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Implementing Lists

1 Overview

This chapter explores implementations of the list abstract data type, and introduces the concept of dynamically-
allocated data structures and, in particular, linked lists. We begin with an implementation of the list ADT
that uses an array to store the data. For convenience, the C++ List class interface from Chapter 3 is
displayed below.

Listing 1: List Class Interface

typede f actual_type_to_use l i st_item_type ;

c l a s s L i s t
{
pub l i c :

L i s t ( ) ; // d e f au l t con s t ruc to r
~L i s t ( ) ; // de s t ru c t o r

bool is_empty ( ) const ;
// Determines whether a l i s t i s empty .
// Precond i t ion : None .
// Postcond i t i on : Returns t rue i f the l i s t i s empty ,
// otherwi se r e tu rn s f a l s e .

i n t l ength ( ) const ;
// Determines the l ength o f a l i s t .
// Precond i t ion : None .
// Postcond i t i on : Returns the number o f i tems that are cu r r en t l y in the l i s t .

void i n s e r t ( i n t new_position , l i st_item_type new_item ,
bool& suc c e s s ) ;

// I n s e r t s an item in to a l i s t .
// Precond i t ion : new_position i n d i c a t e s where the
// i n s e r t i o n should occur . new_item i s the item to be i n s e r t e d .
// Postcond i t i on : I f I f 1 <= po s i t i o n <= th i s−>length ()+1 , new_item i s
// at p o s i t i o n new_position in the l i s t , other items are
// renumbered accord ing ly , and suc c e s s i s t rue ;
// otherwi se su c c e s s i s f a l s e .

void d e l e t e ( i n t po s i t i on , bool& suc c e s s ) ;
// De l e t e s an item from a l i s t .
// Precond i t ion : p o s i t i o n i n d i c a t e s where the d e l e t i o n should occur .
// Postcond i t i on : I f 1 <= po s i t i o n <= th i s−>length ( ) ,
// the item at po s i t i o n po s i t i o n in the l i s t i s
// de le ted , other items are renumbered accord ing ly ,
// and suc c e s s i s t rue ; o therw i se su c c e s s i s f a l s e .

void r e t r i e v e ( i n t po s i t i on , l i st_item_type & DataItem ,
bool& suc c e s s ) const ;
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// Ret r i eve s a l i s t item by po s i t i o n number .
// Precond i t ion : p o s i t i o n i s the number o f the item to be r e t r i e v e d .
// Postcond i t i on : I f 1 <= po s i t i o n <= th i s−>length ( ) ,
// DataItem i s the value o f the de s i r ed item and
// suc c e s s i s t rue ; o therw i se su c c e s s i s f a l s e .

p r i va t e :
// t h i s i s what we are about to supply

} ;

2 Array-Based Implementation of a List

One way to implement a list is to store successive elements in an array or, in C++, a vector. Let us work
with an array for simplicity and language-independence. To determine whether it is feasible to use an array,
or whether it is a good idea, we have to think about how each list operation could be implemented if the
data were in an array. An array is declared to be a �xed size, known at the time the list is created. Suppose
the size is N:

list_item_type items[N];

To keep track of how many items are in the list, we need a variable, which we call size:

int size;

(With vectors, the vector object can keep track of this for us.)

The List class interface would be modi�ed by the speci�cation of the two private data members as follows:

const int MAX_LIST_SIZE = N;

class List {

public:

// the methods from Listing 1

private:

list_item_type items[MAX_LIST_SIZE];

int size;

};

With this de�nition, creating a list simply means setting size to 0. Destroying a list resets size to 0.
Testing a list for emptiness checks whether size is 0 and getting the length of the list is simply returning
the value of size. These are easy and straightforward to implement.

//Constructor

List::List()

{

size = 0;

}

// Destructor

List::~List()

{

size = 0;

}
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// Test for emptiness

bool List::is_empty() const

{

return (0 == size);

}

All other list operations must enforce the assertion that the list items are stored in consecutive array entries
at all times. Hence, in a non-empty list, the �rst item is in items[0] and the kth item is in items[k-1].
The retrieve() member function could be implemented by the following code:

void List::retrieve( int position,

list_item_type & item,

bool & success ) const

{

success = ( 1 <= position && position <= size );

if ( success ) {

item = items[position - 1];

}

}

Obviously the retrieve() method takes the same number of instructions regardless of the position of the
item, and this number is a �xed constant that is independent of the size of the list. This is good. When an
algorithm takes a constant number of steps independent of the size of the data structure or input parameters,
we say it runs in constant-time .

Having to keep the items in consecutive entries implies that to perform an insertion, the items in the insertion
point and after it have to be shifted towards the end, and to perform a deletion, say at position k, all items
from items[k] to items[size-1] have to be shifted down by one cell. This is not so good. Remember that
list positions start at 1, not 0, so the item at position k is in cell items[k-1], not items[k], and deleting
the kth item means that the array entry items[k-1] must be removed.

The insertion has to be done carefully as well. Suppose k is the index of the array at which the new item
must be inserted. Since items must be shifted towards the high end, items[size-1] has to be moved
to items[size], then items[size-2] moved to items[size-1], and so on until items[k] is moved to
items[k+1]. (You cannot start by moving items[k] to items[k+1], then items[k+1] to items[k+2] and
so on. Why not?) Then the item can be put in items[k]. Of course if size is N before the insertion, we
cannot insert anything new, because we would over�ow the allocated storage and cause a run-time exception.
(If we use a vector, then we could �grow� it when this happens.)

The insertion function is therefore

void List::insert( int position_to_insert,

list_item_type new_item,

bool & success )

{

if ( N == size )

success = false; // array is full -- cannot insert

else if ( position_to_insert < 1 || position_to_insert > size+1 )

success = false; // bad value of position_to_insert

else {

// make room for new item by shifting all items at

// k >= position_to_start toward the end of the list

for (int k = size-1; k >= position_to_insert-1; k--)

items[k+1] = Items[k];
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// insert new item

items[position_to_insert-1] = new_item;

size++;

success = true;

} // end if

}

It should be clear that the insertion takes the most time when we insert a new �rst element, since the shifting
must be done roughly N times. It takes the least time when we insert a new last element. But in this worst
case, when we insert in the front of the list, the number of instructions executed is proportional to the size
of the list. We therefore say it is a linear-time operation or that its running time is linear in the

size of the list because the running time is a linear function of the size of the data structure. (A linear
function f of one variable x is of the form f(x)=ax+b.)

The deletion operation also requires shifting items in the array, roughly the reverse of insertion. We start
at the point of deletion and move towards the end, i.e., we move items[position] to items[position-1],
then items[position+1] to items[position], and so on until we get to items[size-1], which we move
to items[size-2]. Since there is no items[size], we cannot move it into items[size-1]. Hence, the loop
that shifts items must stop when the index of the entry being �lled is size-2:

void List::delete( int position,

bool& success)

{

if ( 0 == size )

success = false; // array is empty

else if ( position < 1 || position > size )

success = false; // bad position

else {

// shift all items at positions position down by 1

// toward the end of the list. In this loop

// k is the index of the target of the move, not the

// source

for (int k = position-1; k <= size-2; k++)

items[k] = items[k+1];

size--;

success = true;

} // end if

}

In this algorithm the number of loop iterations is the length of the list minus the position at which the
deltion occurs. In the worst this is when the �rst element in the list is deleted, because in this case the
number of loop iterations is the length of the list (minus one). So we see that the deletion operation also
has a worst-case running time that is linear in the size of the list.

2.1 Weaknesses of the Array Implementation of a List

Arrays are �xed size, so if the list needs to grow larger than the size of the array, either the implementation
will fail, in the sense that it cannot be used in this case, or it has to provide a means to allocate a new, larger
array when that happens. Even if a C++ vector is used, this behavior occurs, because the C++ vector
class automatically resizes the vector when it becomes too small. (In fact it doubles the vector capacity.)
Alternatively, the array can be made so large that it will always be big enough, but that means it will have
many unused entries most of the time and be wasteful of storage. So this is one major weakness.
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On average, an insertion requires moving half of the list each time, and a deletion, on average, also requires
moving half of the list each time. As noted above, the amount of time to do an insertion or a deletion in the
worst case (or in the average case) is proportional to the length of the list. As the size of the data set grows,
the time to insert and delete increases. This is an even more serious weakness than the capacity problem.
Thus, in summary, the problems with arrays as a data structure for implementing a list are that

• they are �xed size � they cannot grow if size exceeded, or if they are auto-resized, it is very time-
consuming;

• if they are sized large enough, there is wasted space, and

• inserting and deleting cause signi�cant movement of data and take too much time.

The alternative is to create an implementation

• in which insertions and deletions in the middle are e�cient,

• which can grow as needed, and

• which uses no more space than is actually required.

To do this, we need to be able to allocate memory as needed, and release that memory when no longer
needed. For this we need pointers1.

3 Review of Pointers

A pointer variable is a variable that stores the address of a memory cell. The memory cell might be the start
of any object or function, whether a simple variable, constant, object of a class, and so on.

3.1 Usage

Declaring pointer variables:

int * intp; // declares a pointer to an integer memory cell

char *pc; // pointer to char

int* a[10]; // a is an array of pointers to int

int (*b)[10]; // b is a pointer to an array of 10 ints

int* f(int x); // f is a function returning a pointer to an int

int (*pf)(int x); // pf is a pointer to a function returning an int

int* (*pg)(int x); // pg is a pointer to a function returning a pointer to an int

The * is a pointer declarator operator. In a declaration, it turns the name to its right into a pointer to
the type to the left. It is a unary, right associative operator. It does not matter whether you leave space
to the right or left of it, as demonstrated above.

int * p, q; // p is a pointer not q

int *p, *q; // p and q are both int pointers

A typedef is useful for declaring types that are pointers to things:

1At least in languages such as C and C++ we do.
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typedef int* intPtrType;

intPtrType intp, intq; // p and q are both pointer to int

typedef bool (*MessageFunc) (char* mssge);

// This defines a MessageFunc to be a pointer to a function with a

// null-terminated string as an argument, returning a bool.

// It can be used as follows:

void handle_error( MessageFunc f, char* error_mssge);

// Here, f is a function with a char* argument returning a bool.

The preceding declarations do not give values to the pointers. None of the pointers declared above have
any valid addresses stored in their memory cells. To de�ne a pointer, i.e., to give it a value, you give it an
address. The & operator is the address-of operator. It �returns� the address of its operand.

int x = 12;

int* p = &x; // p is a pointer to the int x.

*p = 6; // this changes x to store 6 and not 12

(*p)++; // * has lower precedence than the post-increment ++

// so this increments x

int a[100] = {0};

int *q = &a[0]; // q is the address of a[0]

q++; // q is the address sizeof(int) bytes after a[0], which is a[1]

*q = 2; // now a[1] contains a 2!

3.2 Dynamic Memory Allocation

Pointers are the means to perform dynamic memory allocation. The new operator allocates memory:

int* p; // p is a pointer to int

p = new int; // creates an unnamed int cell in memory; p points to it

Arrays can be allocated dynamically:

int *q; // q is a pointer to int

q = new int[100]; // 100 ints are allocated and q points to the first of them

for (int i = 0; i < 100; i++)

q[i] = i*i;

Now q can be treated like the name of an array, but it is di�erent, because unlike an array name, q is not a
const pointer. It can be assigned to a di�erent memory location. Note that *q is the �rst element of the
array, i.e., q[0], and *(q+1) is the same as q[1]. More generally,

*(q+k) is the same as q[k].

The delete operator frees memory allocated with new. To delete a single cell, use

delete p; // delete the cell pointed to by p

If q is a dynamically allocated array, you need to use the delete[] operator, as in

delete[] q;
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3.3 Potential Errors: Insu�cient Memory, Leaks and Dangling Pointers

There are several things that you can easily do wrong when using pointers, and they are the most dangerous
part of C and C++. (This is why Java does not have pointers.) The �rst common mistake is failing to check
the result of using the new operator. Most people do not think about the fact that new may fail. It can, if
your program has run out of memory, so you must always check that it did not. If new fails, the value it
returns is NULL. Good programmers always check this, as in the following code snippet:

p = new int;

if ( NULL == p ) {

// bail out

cerr <�< �Out of memory\n�;

exit(1);

}

*p = ...;

Now consider the following lines of code:

p = new int;

if ( NULL == p ) {

// bail out

cerr <�< �Out of memory\n�;

exit(1);

}

*p = 5;

q = p;

delete q;

cout <�< *p; // error � the memory is gone � dangling pointer

Memory is allocated and a pointer to it is given to p. The location is �lled with the number 5. Then q

gets a copy of the address stored in p and delete is called on q. That means that p no longer points to an
allocated memory cell, so the next line causes an error known as a dangling pointer error.

One must use caution when multiple pointers point to same cells.

A di�erent problem is a memory leak. Memory leaks occur when allocated memory is not freed by the
program. For example, the following function allocates an array:

void someTask( int n)

{

int *array = new int[n];

// do stuff with the array here

}

Notice that the function did not delete the array. If this function is called repeatedly by the program, it
will accumulate memory and never release it. The program will start to use more memory than might be
available for it, and it will start to get slower and slower as the operating system tries to make room for it
in memory. If things get really out of hand, it can slow down the entire machine.

4 Linked Lists

Linked lists are lists in which each data item is contained in a node that also has a link to the next node
in the list, except for the last, which does not link to anything. A link is simply a reference to a node. Links
are implemented as pointers in a language such as C++ or C, but they may be represented by other means
as well. Conceptually, a link is something that can be dereferenced to get the contents of the node to which
it points.
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4.1 Singly-linked Linked List

In a singly-linked list, each node has a link to the next node in the list, except the last node, which does
not. We will use a pointer-based solution to this problem. A pointer-based linked list is a linked list in which
the links are implemented as pointers to nodes. A general description of a node is

typedef int list_item_type; // for simplicity assume node data is type int

struct node {

list_item_type data; // the node's data element

node* next; // the pointer to the next node

};

typedef node* link; // link is short for �pointer to node�

This can be written more succinctly as follows:

typedef struct node * link; // in C++ it can be written typedef node * link;

struct node {

list_item_type data;

link next;

};

Notice in the above that a link is de�ned as another name for a pointer to a node structure even though
a node structure has not yet been de�ned at that point in the code. This is not incorrect � it will compile,
because the only thing the compiler needs to �know� to compile it is how much storage the link needs and
what type it is. A pointer is always a �xed number of bytes, and the compiler sees that a link is only
allowed to point to things of type node structure, so these requirements are met.

The actual data in a node will vary from one list to another, depending on how the itemType is de�ned.
The key point is how the pointers are used. Each pointer points to the next item in the list, unless it is in
the last node, in which case it is a null pointer. A linked list is a sequence of these nodes. The list itself is
accessed via a special link called the head. The head of a list is a pointer to the �rst node in the list. The
tail of a list is the last node. Figure 1 depicts this.

         Head                data                    link                                    Tail

Figure 1: Linked list.

It is convenient to create a special variable to store the head of the list, with the declaration

link head;

which creates a pointer named head that can be used to point to a list. Of course at this point head has
only garbage in it; it has no address and there is no list. By itself this declaration does not create a list!

It is also convenient to keep track of the length of the list with an integer variable that stores its size.
Therefore, a linked list's private data must include a head pointer and should include a size variable:
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class List

{

public:

// the member functions defined in Listing 1

private:

link head; // pointer to the first node in the list

unsigned int size; // number of nodes of the list

};

We can now run through how to implement the various operations (methods) de�ned in a List ADT using
this pointer-based representation, assuming that itemType is a typedef for int in the above de�nitions.

4.1.1 Creating an Empty List

To create an empty list is trivial:

head = NULL; // head points to nothing

size = 0; // list has zero items

An empty list is a list with no nodes, so setting head to NULL makes head a pointer to an empty list, and
setting size to 0 says it has no nodes. This implies that the default constructor is simply

List::List()

{

head = NULL;

size = 0;

}

4.1.2 Creating a Single List Node

To create a node that is not yet part of a list and put data into it, we need the new operator to create the
node and then we assign the data to the data member and we set the next member to NULL:

link p;

p = new node; // p points to a new node without data.

if ( NULL == p ) exit(1); // ALWAYS handle this possible error

p->data = 6; // p->data contains 6

p->next = NULL; // p->next points nowhere

This arbitrarily puts the value 6 into the data member of the node. Right now this node is not linked to
anything.

4.1.3 Writing the Contents of a List to a Stream

Most container classes, such as lists, should have a method that can write their contents onto an output
stream, such as a display device or a �le. This method was not mentioned when we introduced lists in
Chapter 3, but now that we are implementing them, it is worthwhile to develop such a method because it
is certainly useful, and it is instructive to implement it. Because it needs access to the list private data, it
should be either a friend function or a member of the list class. The approach we use here is to create a
private method that can be called by a public method in the class interface. The private function prototype
is
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// precondition: ostream out is open and list is initialized

// postcondition: ostream out has the contents of list appended to it,

// one data item per line

void write( ostream & out, link list);

This private method can print the list contents starting at any node to which it is given a pointer. The
public method would be implemented as

void List::write( ostream & out )

{

write( out, head);

}

where write() would be a private method that actually writes the list data onto the stream named out.

The private write function logic is the following:

1. Set a new pointer named current to point to whatever list points to.

2. Repeatedly do the following:

(a) if current is not a NULL pointer, write the data in the node that current points to and then
advance current to point to the next node;

(b) if current is a NULL pointer, then exit the loop.

Writing the data means writing it to the output stream followed by a newline. This can be written as follows:

void write( ostream & out, link list)

{

link current = list;

while ( NULL != current ) {

out <�< current->data <�< "\n";

current = current->next;

}

}

The instruction

current = current->next;

is guaranteed to succeed because current is not NULL, so it points to a node, and the next pointer in that
node exists. This function is general enough that it can write to the terminal or to a �le, so we have a way
to save a list to a �le.

4.1.4 Getting the Size of a Linked List

It is trivial to implement the length() function:

int List::length() const

{

return size;

}
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4.1.5 Testing for Emptiness

This is also trivial, and there are two ways to do it. One way is simply

bool List::is_empty() const

{

return size > 0 ? false : true;

}

4.1.6 Inserting a Node at a Speci�ed Position in a Linked List

The insert method is a bit more challenging than the preceding ones. Recall that its prototype is:

void insert( int position_to_insert,

list_item_type new_item,

bool & success );

in which 1 <= position_to_insert <= size+1.

How do we insert into a linked list? What steps must we follow? First consider the case in which the new
data is inserted between two existing list nodes. Inserting in the very front of the list or after the last node
will be handled afterward.

Assume the list looks like this to start:

45 32 76 112

and that we want to insert a node containing the value 55 at position 3. This means that the node must be
inserted after 32 and before 76. The steps we must follow are

1. Create a new node and �ll it with the value to be inserted. Suppose new_node_ptr is a pointer to this
new node.

32 76 11245

55

new_node_ptr

2. Position a pointer variable, which we will name current, so that it points to the node containing 32.
We will �gure out how to do this afterward.

32 76 11245

55

new_node_ptr

current
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3. Make new_node_ptr's link member point to what current->link points to. In other words, copy
current->link into new_node_ptr->link.

32 76 11245

55

new_node_ptr

current

4. Make current->link point to what new_node_ptr points to. In other words, copy new_node_ptr into
current->link.

32 76 11245

55

new_node_ptr

current

You can see that the new node is now in position 3 in the list, and that the nodes after it were shifted by
one position towards the end of the list.

The question that remains is how to position a pointer at a speci�c position in the list. Because this is an
operation that will need to be done for insertion, deletion, and retrieval, we make it a private helper function
in our implementation. It is just a matter of advancing a pointer along the list and counting while we do it,
like stepping along stones in a pond until we get to the kthstone. The following function does this:

// precondition: 1 <= pos <= list length

// postcondition: none

// returns a pointer to the node at position pos

link List::get_ptr_to(int pos) const

{

// sanity check to prevent a crash:

if ( ( pos < 1 ) || ( pos > size ) )

return NULL;

else { // pos is within the required range

// count from the beginning of the list

link current = head;

for (int i = 1; i < pos; i++ )

// loop invariant: current points to ith node

current = current->next;

// i == pos and therefore current points to pos'th node

return current;

}

}

Notice that this function will position a pointer at any node in the list, including the last. Also notice that
it starts not by pointing to the head node, but by pointing to what head points to, namely the �rst node.

Now what happens if the list is empty? Then size == 0 and head == NULL, so this will return NULL because
it fails the sanity check.

So tentatively, we can put the preceding steps into a �rst attempt at an implementation of the insert method:
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Listing 2: Linked list insert method

1 void L i s t : : i n s e r t ( i n t new_position , l i st_item_type new_item ,
2 bool& suc c e s s )
3 {
4 l i n k prev_ptr , new_node_ptr ;
5
6 i n t new_size = s i z e + 1 ;
7 su c c e s s = ( new_position >= 1) && ( new_position <= new_size ) ;
8 i f ( s u c c e s s ) {
9 // c r e a t e a new node and p lace new_item in to i t
10 new_node_ptr = new node ;
11 su c c e s s = ( NULL != new_node_ptr ) ;
12 i f ( s u c c e s s ) {
13 s i z e = new_size ;
14 new_node_ptr−>data = new_item ;
15 prev_ptr = get_ptr_to ( new_position−1 ) ;
16
17 // i n s e r t new node a f t e r node to which Prev po in t s
18 new_node_ptr−>next = prev_ptr−>next ;
19 prev_ptr−>next = new_node_ptr ;
20 }
21 }
22 } // end i n s e r t

This will work, except in one situation: what if we need to insert a node at position 1? The problem is
in line 15. When new_position == 1, we call get_ptr_to(new_position-1) but get_ptr_to() does not
accept an argument of 0; it makes no sense to have a pointer to the 0thnode. Unfortunately, we have to
�break out� a special case to handle insertion in the �rst position, given how we have de�ned a linked list2.

In case new_position is 1, instead of lines 15, 18, and 19, we need

new_node_ptr->next = head;

head = new_node_ptr;

Putting this together, we get the correct version of the insertion method:

Listing 3: Linked list insert() method

void L i s t : : i n s e r t ( i n t new_position , l i st_item_type new_item ,
bool& suc c e s s )

{
l i n k prev_ptr , new_node_ptr ;

i n t new_size = s i z e + 1 ;
su c c e s s = ( new_position >= 1) && ( new_position <= new_size ) ;
i f ( s u c c e s s ) {

// c r ea t e a new node and p lace new_item in to i t
new_node_ptr = new node ;
su c c e s s = ( NULL != new_node_ptr ) ;
i f ( s u c c e s s ) {

s i z e = new_size ;

2There are alternative implementations that use a �dummy� �rst node. A dummy node is never used to hold data. It exists

just to remove this special case from the code, but it also makes the other operations di�erent. This is a design trade-o� that

you can explore on your own.
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new_node_ptr−>data = new_item ;
i f ( 1 == new_position ) {

new_node_ptr−>next = head ;
head = new_node_ptr ;

}
e l s e {

prev_ptr = get_ptr_to ( new_position−1 ) ;
new_node_ptr−>next = prev_ptr−>next ;
prev_ptr−>next = new_node_ptr ;

}
}

}
} // end i n s e r t

4.1.7 Retrieving the Item in a Given Position

We handle this method next because it is much easier than the delete() function and the destructor. To
retrieve the item at a given position we check that the position is valid, and if so, we use the get_ptr_to()
function to position a pointer at the node. Then we just extract the value from that node.

void retrieve(int position, list_item_type & DataItem,

bool& success) const;

{

link current;

success = (position >= 1) && (position <= size);

if (success) {

// get pointer to node, then data in node

current = get_ptr_to(position);

DataItem = current->data;

}

}

4.1.8 Deleting an Item from a Linked List

The function that we now need to implement has the prototype

void delete(int position, bool& success);

Thus, we are given a position and we need to delete the node at that position, assuming it is a valid position.
Unlike the insertion method, this requires that we get a pointer to the node before the node to be deleted.
To understand this, consider the following �gure.

76 112553245

node to deletetemp_ptr

To delete the node containing the item 55, we need to make the next link in the previous node, pointed to
in the diagram by temp_ptr, point to the node after the node to delete! This means that we need to get
a pointer to the node before the node to be deleted. This is not a problem because we already have the
function get_ptr_to(), but again we have a special case at the front of the list, which we discuss after the
general case. The steps from this point forward are:
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1. Unlink temp_ptr->next and relink it so that it points to the node after the node to delete. This is a
single assignment statement: temp_ptr->next = node_to_delete->next.

76 112553245

node to deletetemp_ptr

2. Unlink the next link of the node being deleted, using node_to_delete->next = NULL.

76 112553245

node to deletetemp_ptr

3. Release the storage allocated to the node, using the delete operator: delete node_to_delete.

76 1123245

temp_ptr

The preceding steps will not work if the node to delete is the �rst node. In this case we need to execute the
following instructions instead of the ones just described:

temp_ptr = head;

head = head->next;

delete temp_ptr;

This is assuming that the list is not empty of course. If the list is not empty, then the head pointer does
point to a node, so there will not be an error trying to dereference that pointer to get to the node's next
member. We put all of this together in the following function.

void List::delete(int position, bool& success)

{

link node_to_delete, temp_ptr;

// the following will set success to false if the list is empty and position > 0

success = (position >= 1) && (position <= size) ;

if (success) {

// if we make it here, position >= 1 and we are definitely going to delete

// something, so we decrement list size.

--size;

if (1 == position) { // delete the first node from the list

node_to_delete = head; // save pointer to node

head = head->next;
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}

else {

// Because position must be greater than 1 here, we can safely call

// get_ptr_to() now.

temp_ptr = get_ptr_to(position-1);

// delete the node after the node to which temp_ptr points

node_to_delete = temp_ptr->next; // save pointer to node

temp_ptr->next = node_to_delete->next;

}

// node_to_delete points to node to be deleted

node_to_delete->next = NULL; // always safe to do this

delete node_to_delete;

node_to_delete = NULL; // and this

}

}

Notice in the above function that we purposely set the next link in the node we are about to delete to NULL.
Even though we are returning it to the system to be reused, we break the link from this node to our list, just
in case somehow this storage gets reused without changing its bits. This is just safe programming. Similarly,
we set node_to_delete to NULL, even though it is just on the program's run-time stack. Perhaps it is overly
cautious.

4.1.9 Implementing a Destructor

For the �rst time we really do need a non-default destructor in a class. If the list is not empty, then it
contains one or more nodes that have been allocated from the heap using the new operator, and these must
be returned to the operating system so that the memory can be re-used if needed. A default constructor will
free up the head pointer and the size member, but it cannot travel down a list deleting the nodes in it! It
is our job to do this.

One approach is to use some kind of loop that traverses the list, deleting one node after the other, but if we
do it the wrong way, we will detach the list before we delete its nodes. Another way to do this that uses a
bit more overhead and is therefore a bit slower is the following:

List::~List()

{

bool success;

while ( size > 0 )

delete(1, success);

}

This destructor uses the public delete() member function to keep deleting the �rst node in the list as
long as size is greater than zero. Obviously it will delete all of the nodes. It is a bit slower because it
repeatedly makes a function call for each node in the list. Function calls have setup times. We can use a
faster implementation by replacing the function call by inline code that does the same thing.

List::~List()

{

link node_to_delete;

while ( size > 0 ) {

node_to_delete = head; // save pointer to first node

head = head->next; // detach first node from list
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node_to_delete->next = NULL; // clear its next link

delete node_to_delete; // release its storage

size--; // decrement size

}

The loop body basically does what the delete() function does.

4.1.10 Anything Else?

We implemented all of the public methods of the List ADT, plus a write() function as well. We should add
a copy constructor, if we want to be able to create one list from an existing list. We might want a read()

function, which would read from an input stream and create a list from it. These are good programming
exercises.

4.2 Variations on the Linked List

There are several variations on linked lists. We already mentioned using a dummy head, or �rst, node. A
dummy node has no data in it. It exists just to eliminate the need for special cases in operations such as
insertions and deletions. The test for emptiness changes when a dummy head node is used. Later we shall
explore doubly-linked lists, in which each node has a pointer to its predecessor and successor. One can also
keep a pointer to the tail of a list, to make appending a new item at the end more e�cient, otherwise one
has to travel the entire list each time to do this, which is ine�cient.

4.3 Sorted Linked List

A sorted list is really a di�erent type of object, as we discussed in the third chapter. If the linked list is kept
in sorted order, then inserting, deleting, and retrieving operations must be di�erent than if it is unsorted.
The other operations are the same and they are not discussed here.

4.3.1 Inserting into a Sorted List

The insertion algorithm must advance through the list, comparing each node's item with the item to insert.
While the new item is greater than the list item, the pointer is advanced. If the new item is equal to the
current list node item, searching stops and the algorithm reports that nothing was inserted. If the new item
is less than the list node's item, it must inserted before that list node, because it was greater than all nodes
before it in the list and smaller than the current one.

The problem with this idea is that, in the course of discovering where the node must be inserted, the pointer
is advanced too far. We only know where to insert the node after we passed the spot! The pointer points to
the �rst node whose data is larger than the new item, but in order to insert the new item before that node
we need a pointer to the node preceding it. One solution is to advance two pointers through the loop, one
trailing the other. This complicates the algorithm because we have to be careful how to handle the empty
list and the case when the insertion must happen at the beginning. The following code uses this approach
and solves these problems.

First, we de�ne a private function, insert_at(), to simplify the solution. This is a helper function that

1. creates a new node,

2. �lls it with the given data,

3. inserts it at the given position, setting call-by-reference parameter prev to contain its address.
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bool insert_at( link & prev, list_item_type new_item )

/**

* @pre prev != NULL

* @post prev points to a new node containing new_item and the

* next link of the new node points to what prev previously

* pointed to.

*/

{

link temp_ptr = new node;

if ( NULL == temp_ptr )

return false;

temp_ptr->data = new_item;

temp_ptr->next = prev;

prev = temp_ptr;

return true;

}

We use this function in the insert() method shown in Listing 4.

Listing 4: Sorted list insertion method

bool So r t edL i s t : : i n s e r t ( l i st_item_type new_item)
{

l i n k current , p rev ious ;
bool su c c e s s ;

// I f l i s t i s empty , or i f i t i s not empty and new_item i s sma l l e r
// than the f i r s t item in the l i s t , i n s e r t i t at the f r on t
i f ( NULL == head | | head−>data > new_item ) {

suc c e s s = inse r t_at ( head , new_item ) ;
i f ( s u c c e s s )

s i z e++;
return suc c e s s ;

}

// The l i s t i s not empty and f i r s t item i s not l a r g e r than new_item
// Check i f the 1 s t item i s equal to new_item
i f ( head−>data == new_item )

// qu i t s i n c e i t i s in the l i s t a l r eady
return f a l s e ;

}

// head−>data < new_item , so we s t a r t at 2nd node i f i t e x i s t s
prev ious = head ;
cur rent = head−>next ; // which must e x i s t i f we make i t here
whi l e ( cur r ent != NULL ) {

i f ( current−>data < new_item ) {
// advance both po i n t e r s
prev ious = current ;
cur r ent = current−>next ;

}
e l s e i f ( current−>data > new_item ) {

// prev ious po in t s to an item that was sma l l e r and ∗ cur rent
// i s b i gge r so new_item should be i n s e r t e d a f t e r prev ious
i f ( s u c c e s s = inse r t_at ( prev−>next , new_item) )
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s i z e++;
return suc c e s s ;

}
e l s e // found a dup l i ca te , so do not i n s e r t

re turn f a l s e ;
} //end whi l e

// i f we reach here , the item i s b i gge r than everyth ing in l i s t
// and prev ious po in t s to l a s t node
i f ( s u c c e s s = inse r t_at ( prev ious−>next , new_item) )

s i z e++;
return suc c e s s ;

}

4.3.2 Searching a Sorted List

The problem of �nding an item in a list is not called retrieving; it is called searching, or �nding, because
the algorithm is searching for a particular value, not a particular position. Usually we search for keys in
order to return the data associated with them. For example, a node might contain records that represent
driving records, and we search for a driver's license number in order to retrieve the entire record. If a node
contains nothing but a key, then there is nothing to return other than true or false � it was found or it was
not found. To generalize the algorithm, we will assume that the item is a complex structure.

The following search procedure is designed to �nd all occurrences of the item within the list, as opposed
to just the �rst. Because it might �nd multiple items, it uses an output stream as the means for returning
them to the calling function. If it were to return a single item, it could just make the item its return value.
Another way to return multiple items is to construct a second list whose members are all matching nodes.
That is a bit more complex, so we handle it this way here.

void SortedList ::find (ostream & output , list_item_type item) const

{

NodePtr current;

list_item_type temp;

// If list is empty , return

if ( NULL == head )

return;

// list is not empty

current = head;

while ( current != NULL ) {

temp = current ->item;

if ( temp < item ) {

current = current ->next;

}

else if ( temp > item ) { // item is not in remainder of list

return;

}

else { // found the item

output << current ->item;

current = current ->next;

}

}

}
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4.3.3 Deleting from a Sorted List

Deleting from a sorted list is similar to �nding, except that items are removed as they are found. The
following procedure deletes all occurrences of matching items, and returns the number of items deleted. As
with deleting from an unsorted list, handling the �rst node is a special case that must be checked within
the code. The deletion algorithm uses two pointers, one �chasing� the other. The prev pointer is always one
node behind the current pointer, except when it starts, when prev is NULL. This is how the code can detect
if the node to be deleted is the �rst node, because prev is still NULL.

i n t So r t edL i s t : : d e l e t e ( l i st_item_type item )
{

l i n k current , prev ;

i n t count = 0 ;
// I f the l i s t i s empty , the re i s nothing to do
i f ( NULL != head ) {

cur rent = head ;
prev = NULL;
whi l e ( cur r ent != NULL ) {

i f ( current−>item < item ) {
// item i s b i gge r than cur rent item so advance po i n t e r s
prev = current ;
cur r ent = current−>next ;

}
e l s e i f ( ( current−>item > item ) {

// item i s sma l l e r than cur rent item , so item cannot be in
// remainder o f the l i s t and we can stop sea r ch ing
break ;

}
e l s e { // current−>item == item

i f ( NULL == prev ) {
// f i r s t node : handle s epa r a t e l y
head = current−>next ; // detach from l i s t
current−>next = NULL; // c l e a r next l i n k
d e l e t e cur rent ; // f r e e node
cur rent = head ;
count++;

}
e l s e { // not f i r s t node , so prev can be de r e f e r enced

cur rent = current−>next ; // advance cur rent
prev−>next−>next = NULL; // c l e a r next l i n k in node
d e l e t e prev−>next ; // f r e e node
prev−>next = current ; // detach node from l i s t
count++;

}
}

} // end whi le
} // end i f head != NULL
s i z e −= count ;
r e turn count ;

}
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4.4 Doubly-Linked Lists

In a doubly-linked list, each node contains a pointer to the node preceding it in the list as well a a pointer
to the node following it. Because of this, there is no need to have a pointer to the previous node in the list
to do insertions and deletions. On the other hand, it also makes insertions and deletions a bit more work to
do. Doubly-linked lists make it possible to traverse a list in reverse order. Many lists are implemented as
doubly-linked lists with dummy nodes. The use of dummy nodes eliminates special cases for operations at
the front of the list. The following diagram shows what a doubly-linked list with a dummy node looks like.

Dummy

Rather than going through all of the operations and how they are implemented, we can just look at a few of
the things that make them di�erent. For example, to delete the node to which a link named cur points, it
is su�cient to do the following:

(cur->prev)->next = cur->next; // make the previous node point to the one after cur

(cur->next)->prev = cur->prev; // make the one after cur point to the one before it

cur->next = NULL; // clear its links and delete it

cur->prev = NULL;

delete cur;

To insert a new node pointed to by newPtr before the node pointed to by cur

newPtr->next = cur;

newPtr->prev = cur->prev;

cur->prev = newPtr;

(newPtr->prev)->next = newPtr;

The operations that do not modify a list do not need to be changed. The constructor needs to set up the
dummy node.

4.5 Circular Linked Lists and Circular Doubly Linked Lists

Ordinary singly-linked lists have the disadvantage that one must always start from the beginning of the list
to do any type of traversal. In a circular list, the tail node points back to the �rst node. This eliminates
need for special cases for �rst and last node insertions and deletions, and it also makes it possible to start
searches where one left o�. The diagram below illustrates a circular, singly-linked list.
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In a circular doubly-linked list, the tail points to the dummy node, not the �rst node. Circular doubly-
linked lists are also very useful for many applications. A circular doubly-linked list is illustrated below.

Dummy

A C++ Exceptions

This section is an excerpt of my exception handling notes in C++ in the Resources page of the website,
which has a more thorough explanation of it. An exception is an event that is invoked when something
�goes wrong� during the execution of a program. Exceptions can be raised by hardware or by software.
Dividing by zero, running out of memory, and attempting to access protected parts of memory, are examples
of events typically caught by the hardware and then handled by the operating system. Usually the operating
system will terminate the program that caused it. Software can also raise exceptions if the language run-time
environment supports it, which C++ does.

In C++, instead of saying that the software raised an exception, we say that software throws an exception.
The three operators that make exception handling work are: throw, try, and catch, which are keywords
in C++. The idea is that you create a try-block, which is the try keyword followed by a statement block,
which is then followed by exception handlers. If within that block, an exception is thrown, then control can
pass to one of the exception handlers that follow the block, if they have been set up properly. An exception
handler is a function that is executed when an exception is thrown, and is introduced by the keyword catch.
The basic form is

try

{

a statement sequence containing function calls to functions that

might throw exceptions, or to functions that might call functions

that might call functions that might, and so on ... throw exceptions
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}

catch ( exception_declaration_1 )

{

statements to handle exceptions of type exception_declaration_1

}

catch (exception_declaration_2 )

{

statements to handle exceptions of type exception_declaration_2

}

catch (exception_declaration_3 )

{

statements to handle exceptions of type exception_declaration_3

}

...

catch (exception_declaration_N )

{

statements to handle exceptions of type exception_declaration_N

}

If an exception is thrown by some function that is called directly or indirectly from within the try-block,
execution immediately jumps to the �rst exception handler whose exception declaration matches the raised
exception. If there are no handlers that can catch the exception, the try-block behaves like an ordinary
block, which means it will probably terminate.

An example demonstrates the basic idea.

struct Ball

{

int b;

Ball(int x = 0) : b(x) { } // initializes member variable b

};

void test ( )

{

/*

...

*/

throw Ball(6);

// This is a throw-statement. It is throwing an anonymous object

// of Ball structure, initialized by a call to the constructor

}

int main ( )

{

/* ... stuff here */

try

{

test();

}

catch (Ball c)

{

cerr <�< " test() threw ball " <�< c.b <�< "\n";

}

...

}
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A throw statement is, as shown above, of the form

throw expression;

The thrown expression is any expression that could appear on the right hand side of an assignment statement.
The most likely candidate is a call to a constructor, such as I showed above. The safest way to handle
exceptions is to de�ne unique types for the distinct exceptions. One way to guarantee that the types are
unique is to enclose them in a namespace. This is also a good place for an error count variable.

// The Error namespace defined below declares three types: Towel, Game, and Ball,

// an int variable that counts errors, and a function named update() .

namespace Error {

struct Towel { }; // empty struct, default generated constructor

struct Game { }; // empty struct

struct Ball {

int b;

Ball(int x = 0) : b(x) { }

};

int count = 0; // counts errors thrown so fa

void update() { count++; } // increments error count

}

A program can use these error types as follows. There are three functions, Pitcher(), Boxer(), and
PoorSport(). Each might throw an exception of some type if their input meets some speci�c set of conditions.
For simplicity, the exception is thrown if the single integer parameter is a multiple of a �xed number. Notice
that to throw an exception in the Error namespace, the function must use the syntax Error:: followed by
the type being thrown.

void Pitcher ( int n )

{

/* ... */

if ( n % 2 == 0 )

throw Error::Ball(6);

}

void Boxer ( int n )

{

/* ... */

if ( n % 3 == 0 )

throw Error::the_Towel();

}

void PoorSport ( int n )

{

/* ... */

if ( n % 11 == 0 )

throw Error::the_Game();

}

// The main program calls Pitcher(), Boxer(), and PoorSport(). Because these might throw

// exceptions and main () does not want to be terminated because of an unhandled

// exception, if places the calls in a try-block that is followed by exception handlers.

int main ( )
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{

/* ... stuff here */

int n;

cin >�> n;

try {

Pitcher( n );

Boxer( n );

PoorSport( n );

}

catch (Error::Ball c)

{

Error::update();

cerr <�<Error::count <�< ": threw ball " <�< c.b <�< "\n";

}

catch (Error::Towel )

{

Error::update();

cerr <�<Error::count <�< ": threw in the towel\n";

}

catch (Error::Game )

{

Error::update();

cerr <�< Error::count <�< ": threw the game\n";

}

/* ... */

return 0;

}

There is a special notation that you can use for the parameter of an exception handler when you want it to
catch all exceptions.

catch (...)

means catch every exception. It acts like the default case of a switch statement when placed at the end of
the list of handlers.

This is just a super�cial overview of the exception handling mechanism. To give you a feeling for why there
is much more to learn, consider some of the following complexities.

• Since any type is a valid exception type, suppose it is publicly derived class of a base type. Do the
handlers catch it if they catch the base type? What if it is the other way around?

• Can a handler throw an exception? If so, can it throw an exception of the same type as it handles? If
so, what happens? Does it call itself? (Fortunately, although the answer is "yes" to the �rst question,
it is "no" to the third.)

• What if the exception is thrown as a reference, but the handler declares it as a const parameter?

• Are there standard exceptions, and if so, what are they? Which library functions can raise them? The
answer to this is that there is a class hierarchy of exceptions, with, not surprisingly, a root named
exception. All exceptions derive from exception. There are logic_error exceptions, bad_cast,
bad_alloc (thrown by new() ), underflow_error, and out_of_range (thrown by at( )) exceptions,
to name a few.

Lastly, you may see function declarations that look like
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void f ( int a) throw ( err1, err2);

which speci�es that f() is only allowed to throw exceptions of types err1 and err2, and any exceptions that
may be derived from these types. Why would you want to do this? Because it is a way of telling the reader
of your interface that the function promises to throw only those exceptions, and so the caller does not have
to handle any exceptions except those. So

void f( int a) throw ( );

means that f() throws no exceptions. If f() does throw a di�erent exception, the system will turn it into
an std::unexpected() call, which results in a terminate call.

B The Standard Exception Hierarchy

The set of standard exceptions forms a hierarchy in C++. The language de�nes a base class named exception
from which other exceptions are derived. Some of these are de�ned in the <stdexcept> header �le; others
are de�ned in <typeinfo>, <new>, <ios>, and <exception>. The standard exceptions are listed below. The
indentation indicates sub-classing. To the right of the exception name is the header �le that contains its
de�nition.

Exception Type Header File

exception <exception>

bad_alloc <new>

bad_cast <typeinfo>

bad_exception <exception>

bad_typeid <typeinfo>

ios_base::failure <ios>

logic_error <stdexcept>

length_error <stdexcept>

domain_error <stdexcept>

out_of_range <stdexcept>

invalid_argument <stdexcept>

runtime_error <stdexcept>

overflow_error <stdexcept>

range_error <stdexcept>

underflow_error <stdexcept>
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