least one CVE to NVD.

diff format, we were able to collect the CVE patches using a
simple crawler developed using the BeautifulSoup library.
We selected the initial vulnerability dataset for C/C++ vulner-
abilities, which do not provide any dependencies unlike other
languages (e.g., a Gemfile in Ruby); thus, it is suitable to show
that V0Finder is efficient even without any dependencies.

We then collected the additional CVE patches from
Bugzilla for Android, Chromium, and Mozilla, where those
three software are included in the top 10 software that reported
the highest number of CVEs. To gather CVE patches from
Android and Chromium, we adopted the method employed in
VUDDY [26], which considers commits containing the key-
word “CVE-20” in their log messages as CVE patches. In the
case of Mozilla, a bug ID was assigned to each vulnerability
in their Bugzilla, and we could disclose the corresponding
patch in the commit history of their Git repository4.

Vulnerable function reconstruction. Each collected patch
contains the Git index and the line numbers including vul-
nerable code (e.g., “-2282, 3” in Listing 3). To reconstruct
vulnerable functions, we first accessed the index to obtain
the corresponding vulnerable files (i.e., using git show com-
mand), and then extracted the vulnerable functions that con-
tain the vulnerable code lines using a function parser [26].

CVE pool construction. Using the method introduced in
CVE patch collection, we collected 5,671 CVE patches re-
ported by 460 software including all the C/C++ CVEs that
released their patches via Git. We extracted a total of 32,573
vulnerable functions from the collected CVE patches in a
source code form (see Table 1). On average, one CVE patch
consists of six vulnerable functions; all the patches and vul-
nerable functions were collected in September 2020.

Software pool construction. First of all, we collected the pre-
viously mentioned 460 CVE-registered software which have

4https://github.com/mozilla/gecko-dev

https://github.com/mozilla/gecko-dev

reported at least one CVE. In addition, we decided to collect
widely-reused popular software because the more frequently
the software is reused, the more likely it is to propagate vul-
nerable code, i.e., it has a high probability of being a VZ.
To collect the software, we chose GitHub, which is one of
the most popular version control systems [44], and collected
C/C++ software with more than 100 stargazers [9], a popu-
larity indicator available in GitHub. As a result, we collected
10,701 software (see Table 2), including OS (e.g., Linux),
databases (e.g., Redis), and AI (e.g., TensorFlow) related soft-
ware in April 2020, with a total of 230K versions, 2.2 billion
functions, and 80 billion lines of code (LoC).

4.2 Implementation
V0Finder comprises the following three modules: pool con-
struction, graph construction, and VZ discovery modules. All
the modules were written in Python, and the total length of
the implementation is 1,500 lines of Python code.

Parsing and the LSH algorithm. We used universal Ctags
[7] to extract functions in C/C++ source codes, which is a
regular expression-based parser. Universal Ctags is managed
as open-sources, and, therefore, their accuracy and speed are
continually enhanced. Subsequently, we selected the LSH
algorithm that was best suited for our mechanism. Among
the several LSH algorithms available [27, 41, 45], we selected
the TLSH algorithm5, which is both accurate and scalable.
Similarity detection using the TLSH algorithm resulted in
less false positives with reasonable hashing and comparison
speed; furthermore, compared to other algorithms, it was less
influenced by the input size [28, 41]. Because TLSH was
selected, we referred to [41], and a cut-off value (θ) of 30 was
selected, which is utilized in Section 3.1.

5 Evaluation
In this section, we evaluate V0Finder. Section 5.1 investi-
gates how accurately V0Finder can discover VZs in prac-
tice by comparing the VZ discovery results of V0Finder
with NVD CPEs, and Section 5.2 evaluates the efficiency
of V0Finder by comparing it with the timestamp metadata-
based approach. Section 5.3 demonstrates the effectiveness
of the techniques utilized in V0Finder, and Section 5.4 mea-
sures the performance of V0Finder. We evaluated V0Finder
on an Ubuntu server with a 2.40 GHz 8-core Intel Xeon Pro-
cessor, 6TB HDD, and 32GB RAM.

5.1 Comparison with NVD

Methodology. As CPE in NVD specifies the software pro-
grams and their versions affected by a CVE, we compared

5https://github.com/trendmicro/tlsh

the VZ discovery results of V0Finder using the correspond-
ing CPEs. We conclude that our result is correct when it is
contained in the CPE. If the discovered VZ is not included
in the CPE, we analyze further to decide its correctness. It is
possible that V0Finder and NVD simultaneously provide the
incorrect VZ information for a CVE; however, the fact that the
user’s reports (i.e., NVD information) and actual code-level
VZ discovery (i.e., V0Finder result) are the same suggests
that these VZs are very likely to be correct.

By parsing the JSON feed obtained from the NVD, we
extracted the (CVE, CPE) pairs. We then checked whether the
name of the software and version of the discovered VZ were
contained in the corresponding CPE. Notably, we were able to
perform exact string comparisons for 60% of the discovery re-
sults, because the software and version names registered in the
CPE were the same as those in GitHub. The remaining 40%
exhibited differences from GitHub, e.g., OpenSSL_1_0_0a
on GitHub and 1.0.0a in CPE. Thus, we manually compared
the discovery results of V0Finder and CPE of these CVEs
with the help of simple regular expressions, i.e., only numbers
and the last alphanumeric characters were considered.

Finally, we introduce the metrics that are used in the accu-
racy measurement as follows:

• True Positive (TP): The discovered VZ is correct;
• False Positive (FP): The discovered VZ is incorrect;
• True Negative (TN): VZ was not discovered and it does

not exist (e.g., algorithmic vulnerabilities);
• False Negative (FN): VZ was not discovered but it exists.

Comparison results. We classified the VZ discovery results
of V0Finder according to the number of roots in the graph.

(1) Single root cases: V0Finder generated a single root
vulnerability propagation graph for 2,903 (51%) out of 5,671
collected CVEs. Among them, the discovered VZs for 2,807
CVEs were included in the corresponding CPEs, indicating
that the CVEs have the correct VZ (we discuss the reliability
of the evaluation in Section 8).

Next, there were 96 single root vulnerability propagation
graphs where their roots were not included in the CPE. To
verify the VZ from the discovery result of V0Finder and that
of CPE, we used the following three validation methods:

1. Reviewing the code: A code review was performed by
checking whether the vulnerable code causing the vul-
nerability was included in the discovered VZ.

2. Referring to author sites: The discovered VZ were ver-
ified by consulting statements by the software vendor
and author sites regarding the origin of the vulnerability.

3. Reproducing the vulnerability: If a proof of concept
was publicly provided on a website such as Bugzilla
or GitHub, it was utilized for reproducing the vulnera-
bility in the discovered VZ. Otherwise, an attempt to
reproduce the vulnerability was performed on our own.

https://github.com/trendmicro/tlsh

…

VZ ∈ CPE

Code propagation

Version update

Software version

VZ (detected by V0FINDER)

The ancestor-software in CPE

Software program

Wrong version

…

Wrong software

…

A
…

B

VZ ∉ CPE

Figure 4: Classification of VZ.

We verified 21 discovered VZs by reproducing the vulnera-
bility. In other cases, the failure to reproduce the vulnerability
was due to compilation error, failure to call the vulnerable
function, or the proof of concept not being publicly available.
Among the remaining 75 cases, we verified 14 discovered
VZs by referring to the software author sites. Lastly, for all
other cases, we confirmed that the vulnerable code causing
the vulnerability was contained in the discovered VZ. Con-
sequently, we confirmed that all the discovered VZs for 96
CVEs were more accurate than those of CPEs (Appendix A
shows the list of 96 CVEs, and the related information, e.g.,
severity and type, for these 96 CVEs is given in Appendix B).

When we classified the 96 CVEs that have the incorrect
VZ information into the wrong version and wrong software
(see Figure 4), 50 CVEs have the wrong version, and the
remaining 46 CVEs have the wrong software. The wrong
version seems less dangerous than the wrong software, but it
influences the developers considerably when addressing vul-
nerabilities. Thus, we decided not to make difference between
the importance of the wrong version and the wrong software
as both pieces of information are needed for efficiently patch-
ing vulnerabilities.

We have responsibly reported all the CVEs with incorrect
VZ information that we successfully reproduced. First, it was
reported to developers who could not detect the vulnerability
due to the incorrect VZ information, and it further reported
to the CVE Numbering Authority (CNA) to request changing
the CPE. Most of the software authors that had not known the
existence of the vulnerability immediately patched it through
our reports. There even was a case where a new CVE ID was
assigned to this issue (see Section 6.3). Lastly, some CNAs
are requesting further details about our reports, while a few
others are not currently responding to our requests, even after
multiple reports and subsequent inquiries (quantitative figures
about our reporting process are given in Appendix C).

(2) Multi-root cases: For the remaining 2,768 CVEs, ex-
cluding single root cases, the generated graphs for 52 CVEs
have multiple roots. We confirmed that 20 cases occurred be-
cause the VZ was not included in the dataset (e.g., when the
VZ was not publicly available). The other 32 cases occurred
because we failed to identify the software reuse relations;
some software did not reuse metadata files while simultane-
ously modifying codes and structures of reused software. In

Table 3: Results of accuracy measurement of V0Finder.
#CVEs #TP #FP #TN #FN Precision (%) Recall (%)
Total results:
5,671 5,410 52 70 139 99 97

Excluding CVEs with a single node in the graph:
3,164 2,903 52 70 139 98 95

these cases, we treated all the roots as the VZs of the CVEs
and provided hints to predict correct but hidden VZs. As a re-
sult, we can identify the VZs for all CVEs by manual analysis
with the hints. Nevertheless, these 52 CVEs are FPs.

(3) No root cases: We found that the generated graphs for
the remaining 2,716 CVEs have no root. Among them, the
graphs for 2,507 CVEs have only one node. Note that our
software pool does not contain closed source software or com-
mercial software. Because operating systems such as Android
and browsers such as Firefox are often reused in commercial
software rather than in other OSS, numerous graphs have only
one root. Nonetheless, we confirmed that the only node in the
graph is always contained in the corresponding CPE.

The generated graphs for the remaining 209 CVEs have
more than one node but no root. 70 of them are algorithmic
vulnerabilities, i.e., TNs of V0Finder; for example, CVE-
2019-13456 vulnerability was caused by the EAP-pwd hand-
shake algorithm, and thus the VZ was not discovered. Finally,
the graph for the remaining 139 CVEs contained multiple
nodes but no edges, and they were not algorithmic vulnerabil-
ities. These are cases where V0Finder fails to identify reuse
relations, and are FNs of V0Finder.

(4) Graph statistics: There were 10 nodes and 24 edges in
the generated graphs on average. The most complex graph
consisted of 120 nodes and 1,942 edges (CVE-2015-4335),
and 97% of the graphs with multiple nodes had less than 50
nodes. The average distance from the root node to a leaf node
was one depth, and the longest distance was four depths.

In fact, CVEs with a single node in the graph can be con-
sidered TPs since the node is contained in the corresponding
CPEs. However, we decided that these cases are not properly
revealing the accuracy of V0Finder because the mechanism
of V0Finder (i.e., P2 and P3) is not applied. Therefore, we
measured the accuracy separately for (1) the entire CVEs and
for (2) the CVEs with multiple nodes in their vulnerability
propagation graph. As a result, V0Finder showed 99% pre-
cision

(#T P
#T P+#FP

)
and 97% recall

(#T P
#T P+#FN

)
for the entire

CVEs, and showed 98% precision and 95% recall for the
CVEs with multiple nodes in their graph. The summarized
results of the accuracy measurement are shown in Table 3.

5.2 Comparison with the timestamp metadata
To demonstrate that V0Finder is a more accurate approach
than the timestamp metadata-based approach, we compared
each VZ discovery result. After finding the vulnerable soft-

ware for a CVE in Section 3.1, the software with the earli-
est release date is determined as the VZ in the timestamp
metadata-based approach. Since this approach can pinpoint
one VZ for all collected CVEs, no FNs occur. Hence, we
determined to focus more on its FPs.

Upon comparing the results between V0Finder and the
timestamp metadata-based approach, the VZs for 264 CVEs
were different. By analyzing the vulnerable code and CVE
description, we confirmed that the 244 VZs obtained using
the timestamp metadata-based approach were incorrect; the
remaining 20 cases were the false alarms of V0Finder.

Result analysis. We affirmed that there are two main causes
of false alarms in the timestamp metadata-based approach:
(1) when the timestamp metadata is unintentionally changed
or removed, and (2) when a new code is added to the software
that has already been released (without updating its version).

Developers might decide that old versions of the soft-
ware were no longer needed and therefore made them un-
available. In addition, developers often attempted to transfer
their software repository to another hosting service. Due to
such processes, the timestamp metadata was easily removed
or changed; these unintended changes lead the timestamp
metadata-based approach to yield false alarms. For exam-
ple, in the case of CVE-2015-5221, V0Finder discovers that
Jasper v1.900.1 (the oldest version of Jasper that managed
by GitHub, released in 2016) is the VZ. The CVE description
clearly indicates that Jasper is the VZ. However, if the VZ
is discovered based on the release date, ghostpdl v8.52 (re-
leased in 2005) was discovered as the VZ. We confirmed that
this situation happened because ghostpdl reused a much
older version of Jasper that is currently not available.

In addition, there were cases that developers added a new
code to the previously released version without version up-
dating. As an example, we introduce the CVE-2014-8962
case. This vulnerability originated in Libflac v1.2.0 (released
in July 2007). However, the timestamp metadata-based ap-
proach determined that the VZ is Praat v4.5.26 (released in
May 2007). Praat developers have been continually modifying
the code of the previous versions; unfortunately, they added
the vulnerable version of Libflac to the previous version in
2014 for the purpose of reading FLAC audio files.

Comparing to the total number of collected CVEs (i.e.,
5,671), the number of false alarms of this approach may seem
small (i.e., 244). However, since the timestamp metadata still
has the possibility that is changed or removed, its reliability
will not be guaranteed in the future. From this perspective, we
assert that the approach of V0Finder that discovers VZ with
higher accuracy based on the reuse relation identification is
more efficient than the timestamp-based approach.

5.3 Effectiveness of the utilized techniques
Here we evaluate the effectiveness of the techniques utilized
in node discovery (P1) and edge connection (P2) phase.

Table 4: Node discovery phase statistics.
Detection target #Detection results

(Unique) Vulnerable software programs 1,204
(Unique) Vulnerable versions 45,460

Vulnerable clones
Exact clones 249,702
Modified clones 561,273

Table 5: Edge connection phase statistics.
Utilizing factor #Identification results

Shared code ratio 5,004 (1.3%)
Path information (i.e., location) 272,410 (72.7%)
Metadata files 97,392 (26.0%)

The node discovering technique. We detected vulnerable
code clones based on the LSH and patch code for addressing
syntax-modified clones. From the results, we confirmed that
the modified clones were detected almost twice as much as the
exact clones (see Table 4). Surprisingly, if we only considered
exact clones, we failed to discover the VZ for 1,751 (31%) out
of 5,671 CVEs. If a vulnerable code exists with significantly
different syntax than that of originated in VZ, this cannot be
detected with an exact or a limited modified clone detection
method such as used in VUDDY (e.g., robust to changes in
only several parts such as variable names) [26]. This implies
that our node discovering technique, capable of detecting
modified clones, is effective for VZ discovery.

The edge connecting technique. We identified reuse rela-
tions between vulnerable software based on the shared code
ratio, source code path information, and metadata files: only
1.3% of total reuse relations were identified based on the
shared code ratio while 72.7% of them were identified by the
source code path information (see Table 5). This means that
most of the software was being reused explicitly (i.e., under
the path with the name of the software) in other software with
code modifications. We further confirmed that the majority of
the graph was constructed with a single root (see Section 5.1),
including a case where only one node appears. This shows
that V0Finder can clearly determine one software program
closest to the VZ based on the identified reuse relations.

5.4 Performance of V0Finder
We focus more on accuracy than performance because the VZ
discovery needs to be performed only once for a vulnerability.
Regardless, we show that V0Finder can discover a VZ in a
large software pool within a reasonable time.

Preparatory time. In our setup, it took 2 days to construct
the CVE pool and 10 days to construct the software pool. This
includes the time to clone all versions of a repository with the
Git command and the time to extract all functions and apply
the hashing after preprocessing the functions.

VZ discovery time. We measured the time required for each
phase of V0Finder. It took 30 hours to identify vulnerable
software programs that contain vulnerable clones of 5,671

Table 6: Success rate for the vulnerability detection.

Category CVEs with the
correct VZ

CVEs with the
incorrect VZ

CVEs 3,068 96
Affected software∗ 10,523 1,000

Cases where the CVE
was detected

8,994 (85%) 356 (36%)

Cases where the CVE
was undetected

1,529 (15%) 644 (64%)

∗: The cumulative number of all nodes in the vulnerability propagation graph for all
CVEs. Certain software can appear on multiple graphs.

CVEs over a base of 80 billion LoC. Thereafter, it took another
4 hours to construct the vulnerability propagation graphs and
discover the VZ. On average, V0Finder took approximately
22 seconds to discover the VZ of one CVE, which is sufficient
to discover VZs using a large-scale dataset.

6 Impact of VZ discovery
In this section, we analyze the impact of VZ discovery in
detail. Specifically, we examine how the correctness of VZ
influences prompt detection and patching vulnerabilities by
answering the following two questions:
Q1. Are CVEs with the incorrect VZ more difficult to detect

than CVEs with the correct VZ? (Section 6.1)
Q2. Do CVEs with the incorrect VZ cause longer patching

times for the affected software? (Section 6.2)

6.1 Success rate of vulnerability detection
We analyze the correlation between the correctness of VZ
and vulnerability detection. We suggest that vulnerability
detection has failed if there was a vulnerable clone in the
latest version of the affected software (at the time we collected
it); we could measure this information from the output of P1.
Table 6 summarizes results of the success rate for vulnerability
detection. Note that we only considered CVEs with multiple
nodes in their vulnerability propagation graph (i.e., 3,164
CVEs) as CVEs with a single node have no affected software.

We confirmed that due to the incorrect VZ information, the
developers were more likely to leave the vulnerability unat-
tended: 64% of reused vulnerable codes were not detected
and survived up to the latest version of each affected software.
This ratio is much bigger than the cases of CVEs with the
correct VZ, where only 15% of vulnerable clones were not de-
tected. Notably, there exists a number of popular software that
failed to detect the propagated CVE due to the incorrect VZ,
such as Redis (45K GitHub stars, see Section 6.3) and Godot
(33.8K stars). This leads to more serious threats: as popular
software is reused in many other programs, its vulnerability
has better chances of propagation to more programs.

Current vulnerability databases cannot resolve this problem
effectively, because they do not provide sufficient information
about the software affected by the CVE. To demonstrate this,
we examine the following information for every CVE.

#Software

programs

12

8

4

0
|XT| |YT| |XF| |YF|

Average

Median

3.4

1 1 1
2.2

10.4

6

1.6

|XT |: #Software affected by a CVE with the correct VZ detected by V0Finder;
|YT |: #Software affected by a CVE with the correct VZ provided by CPE;
|XF |: #Software affected by a CVE with the incorrect VZ detected by V0Finder;
|YF |: #Software affected by a CVE with the incorrect VZ provided by CPE.

Figure 5: The number of software programs affected by the
CVE according to the correctness of VZ.

• X : A set of software programs that contain a specific CVE
detected by V0Finder (i.e., all nodes of a graph);

• Y : A set of software programs that contain a specific CVE
provided by the NVD CPE.

We measured the respective sizes of X and Y for CVEs with
the correct VZ (i.e., |XT | and |YT |) and with the incorrect VZ
(i.e., |XF | and |YF |). The results are as shown in Figure 5.

Notably, we confirmed that |XF | is much larger than |YF |
(|XF |= 6.5×|YF |), which indicates many vulnerable software
programs have not been traced in public vulnerability reports
when a CVE with the incorrect VZ. Although a CPE is not in-
tended to cover the entire vulnerable software, we discovered
that the gap between |XF | and |YF | is much larger than the
gap between |XT | and |YT | (|XT | ≈ 1.5×|YT |). This implies
that CPEs are limited in providing affected software when the
CVE with the incorrect VZ compared to that with the correct
VZ. The experiment results, in turn, demonstrate the impor-
tance of the VZ in the context of vulnerability propagation
and patching vulnerable software.

6.2 Elapsed time for vulnerability detection
We analyze the correlation between the correctness of a VZ
and the elapsed time for vulnerability detection. We define
three time-based metrics: vulnerability introduction time (ti),
vulnerability detection time (td), and CVE publication time
(tr); the example timeline is depicted in Figure 6.

t i td tr

Vulnerability

introduction

Vulnerability

detection & patching

VZ

CVE report

publication

Time

Affected

software
Time

Vulnerability

propagation

tr t′d
Propagated vulnerability

detection & patching

t′i

Figure 6: Illustration of vulnerability detection timeline. Note
that td and t ′i can be later than tr and t ′d can be earlier than tr.

We consider the elapsed time for vulnerability detection
from the perspective of software and developers, respectively.
From the software perspective, the elapsed time for vulnerabil-
ity detection is defined as the delta between vulnerability in-
troduction and detection time (td - ti). On the other hand, from

Table 7: Elapsed time measurement for CVE detection.

Category Ave. (days) Med. (days)
(td - ti) VZ 365 142
(t ′d - t ′i) Affected software with the correct VZ 524 371
(t ′d - t ′i) Affected software with the incorrect VZ 836 508
(td - tr) VZ 167 0
(t ′d - tr) Affected software with the correct VZ 308 180
(t ′d - tr) Affected software with the incorrect VZ 521 305

1.0x10-3

8x10-4

6x10-4

2x10-4

0

100 600 1100 1600 2100 2600100 600 1100 1600 2100 2600

Elapsed time (days)Elapsed time (days)

P
ro

b
a
b

ili
ty

 d
e

n
s
it
y

4x10-4

1.0x10-3

8x10-4

6x10-4

2x10-4

0

4x10-4

521 days

(average)

308 days (average)

167 days (average)

VZ

Affected software with the correct VZ

Affected software with the incorrect VZ

(a) Elapsed time for (td - ti) and (t'd – t' i) (b) Elapsed time for (td - tr) and (t'd - tr)

836 days

(average)

524 days (average)

365 days

(average)

P
ro

b
a
b

ili
ty

 d
e

n
s
it
y

Figure 7: Normal distribution graphs illustrating the elapsed
time for vulnerability detection.

the developer perspective, the elapsed time for vulnerability
detection is defined as the delta between CVE publication and
detection time (td - tr). We measure ti and td by confirming
the release date of the version in which the vulnerability first
introduced and patched in a software program, respectively;
the tr for a CVE can easily be obtained from the NVD report.

Furthermore, we classify a vulnerability detection behavior
into three types according to the subject of the detection:
detection in (1) VZ, (2) software affected by a CVE with
the correct VZ, and (3) software affected by a CVE with the
incorrect VZ. We measured the elapsed time for vulnerability
detection from both software and developer perspectives for
each of these three subjects. The results are shown in Table 7.

The main quantitative finding is that if a CVE with the
incorrect VZ is propagated to other software, those affected
software programs required 312 more days to detect the vul-
nerability than the case where a CVE with the correct VZ.
CVEs with the incorrect VZ are difficult to detect unless
software developers scan for vulnerabilities using static and
dynamic tools, or receive reports from the security analysts.
Consequently, the incorrect VZ information can broaden the
attack surface of the affected software for extended periods.

Next, when a vulnerability is reported with a CVE ID,
it is easier for developers to patch the vulnerability. Thus,
the detection time td - tr (and, t ′d - tr) was shorter than the
detection time td - ti (and, t ′d - t ′i). In addition, even after CVE
was published at tr, we found that the VZ sometimes required
additional time to patch the vulnerability, because some VZ
authors released a patched software after CVE was published.

Another interesting result was that even if a CVE has the
correct VZ, the affected software required more than 300 days
to patch the propagated vulnerability. Presumably, developers
seemed to be not urgent to patch a vulnerability when it is

triggered only in the corner case because patching a vulnera-
bility, e.g., updating a vulnerable third-party software, needs
considerable costs and efforts.

To investigate the overall distribution, we approximated the
obtained result to a normal distribution. We selected the rank
as 100 (days) and measured the standard deviation (σ) for each
of the six categories in Table 7, where all the average values
(µ) have already been measured. We assume that the elapsed
time for vulnerability detection follows a normal distribution
with µ and σ, and plot the normal distribution graphs. The
probability density function (i.e., f (x)) we used is as follows:

f (x) = 1
σ
√

2π
e−(x−µ)2

/
2σ2

The plotted graphs are illustrated in Figure 7. From the
graphs, we intuitively confirmed that a propagated CVE with
the correct VZ, overall, is patched almost a year after CVE
is published. In addition, we discovered that when a CVE
has the incorrect VZ information, the elapsed time for the
affected software to detect the propagated CVE is longer than
that of when a CVE with the correct VZ.

We summarize the two key points from our experimental
results: (1) CVEs reported with the incorrect VZ took longer
to detect the propagated vulnerabilities, and (2) the affected
software programs are often unaware of the existence of CVEs
due to the incorrect VZ. This demonstrates the importance
and necessity of VZ discovery to enable developers to detect
and patch propagated vulnerabilities in a timely manner.

6.3 Case study: Vulnerability in Redis
Redis is widely reused in-memory database. In 2015, a dan-
gerous vulnerability (CVE-2015-8080) was discovered in Lua
(VZ); however, it was reported as a vulnerability in Redis,
which is reusing Lua, and only the Redis team patched the vul-
nerability in 2015. This is because the Redis team determined
that vulnerability only affects their program as they incorpo-
rated Lua into their environment. Interestingly, in 2018, the
Redis team updated Lua for security purposes, but kept the
version of Lua with the vulnerable code. Even more seriously,
by inserting a single line of proof of concept into Redis, an
integer overflow vulnerability is reproduced, which can be ex-
tended to a denial-of-service attack. We reported this case to
Redis and they accepted our patch request in February 2020.
This resulted in a new CVE ID (CVE-2020-14147).

7 Related work
In this section, we introduce a number of related studies.
Detecting code clones. There are many approaches attempt-
ing to detect source code clones [4, 11, 18, 20, 21, 26, 30–33,
35, 37, 42, 43, 46–49, 53, 55]. However, these approaches do
not consider discovering the VZ of software vulnerabilities,
but only focus on detecting clones in the specific snapshot of
a software program via code scanning.

Tracing the code history. Some approaches attempted to
trace the history of the source code to improve software main-
tenance [10, 17, 19, 22, 23, 25, 50, 51]. However, tracing the
history of source code is fairly different from detecting the
history of a vulnerability; the way to clearly distinguish be-
tween vulnerable code and patched code is needed, but it is
not discussed in those approaches.
Verifying reliability of vulnerability reports. Existing ap-
proaches that aimed to verify the reliability of public vulnera-
bility reports can be divided into three categories: identifying
missing information in the report [2, 3, 5, 36], analyzing the
reproducibility of vulnerabilities [14, 34], and ensuring con-
sistency of the report [8]. Some of them showed that the
additional information in the reports can help counter vulner-
abilities [2, 36] and bugs [3, 5]. Guo et al. [14] analyzed the
characteristics of reports to efficiently fix bugs, and Mu et
al. [34] showed that there was not sufficient information in the
reports to reproduce the vulnerability in order to analyze the
cause of the problem. Dong et al. [8] focused on the consis-
tency of the data provided by the vulnerability databases; they
attempted to detect inconsistencies between the affected soft-
ware mentioned in the description of vulnerability reports and
the corresponding CPE. Although these approaches addressed
the reliability and consistency of the information provided
by the public vulnerability reports, they did not handle our
targeted issue, discovering the correct VZ for a vulnerability.

8 Discussion
Here we discuss several considerations related to V0Finder.
Inferring the main causes of an incorrect VZ. From our
experiment results, we confirmed that there were two main
causes for the occurrence of an incorrect VZ: (1) lack of a
proper tool to discover the VZ and (2) reuse of third-party
software with modification. Currently, there is no automated
tool that is capable of discovering the VZ. Therefore, when
software authors received a vulnerability report, they often
registered the vulnerability as theirs without confirming the
VZ. In particular, when receiving reports through Bugzilla,
the trend of having CVEs with the incorrect VZ is prominent.
In addition, a third-party software is often modified prior to
reuse in other software. Thus, when a vulnerability is reported
to software program developers, they easily misinterpret that
the vulnerability only manifests in their program, even though
the vulnerable code belongs to a third-party software.

Our suggestions. Based on our experiment results, we sug-
gest that the task of finding the VZ of vulnerabilities, pri-
marily a manual task, should be automated and accurately
performed with a system such as V0Finder. In addition,
V0Finder can be integrated with other techniques, such as
Software Bill of Materials (SBoM) [52], which declares the
components and pieces that the software was built with. We
expect to enhance software security by (1) analyzing the com-
ponents of a software through SBoM, and (2) identifying

whether those components are affected by the VZ determined
by V0Finder based on an existing or newly registered CVE.

Reliability of our evaluation. In our evaluation, we deter-
mined a VZ is correct if the VZ discovered by V0Finder for
a certain vulnerability is included in the corresponding CPE.
To validate this, we manually analyzed a subset of the VZ
discovery results. Among the 2,807 CVEs where the CPE
and the VZ discovered by V0Finder coincided, we randomly
selected 20 CVEs per year from 2006 to 2020, i.e., 280 CVEs
(10%) out of 2,807 CVEs. We then analyzed whether the VZ
discovered by V0Finder is correct, especially by referring
to the patch code and external links in the NVD reference.
As a result, we confirmed that for all cases but one, the VZ
discovered by V0Finder that are contained in the CPE is the
correct VZ of each vulnerability. In one case, V0Finder and
the CPE determined that MySQL was the VZ for CVE-2009-
4484, but it was actually a vulnerability that originated in
YaSSL, which is not included in the dataset because it does
not satisfy our dataset collection criteria (i.e., the number of
stars on GitHub is less than 100). Even if this error ratio (i.e.,
less than 0.4%) extends to the entire CVE dataset, we can
verify the VZ discovered by V0Finder with more than 99%
confidence. Therefore, we concluded that our assumption is
valid that considering the VZ discovered by V0Finder is
correct when it is contained in the CPE.
Use case: vulnerability reporting process. V0Finder can
be adopted in the vulnerability reporting process. First, secu-
rity analysts who find a new vulnerability can report it to a
CNA after discovering the VZ using V0Finder. Next, when
a CNA verifies the reported vulnerabilities, V0Finder can
be applied to detect affected software as well as the VZ. In
fact, we have contacted a CNA that is currently manually
discovering the VZ for a vulnerability. Based on an initial
discussion, V0Finder can be integrated into their workflow,
such as discovering a VZ using V0Finder when verifying
the vulnerability before assigning the CVE ID.
Future work. First, we will consider the vulnerability propa-
gation arising from copying and pasting small pieces of code,
e.g., provided by Q&A fora. To address them, features other
than the reuse relation identification should be selected; we
are investigating an extension technique to deal with such
cases. Second, since the methodology of V0Finder can be
applied to other languages, we will discover VZs for other
languages. This will be conducted by constructing the CVE
and software pool for the new languages.

9 Conclusion
As public vulnerability reports are widely utilized to resolve
threats arising from software vulnerabilities, quality control
of reports is emerging. In response, we presented V0Finder,
a precise mechanism to discover the VZ of software vulnera-
bilities. We found that the current NVD provides the incorrect
VZ for some CVEs, and by analyzing the adverse effects of

those CVEs in detail, we demonstrated the importance and ne-
cessity of VZ discovery. Equipped with VZ discovery results
from V0Finder, developers can address software vulnerabili-
ties potentially included in their software due to vulnerable
code reuse (e.g., via third-party software), more specifically,
they can apply appropriate security patches.

Acknowledgment
We appreciate the anonymous reviewers for their valuable
comments to improve the quality of the paper. This work
was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2019-0-01697 Develop-
ment of Automated Vulnerability Discovery Technologies for
Blockchain Platform Security and IITP-2021-2020-0-01819
ICT Creative Consilience program).

Availability
The source code of V0Finder is available at https://
github.com/wooseunghoon/V0Finder-public.

References

[1] Jorge Aranda and Gina Venolia. The Secret Life of
Bugs: Going Past the Errors and Omissions in Software
Repositories. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 298–
308, 2009.

[2] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmer-
mann, and Sunghun Kim. Duplicate bug reports con-
sidered harmful... really? In 2008 IEEE International
Conference on Software Maintenance (ICSME), pages
337–345, 2008.

[3] Silvia Breu, Rahul Premraj, Jonathan Sillito, and
Thomas Zimmermann. Information needs in bug re-
ports: improving cooperation between developers and
users. In Proceedings of the 2010 ACM Conference on
Computer-Supported Cooperative Work, pages 301–310,
2010.

[4] Lutz Büch and Artur Andrzejak. Learning-Based Re-
cursive Aggregation of Abstract Syntax Trees for Code
Clone Detection. In 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 95–104, 2019.

[5] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura
Moreno, Massimiliano Di Penta, Andrian Marcus,
Gabriele Bavota, and Vincent Ng. Detecting missing
information in bug descriptions. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 396–407, 2017.

[6] Common Weakness Enumeration. 2020 CWE
Top 25 Most Dangerous Software Weaknesses,
2020. https://cwe.mitre.org/top25/archive/
2020/2020_cwe_top25.html.

[7] Ctags. Universal Ctags, 2020. https://github.com/
universal-ctags/ctags.

[8] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing,
Yuqing Zhang, and Gang Wang. Towards the detec-
tion of inconsistencies in public security vulnerability
reports. In 28th USENIX Security Symposium (USENIX
Security), pages 869–885, 2019.

[9] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and
Wenke Lee. Identifying open-source license violation
and 1-day security risk at large scale. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2169–2185,
2017.

[10] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir
Filkov. Some from here, some from there: Cross-project
code reuse in github. In 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories,
pages 291–301, 2017.

[11] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Ke-
shani, Masoumeh Soleimani Zavosht, Abbas Hey-
darnoori, and Vladimir Filkov. Cross-project code
clones in GitHub. Empirical Software Engineering,
pages 1–36, 2018.

[12] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Sim-
ilarity search in high dimensions via hashing. 99(6):518–
529, 1999.

[13] GitHub. Securing software, together, 2021. https:
//github.com/features/security.

[14] Philip J Guo, Thomas Zimmermann, Nachiappan Na-
gappan, and Brendan Murphy. Characterizing and pre-
dicting which bugs get fixed: an empirical study of Mi-
crosoft Windows. In Proceedings of the 32nd Inter-
national Conference on Software Engineering (ICSE),
pages 495–504, 2010.

[15] Irfan Ul Haq, Sergio Chica, Juan Caballero, and Somesh
Jha. Malware lineage in the wild. Computers & Security,
78:347–363, 2018.

[16] Shohei Ikeda, Akinori Ihara, Raula Gaikovina Kula, and
Kenichi Matsumoto. An Empirical Study of README
contents for JavaScript Packages. IEICE TRANSAC-
TIONS on Information and Systems, 102(2):280–288,
2019.

https://github.com/wooseunghoon/V0Finder-public
https://github.com/wooseunghoon/V0Finder-public
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://github.com/universal-ctags/ctags
https://github.com/universal-ctags/ctags
https://github.com/features/security
https://github.com/features/security

[17] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Man-
abe. Where does this code come from and where does it
go?-integrated code history tracker for open source sys-
tems. In Proceedings of the 34th International Confer-
ence on Software Engineering (ICSE), pages 331–341,
2012.

[18] Jiyong Jang, Abeer Agrawal, and David Brumley. Re-
DeBug: Finding Unpatched Code Clones in Entire OS
Distributions. In 2012 IEEE Symposium on Security
and Privacy (SP), pages 48–62, 2012.

[19] Jiyong Jang, Maverick Woo, and David Brumley. To-
wards automatic software lineage inference. In 22nd
USENIX Security Symposium (USENIX Security), pages
81–96, 2013.

[20] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering
(ICSE), pages 96–105, 2007.

[21] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: a multilinguistic token-based code clone de-
tection system for large scale source code. IEEE Trans-
actions on Software Engineering, 28(7):654–670, 2002.

[22] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. Ex-
traction of product evolution tree from source code of
product variants. In Proceedings of the 17th Interna-
tional Software Product Line Conference (SPLC), pages
141–150, 2013.

[23] Tetsuya Kanda, Takashi Ishio, and Katsuro Inoue. Ap-
proximating the Evolution History of Software from
Source Code. IEICE Transactions on Information and
Systems, 98(6):1185–1193, 2015.

[24] Georgia M Kapitsaki, Nikolaos D Tselikas, and Ioan-
nis E Foukarakis. An insight into license tools for open
source software systems. Journal of Systems and Soft-
ware, 102:72–87, 2015.

[25] Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda,
Raula Gaikovina Kula, Coen De Roover, and Katsuro
Inoue. Identifying source code reuse across repositories
using LCS-based source code similarity. In 2014 IEEE
14th International Working Conference on Source Code
Analysis and Manipulation, pages 305–314, 2014.

[26] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. VUDDY: A Scalable Approach for Vulnerable Code
Clone Discovery. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 595–614, 2017.

[27] Jesse Kornblum. Identifying almost identical files using
context triggered piecewise hashing. Digital investiga-
tion, 3:91–97, 2006.

[28] Amanda Lee and Travis Atkison. A comparison of fuzzy
hashes: evaluation, guidelines, and future suggestions.
In Proceedings of the SouthEast Conference, pages 18–
25, 2017.

[29] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2201–2215, 2017.

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao
Qi, and Jie Hu. VulPecker: an automated vulnerability
detection system based on code similarity analysis. In
Proceedings of the 32nd Annual Conference on Com-
puter Security Applications (ACSAC), pages 201–213,
2016.

[31] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. VulDeeP-
ecker: A deep learning-based system for vulnerability
detection. In Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), 2018.

[32] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code. 4(19):289–
302, 2004.

[33] Dmitry Luciv, Dmitrij Koznov, George Chernishev,
Hamid Abdul Basit, Konstantin Romanovsky, and An-
drey Terekhov. Duplicate finder toolkit. In Proceedings
of the 40th International Conference on Software En-
gineering: Companion (ICSE-Companion), pages 171–
172, 2018.

[34] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In 27th USENIX Security Symposium
(USENIX Security), pages 919–936, 2018.

[35] Ginger Myles and Christian Collberg. Detecting soft-
ware theft via whole program path birthmarks. In In-
ternational Conference on Information Security, pages
404–415. Springer, 2004.

[36] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In 2015 IEEE Symposium on Security and
Privacy (SP), pages 692–708, 2015.

[37] Manziba Akanda Nishi and Kostadin Damevski. Scal-
able code clone detection and search based on adap-
tive prefix filtering. Journal of Systems and Software,
137:130–142, 2018.

[38] NPM. Node Package Manager, 2020. https://www.
npmjs.com/.

[39] NVD. National Vulnerability Database, 2020. https:
//nvd.nist.gov/.

[40] NVD. Common Platform and Enumeration (CPE), 2021.
https://nvd.nist.gov/products/cpe.

[41] Jonathan Oliver, Chun Cheng, and Yanggui Chen.
TLSH–a locality sensitive hash. In Proceedings of the
2013 Fourth Cybercrime and Trustworthy Computing
Workshop, pages 7–13, 2013.

[42] Henning Perl, Sergej Dechand, Matthew Smith, Daniel
Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and
Yasemin Acar. VCCFinder: Finding Potential Vulnera-
bilities in Open-Source Projects to Assist Code Audits.
In Proceedings of the 2015 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
426–437, 2015.

[43] Chaiyong Ragkhitwetsagul and Jens Krinke. Siamese:
scalable and incremental code clone search via multiple
code representations. Empirical Software Engineering,
pages 2236–2284, 2019.

[44] RhodeCode. Version Control Systems Popular-
ity, 2016. https://rhodecode.com/insights/
version-control-systems-2016.

[45] Vassil Roussev. Hashing and data fingerprinting in dig-
ital forensics. IEEE Security & Privacy, 7(2):49–55,
2009.

[46] Chanchal K Roy and James R Cordy. NICAD: Accurate
detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In 2008 16th
IEEE International Conference on Program Compre-
hension, pages 172–181, 2008.

[47] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu,
Pierre Baldi, and Cristina Lopes. Oreo: Detection of
Clones in the Twilight Zone. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 345–365,
2018.

[48] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chan-
chal K Roy, and Cristina V Lopes. SourcererCC: Scaling
code clone detection to big-code. In Proceedings of the
38th International Conference on Software Engineering
(ICSE), pages 1157–1168, 2016.

[49] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and
Katsuro Inoue. CCFinderSW: Clone Detection Tool

with Flexible Multilingual Tokenization. In 24th Asia-
Pacific Software Engineering Conference (APSEC),
pages 654–659, 2017.

[50] Francisco Servant and James A Jones. Fuzzy fine-
grained code-history analysis. In Proceedings of the
39th International Conference on Software Engineering
(ICSE), pages 746–757, 2017.

[51] Daniela Steidl, Benjamin Hummel, and Elmar Juergens.
Incremental origin analysis of source code files. In
Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 42–51, 2014.

[52] National Telecommunications and Information Admin-
istration. NTIA Software Component Transparency
with SBOM (Software Bill of Materials), 2020. https:
//www.ntia.doc.gov/SoftwareTransparency.

[53] Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, and
Zoran Budimac. LICCA: A tool for cross-language
clone detection. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 512–516, 2018.

[54] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy
Hu, and Michelle Mazurek. Hackers vs.Testers: A Com-
parison of Software Vulnerability Discovery Processes.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 374–391, 2018.

[55] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun
Xu, and Chanchal K Roy. CCAligner: a token based
large-gap clone detector. In Proceedings of the 40th In-
ternational Conference on Software Engineering (ICSE),
pages 1066–1077, 2018.

[56] Wikipedia. Index case (or patient zero), 2020. https:
//en.wikipedia.org/wiki/Index_case.

[57] Michael Worobey, Thomas D Watts, Richard A McKay,
Marc A Suchard, Timothy Granade, Dirk E Teuwen,
Beryl A Koblin, Walid Heneine, Philippe Lemey, and
Harold W Jaffe. 1970s and ‘Patient 0’ HIV-1 genomes
illuminate early HIV/AIDS history in North America.
Nature, 539(7627):98–101, 2016.

[58] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,
Wei Zou, and Wenchang Shi. MVP: Detecting Vulnera-
bilities using Patch-Enhanced Vulnerability Signatures.
In 29th USENIX Security Symposium (USENIX Secu-
rity), pages 1165–1182, 2020.

https://www.npmjs.com/
https://www.npmjs.com/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/products/cpe
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://www.ntia.doc.gov/SoftwareTransparency
https://www.ntia.doc.gov/SoftwareTransparency
https://en.wikipedia.org/wiki/Index_case
https://en.wikipedia.org/wiki/Index_case

Appendix A Results of the incorrect VZs

We introduce a list of CVEs that provides the incorrect VZ,
along with the correct VZ discovered by V0Finder for each
CVE. Note that there was no case where the reproduction
was succeeded only in the incorrect VZ provided by CPE; the
reproduction either was succeeded in both the VZ discovered
by V0Finder and that of CPE or was failed in both of them
due to the reasons specified in Section 5.1.

Table 8: 50 CVEs with wrong versions.

CVE ID CPE∗ VZ∗∗ Verification†
Software Version Version

CVE-2007-1320 Qemu v0.8.2 v0.6.0 Code review
CVE-2008-4225 Libxml2 v2.7.2 v2.2.6 Code review
CVE-2009-3720 Expat v2.0.1 v2.0.0 Code review
CVE-2012-1013 Krb5 v1.8 v1.7.1 Code review
CVE-2014-0185 PHP v5.5.0 v5.3.4 Author sites
CVE-2014-3985 Miniupnp v1.9 v1.8 Code review
CVE-2014-4344 Krb5 v1.10 v1.5 Code review
CVE-2014-8116 File v5.20 v5.19 Code review
CVE-2015-3395 FFmpeg v2.0.6 n0.10.8 Author sites
CVE-2016-3705 Libxml2 v2.9.3 v2.9.0 Reproduction
CVE-2016-8687 Libarchive v3.2.1 v3.1.0 Code review
CVE-2016-8688 Libarchive v3.2.1 v3.1.0 Reproduction
CVE-2016-9118 OpenJPEG v2.1.2 v2.1.1 Code review
CVE-2016-9388 Jasper v1.900.14 v1.900.1 Reproduction
CVE-2016-9535 Libtiff v4.0.6 v4.0.5 Code review
CVE-2016-9573 OpenJPEG v2.1.2 v2.1.1 Reproduction
CVE-2016-10269 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2016-10270 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2017-5225 Libtiff v4.0.7 v4.0.0 Reproduction
CVE-2017-5601 Libarchive v3.2.2 v3.0.4 Reproduction
CVE-2017-6420 ClamAV v0.99.2 v0.99.1 Code review
CVE-2017-7407 Curl v7.53.1 v6.5.0 Author sites
CVE-2017-7746 Wireshark v2.0.0 v1.99.9 Code review
CVE-2017-9047 Libxml2 v2.9.4 v2.6.20 Code review
CVE-2017-9226 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-9227 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-9229 Oniguruma v6.2.0 v5.9.6 Code review
CVE-2017-11462 Krb5 v1.8 v1.14 Reproduction
CVE-2017-14054 FFmpeg v3.3.3 v3.1 Code review
CVE-2017-14152 OpenJPEG v2.2.0 v2.1.1 Code review
CVE-2017-14164 OpenJPEG v2.2.0 v2.1.1 Code review
CVE-2017-14169 FFmpeg v3.3.3 n2.5 Reproduction
CVE-2017-14170 FFmpeg v3.3.3 n2.6 Code review
CVE-2017-14222 FFmpeg v3.3.3 n2.5.3 Code review
CVE-2017-14223 FFmpeg v3.3.3 n2.6 Code review
CVE-2017-14502 Libarchive v3.3.2 v3.1.900a Code review
CVE-2017-17081 FFmpeg v3.4 n2.3 Code review
CVE-2017-17480 OpenJPEG v2.3.0 v1.1 Code review
CVE-2017-1000249 File 5_29 5_22 Code review
CVE-2018-5727 OpenJPEG v2.3.0 v2.1.2 Code review
CVE-2018-5785 OpenJPEG v2.3.0 v2.1.1 Reproduction
CVE-2018-16790 Libbson v1.12.0 v1.9.0 Code review
CVE-2018-18088 OpenJPEG v2.3.0 v2.2.0 Code review
CVE-2019-9718 FFmpeg v4.1 n3.5 Code review
CVE-2019-12973 OpenJPEG v2.3.1 v2.3.0 Reproduction
CVE-2019-13224 Oniguruma v6.9.2 v6.4.0 Code review
CVE-2019-15681 Libvncserver v0.9.12 v0.9.8 Code review
CVE-2019-19317 Sqlite v3.30.1 v3.26.0 Code review
CVE-2019-1010239 cJSON v1.7.8 v1.7.4 Reproduction
CVE-2020-7595 Libxml2 v2.9.10 v2.9.6 Code review

∗ CPE: Show only one parent software among the CPE-
registered software (determined by the result of V0Finder).
∗∗VZ: Discovered VZ using V0Finder.
† Verification: How to verify the VZ (see Section 5.1).

Table 9: 46 CVEs with wrong software programs.

CVE ID CPE∗ VZ∗∗ Verification†
Software Software Version

CVE-2006-5748 Firefox JS engine N/A Code review
CVE-2009-0774 Firefox JS engine N/A Code eview
CVE-2009-2466 Firefox JS engine N/A Code eview
CVE-2009-2663 Firefox Vorbis v1.0.1 Code eview
CVE-2009-3379 Firefox Vorbis v1.0.0 Code review
CVE-2010-3176 Firefox Vorbis v1.0.0 Code review
CVE-2011-3026 Chrome Libpng v1.2.44 Author sites
CVE-2011-3045 Chrome Libpng v1.2.44 Author sites
CVE-2011-3439 iOS Freetype v2.4.5 Author sites
CVE-2011-3893 Chrome FFmpeg n0.5.8 Author sites
CVE-2013-0760 Firefox Uchardet v0.0.2 Code review
CVE-2013-0894 Chrome FFmpeg n0.10.6 Author sites
CVE-2013-6629 Chrome Libjpeg 6b Code review
CVE-2013-7226 PHP Libgd v2.1.0 Author sites
CVE-2014-0237 PHP File 5_06 Author sites
CVE-2014-3710 PHP File 5_16 Author sites
CVE-2014-6262 Zenoss_core RRDtool v1.5.0 Author sites
CVE-2015-2756 Debian Linux Qemu v2.3.0 Code review
CVE-2015-4335 Redis Lua v5.1 Reproduction
CVE-2015-5165 Xen Qemu v2.3.0 Code review
CVE-2015-8080 Redis Lua v5.3 Reproduction
CVE-2015-8865 PHP File 4_26 Author sites
CVE-2016-1624 Chrome Brotli v0.1.0 Code review
CVE-2016-1626 Chrome OpenJPEG v2.0 Code review
CVE-2016-1968 Firefox Brotli v0.1.0 Code review
CVE-2016-2464 Android Libwebm v1.0.0.26 Code review
CVE-2016-2808 Firefox Spidermonkey v25 Author sites
CVE-2016-4477 Android Wpa_supplicant v0.4.0 Code review
CVE-2016-5152 Chrome OpenJPEG v2.0.1 Reproduction
CVE-2016-5257 Firefox FFmpeg n3.1 Code review
CVE-2017-0381 Android Libopus draft-09 Code review
CVE-2017-0386 Android Libnl v2.0 Code review
CVE-2017-0393 Android Libvpx v1.3.0 Code review
CVE-2017-0408 Android JPEG-compressor v0.1 Code review
CVE-2017-0553 Android Libnl v2.0 Code review
CVE-2017-0663 Android Libxml2 v2.7.0 Code review
CVE-2017-0700 Android JPEG-compressor v0.1 Reproduction
CVE-2017-5056 Chrome Libxml2 v2.2.6 Code review
CVE-2017-6983 iOS Sqlite v3.7.11 Code review
CVE-2017-13693 Linux Kernel Acpica 20170629 Code review
CVE-2017-13695 Linux Kernel Acpica 20170629 Code review
CVE-2018-5146 Firefox Vorbis v1.2.0 Reproduction
CVE-2018-5711 PHP Libgd v2.1.0 Reproduction
CVE-2018-6064 Chrome V8 v5.1.219 Reproduction
CVE-2019-9278 Android Libexif v6.21 Code review
CVE-2019-17371 Libpng Gif2png v2.5.13 Reproduction

(a) CVSS distribution (b) Top 5 CWE distribution

59 (62%)

34 (35%)

3 (3%)

21

11

6

6

5

Figure 8: CVSS and CWE distributions for the CVEs with
the incorrect VZ.

Appendix B Analysis for the mislabeled CVEs

V0Finder identified that 96 CVEs that have wrong informa-
tion related to their respective VZs. We analyzed the severity
(i.e., Common Vulnerability Scoring System, shortly CVSS)
and type for these CVEs (i.e., Common Weakness Enumera-
tion, shortly CWE); the analysis results are shown in Figure 8.

In terms of the severity, approximately a third of the
total was a high-risk vulnerability (see Figure 8 (a)). Of
course, when we successfully reproduce and report high-
risk vulnerabilities, most of them were immediately patched
(e.g., CVE-2017-0700) or managed with a CVE ID assigned
(e.g., CVE-2020-14147).

In the perspective of the vulnerability type, as shown in
the Figure 8 (b), the most frequently appeared type is the
vulnerability related to the boundary of the buffer (CWE-119,
e.g., buffer-overflow vulnerability). In particular, CWE-119,
CWE-125, and CWE-190 belong to the top 25 most dangerous
vulnerability types in 2020 [6].

(a) Overall results of the reports (b) Results for the "response" cases

16 (62%)

10 (38%)

1 (6%)

2 (13%)

4 (25%)

9 (56%)

Figure 9: Depiction of the vendors’ responses.

Appendix C Results of the vendors’ responses

We classify our reporting process into two categories: re-
sponse and no response (see Figure 9). Among the total of 26
reports, we have received responses from 16 vendors:

CVE updated (1 case). This is a case where the CPE was
changed to the discovered VZ by V0Finder.

CVE issued (2 cases). This is a case where a new CVE ID
has been assigned. Of course, the vulnerability was patched
before it was issued.

Vulnerability patched (4 cases). This is a case where the
vulnerability that existed in the latest version of the affected
software due to the incorrect VZ was patched.

Vulnerability confirmed (9 cases). This is a case where the
vendors confirmed the vulnerability but decided that the vul-
nerability was not critical (e.g., a corner case); thus, they
would not patch immediately but considered patching the
later versions if applicable.

Lastly, for the no response cases, we are still trying to
communicate with the corresponding vendors.

	Introduction
	Motivation
	Basic terminology
	Problem statement
	A motivating example

	Methodology of V0Finder
	Node discovery phase (P1)
	Edge connection phase
	Root finding phase

	Dataset and Implementation of V0Finder
	Dataset
	Implementation

	Evaluation
	Comparison with NVD
	Comparison with the timestamp metadata
	Effectiveness of the utilized techniques
	Performance of V0Finder

	Impact of VZ discovery
	Success rate of vulnerability detection
	Elapsed time for vulnerability detection
	Case study: Vulnerability in Redis

	Related work
	Discussion
	Conclusion
	Results of the incorrect VZs
	Analysis for the mislabeled CVEs
	Results of the vendors' responses

