
CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

Queues

1 Introduction

A queue is a very intuitive data type, especially among civilized societies. In the United States, people call
�lines� what the British call queues. In the U.S., people stand �in line� for services such as purchasing a
ticket for one thing or another, paying for merchandise, or boarding a train, bus or plane. The British stand
in queues to do the same thing. What characterizes these queues is that arriving customers always go to
the �end of the line� and the next customer to be served is always taken from the �front� of the line. As
customers are served, the other customers steadily get closer to the front of the line, in the order in which
they arrived. The idea that people are served in the order in which they arrive, or to put it another way,
that the �rst one in is the �rst one out, is the notion of fairness implicit in queues.

Formally, in computer science terminology, a queue is a list in which all insertions take place at the end of
the list and all deletions and accesses take place at the front of the list. The end of the list is called the rear ,
or sometimes the back , of the queue. The front keeps its name. Because this leads to a �rst-in, �rst-out
behavior, a queue is known as a FIFO list .

enqueuedequeue

Figure 1: Inserting into and deleting from a queue

2 The Queue ADT

Operations on queues are analogous to operations on stacks. There is a one-to-one correspondence between
them. The only di�erence is that the push operation of the stack appends an item to the front of the stack
(which we call the top), whereas the enqueue operation appends to the rear. Popping a queue is called
dequeuing the queue. Other than its having a di�erent name, dequeuing a queue is the same as popping a
stack. The single di�erence between stacks and queues, namely which end of the list new items are inserted,
has a major consequence in terms of how the queue abstract data type behaves. See Figure 1.

The queue methods are:

create() - Create an empty queue.

destroy() - Destroy a queue.

bool empty() - Return true if the queue is empty and false if not.

bool enqueue([in] item) - Append an item to the rear of the queue, returning true if successful, false if
not.

bool dequeue([out] item) - Remove the item from the front of the queue, and provide it to the caller,
returning true if successful and false otherwise.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

bool dequeue() - Remove the item from the front of the queue, returning true if successful and false
otherwise.

item front() - Return the item at the front of the queue to the caller without removing it

size_type size() - Return the number of items in the queue.

Notes.

• There is no access to an item that is not at the front.

• The dequeue() operation is analogous to the stack's pop() operation, and it is convenient to have two
forms of it: one that removes the front item without retrieving it, and another that removes it but also
copies it into an out parameter to make it available to the caller.

• enqueue() is called push in the C++ standard queue template class.

• dequeue() is called pop in the C++ standard queue template class.

• The front() operation returns the item at the front of the queue. This is the way that most people
expect it to be. The problem is how to deal with calling front() when the queue is empty.

3 Re�ning the Queue ADT

The above descriptions are informal. We now provide a UML description of the queue abstraction, continuing
to use our names for the enqueue and dequeue operations.

+empty():boolean {query}

// returns true if the queue is empty, false if not

+enqueue([in] new_item:QueueItemType): boolean throw queue_exception

// appends new_item to the rear of the queue, returning true if successful

// if it fails, it throws a queue_exception and also returns false

+dequeue(): boolean throw queue_exception

// removes the front element from the queue, returning true if successful

// if it fails, it throws an exception and returns false

+dequeue([out] front_item:QueueItemType) throw queue_exception

// same as dequeue() above but stores the item removed into front_item,

// throwing an exception if it fails

+front():QueueItemType {query} throw queue_exception

// returns the item at the front of the queue,

// throwing an exception if it fails.

As with stacks, these descriptions are an abstraction; a speci�c interface may choose, for example, to de�ne
front() so that it passes the item from the front as a parameter rather than returning it. In this way it
could return a boolean to indicate success or failure.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

4 The C++ Queue Template Class Interface

C++ provides a queue class template, which can be accessed by including the <queue> header �le in the
application. It makes the following methods available:

bool empty() const;

size_type size() const;

value_type& front();

value_type& back();

void push(const value_type& _X);

void pop();

Notes.

• As noted above, there is no enqueue or dequeue operation; these are named push and pop respectively.
Do not confuse them with the stack's operations. They are functionally the same as enqueue and
dequeue. C++ implements queues and stacks as classes that encapsulate a more basic container class
template and which restrict access to the embedded container. Classes whose implementations are built
on broader, more general classes but which provide restricted methods are called adaptor containers.

• Notice that this interface includes a back() method, which accesses the item in the rear of the queue.
This is not consistent with the de�nition of a queue as an abstract data type. You will often encounter
queue implementations that provide methods other than those that de�ne the queue as a data ab-
straction. For example, you maye also �nd operations that can remove elements from the interior of a
queue, which is a gross violation of what makes it a queue.

• Notice too that the front() and back() methods return a reference to the item at the respective
locations. This implies that the caller can modify these elements within the queue. The interface de
de�ned above returns by value, not by reference.

5 Queue Applications

Queues have many applications in computer science, partly because they act as �rst-in-�rst-out bu�ers. A
bu�er can be thought of as a storage area for data that is in a state of transit. There are many circumstances
in which one process generates data for another process, but the two processes run independently and at
possibly di�erent rates of speed. The process that generates the data puts it into a bu�er, and the one that
uses that data removes it from the bu�er in the order in which it was placed. For example, when you burn a
music CD with data from a hard drive, one process delivers that data to the CD burner, and the CD burner
burns it to the CD. If the process reading from the hard drive and sending the data sends it too quickly and
the CD burner is busy burning data, the new data would be lost if there were no bu�er for it. On the other
hand, if the data is delivered too slowly and there is no bu�ered data, the CD burner may reach the next
track with no data to burn and will create gaps inadvertently. The bu�er allows the two processes to have
intermittent pauses or bursts without resulting in missing or duplicated �nal data. If the bu�er is not large
enough, there can still be overruns or underruns that could lead to failure in the burning process, depending
on how the two processes are designed.

Almost all services within the machine use a queue for their waiting tasks. The queue acts as a bu�er of
jobs that have yet to be completed. In particular,

• the printer spooler stores print jobs in a queue;

• the various network servers maintain queues of pending service requests; and

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

• the operating system maintains a complex of queues for a variety of services, such as access to the
CPU, allocation of memory or disk space, and even the processing of keyboard characters delivered to
the machine from a keyboard device.

Queues are also used in applications outside of computer science, especially in simulations of all kinds. One
can use a queue to model air tra�c at an airport, vehicular tra�c at a toll plaza, or customers waiting for
available cashiers at a retail store, for example.

5.1 Example Application

An application lets a user enter three commands on the keyboard interactively: e to enter data items, p to
print the data items entered so far, 4 per line, and q, to quit. The data items are positive integers. There is
no limit to the number of items they can enter at a time; they stop entering by typing -1. When the print
command is issued, all items entered but not yet displayed are printed. Because this is a bu�ering problem,
a queue can be used.

The program will use the C++ queue class, instantiating it to hold items of type data, which is int in this
case.

int main()

{

typedef int data;

queue<data> buffer;

data item;

int count;

char c;

bool done = false;

while (!done) {

cout <�< �Enter command:�;

cin >�> c;

switch (c) {

case `e':

cout <�< "Enter positive numbers;

<�< terminate with -1:\n";

while (cin >�> item) {

if (item != -1)

buffer.push(item);

else

break;

}

break;

case `p':

count = 4;

while (!buffer.empty()) {

if (count == 4) {

count = 0;

cout <�< endl;

}

cout <�< buffer.front() <�< � �;

buffer.pop();

count++;

}

cout <�< endl;

break;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

case `q':

done = true;

break;

}

}

}

6 Queue Implementations

This time we relied on an existing implementation of a queue to solve a problem, namely the one from the
C++ library. Once again, the power of data abstraction is demonstrated. But you should know how to
implement a queue, because it is an important data structure. To start, we de�ne the interface we will
implement and a class of queue exceptions that can be thrown as needed. If you are not familiar with
exceptions, refer to the notes on exception handling.

The following exception class will be used by all queue implementations.

#include <stdexcept>

#include <string>

using namespace std;

class queue_exception: public logic_error

{

public:

queue_exception(const string & message="")

: logic_error(message.c_str()) {}

};

The logic_error exception is de�ned in <stdexcept>. Its constructor takes a string, which can be printed
using the what() method of the class. The next logical step would be to derive separate exception types
such as queue_overflow, or queue_underflow, as illustrated below.

class queue_overflow: public queue_exception

{

public:

queue_overflow(const string & message=""): queue_exception(message) {}

};

class queue_underflow: public queue_exception

{

public:

queue_underflow(const string & message=""): queue_exception(message) {}

};

The following is the interface we will implement:

typedef data_item QueueItemType;

class Queue

{

public:

// constructors and destructor:

Queue(); // default constructor

Queue(const Queue &); // copy constructor

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

~Queue(); // destructor

// queue operations:

bool empty() const;

// Determines whether a queue is empty.

// Precondition: None.

// Postcondition: Returns true if the queue is empty;

// otherwise returns false.

int size() const;

// returns the size of the queue.

// Precondition: None.

// Postcondition: None

void enqueue(const QueueItemType& new_item) throw(queue_exception);

// Adds an item to the rear of a queue.

// Precondition: new_item is the item to be added.

// Postcondition: If the insertion is successful, new_item

// is at the rear of the queue.

// Exception: Throws queue_exception if the item cannot

// be placed in the queue.

void dequeue() throw(queue_exception);

// Removes the front of a queue.

// Precondition: None.

// Postcondition: If the queue is not empty, the item

// that was enqueued least recently is removed. However, if

// the queue is empty, deletion is impossible.

// Exception: Throws queue_exception if the queue is empty.

void dequeue(QueueItemType& front_item) throw(queue_exception);

// Retrieves and removes the front of a queue.

// Precondition: None.

// Postcondition: If the queue is not empty, front_item

// contains the item that was enqueued least recently and the

// item is removed. However, if the queue is empty,

// deletion is impossible and front_item is unchanged.

// Exception: Throws queue_exception if the queue is empty.

QueueItemType front() const throw(queue_exception);

// Retrieves the front of a queue.

// Precondition: None.

// Postcondition:

// Returns: If the queue is not empty, front_item

// otherwise, the return value is defined and a

// queue_exception is thrown.

private:

...

};

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

Notes.

• There is very little di�erence between a stack and a queue with respect to the potential implementations,
and the advantages and disadvantages are the same.

• Since a queue is just a special type of list, a queue can be implemented with a list. In this case, you
can make a list a private member of the class and implement the queue operations by calling the list
methods on the private list.

• It is more e�cient to implement a queue directly, avoiding the unnecessary function calls. Direct
methods include using an array, or using a linked representation, such as a singly-linked list.

• A queue can be implemented as an array, but not in the manner you might �rst envision. The trick
is to implement a circular array and put the queue within it. This will make the enqueue() and
dequeue() operations e�cient, but still the array size might be exceeded. This can be handled by a
resizing operation when this happens.

• A queue implemented as a linked list overcomes the problem of using a �xed size data structure. It
is also relatively fast, since the enqueue() and dequeue() operations do not require many pointer
manipulations. The storage is greater because the links take up four bytes each for every queue item.

6.1 Linked Implementation

We begin with the linked implementation. LIke that of the stack, a linked list implementation of a queue
does not pre-allocate storage; it allocates its nodes as needed. Each node will have a data item and a pointer
to the next node. Because the linked list implementation hides the fact that it is using linked nodes, the
node structure is declared within the private part of the class. The private data members of the Queue class
include a pointer to the node at the front of the queue and a pointer to the node at the rear of the queue.
If the queue is empty, the front pointer and rear pointer are both NULL. The private part of the Queue class
would therefore be:

private:

struct QueueNode

{

QueueItemType item;

QueueNode *next;

};

QueueNode *front_p; // pointer to front of queue

QueueNode *rear_p; // pointer to rear of queue

int num_items; // to keep track of the size

};

Remarks.

• The constructor sets front_p and rear_p to NULL and num_items to 0; the test for emptiness can
check whether either is NULL or num_items is zero.

• The copy constructor is similar to that of the stack; it has to traverse the linked list of the queue passed
to it. It copies each node from the passed queue to the queue being constructed. It allocates a node,
�lls it, and attaches it to the preceding node. We could implement the copy constructor by repeated
calls to enqueue(), but it is faster to implement it directly.

• Because the queue allocates its storage dynamically, it must have a user-de�ned, deep destructor. The
destructor repeatedly calls dequeue() to empty the list.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

• The enqueue() operation inserts a node at the rear of the queue. There is a special case when the list
is empty because the front_p pointer has to be set in this case.

• The two dequeue() operations remove the node at the front of the queue, throwing an exception if the
queue is empty. One provides this item in the parameter. For simplicity, the latter is implemented by
calling the former.

• front() simply returns the item at the front of the queue, throwing an exception if the queue is empty.

• In theory it is possible that the operating system will fail to provide additional memory to the object
when it calls new() in both the copy constructor and the enqueue() method. This implementation
shows how to handle this within a try block.

// constructor

Queue::Queue() : front_p(NULL), rear_p(NULL), num_items(0) { }

// copy constructor

Queue::Queue(const Queue& aQueue)

{

if (aQueue.num_items == 0) {

front_p = NULL;

rear_p = NULL;

num_items = 0;

}

else {

// set num_items

num_items = aQueue.num_items;

// copy first node

front_p = new QueueNode;

front_p->item = aQueue.front_p->item;

rear_p = front_p;

// copy rest of queue

QueueNode *newPtr = front_p; // new list pointer

QueueNode *origPtr = aQueue.front_p; // start at front of list

while (origPtr != aQueue.rear_p) {

origPtr = origPtr->next; // move to next node

newPtr->next = new QueueNode; // create new node in new queue

newPtr = newPtr->next; // advance in new queue

newPtr->item = origPtr->item; // fill with item

}

rear_p = newPtr; // set rear to last node inserted

rear_p->next = NULL; // set rear node's next to NULL

}

}

// destructor, which empties the list by calling dequeue() repeatedly

Queue::~Queue()

{

// dequeue until queue is empty

while (num_items > 0)

dequeue();

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

bool Queue::empty() const

{

return front_p == NULL;

}

bool Queue::size() const

{

return num_items;

}

void Queue::enqueue(const QueueItemType& newItem) throw(queue_exception)

{

try {

// create a new node

QueueNode *newPtr = new QueueNode;

// set data portion of new node

newPtr->item = newItem;

newPtr->next = NULL;

if (0 == num_items)

front_p = newPtr;

else

// insert the new node at the rear of the queue

rear_p->next = newPtr;

// in either case set rear to point to new node and increment num_items

rear_p = newPtr;

num_items++;

}

catch (bad_alloc error)

{

throw queue_exception(�queue_exception: cannot alloc mem�);

}

}

void Queue::dequeue() throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue");

else {

// queue is not empty;

QueueNode *temp = front_p;

if (front_p == rear_p) {

front_p = NULL;

rear_p = NULL;

}

else

front_p = front_p->next;

temp->next = NULL;

delete temp;

num_items--;

}

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

void Queue::dequeue(QueueItemType& front_item) throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue");

else {

// queue is not empty; retrieve front

front_item = front_p->item;

dequeue();

}

}

void Queue::front(QueueItemType& front_item) const throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue");

else // queue is not empty; retrieve front

front_item = front_p->item;

}

6.2 Array Implementation

The �rst implementation that comes to mind, which we will call the naive implementation , is very
ine�cient. In this implementation the idea would be to set the front of the queue to be index 0 and the rear
to the highest index in use. Then enqueuing an item would increment rear and insert the item into that
position in the array. But what about dequeuing an item?

We could increment front to dequeue an item, setting it to 1 instead of 0, then to 2 the second time, and
so on. As we continue to dequeue the queue, the front will increase in value, which is called rightward

drift . Since enqueuing does not alter the value of front, it will steadily increase, eventually exceeding the
maximum sixe of the array. This is therefore not a solution. In order for it to stay at index 0, we would have
to shift all array items downward with each dequeue() operation, and change the value of the rear index
as well. This means that the computational cost of a dequeue() operation is proportional to the number of
items in the queue. This is not an acceptable solution.

You should see that an array implementation of a queue is not as simple as that of a stack. Do not be
discouraged, however, because one small change will convert an array into a viable implementation of a
queue. We will turn the array into a circular array. In a circular array, we think of the last array item as
preceding the �rst item. To illustrate, suppose that the array is of size 8:

Imagine that we bend the array so that it forms a circle, with 0 followed by 7 in this case. In other words, after
we reach the item with index 7, the next item after that will be the item with index 0. This is accomplished
by using modulo arithmetic when indexing through the array; if current_index is an index that sequences
through the array, then we would use the following to compute its next index:

current_index = (current_index +1) % array_size

or equivalently,

current_index = (current_index == array_size-1)? 0: current_index+1;

Let us assume that the array is named items and is of size MAX_QUEUE. Now imagine that we maintain two
variables called front_idx and rear_idx, and that rear_idx is the index of the last item in the queue, and

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

0

1

2
5

6

34

7

0 1 2 3 4 5 6 7

Figure 2: Circular array of size 8

front_idx is the index of the �rst item in the queue. Henceforth let us just say that front_idx �points
to� the �rst item and rear_idx �points to� the last item. Then to enqueue an item, we would use the
instructions

rear_idx = (rear_idx + 1) % MAX_QUEUE;

items[rear_idx] = item_to_insert;

If rear_idx had the value MAX_QUEUE-1 beforehand, then it would have the value 0 after, since MAX_QUEUE
% MAX_QUEUE = 0. This is how it behaves circularly. Similarly, to dequeue an item (from the front of the
queue) and return it to the caller, we would use

front_item = items[front_idx];

front_idx = (front_idx + 1) % MAX_QUEUE;

Notice that neither front_idx nor rear_idx is ever decreased; they just march forward endlessly, but
because their world is now round, they do not fall o� of it.

The last problem is to decide on the initial values of the front and rear indices. We can arbitrarily set
front_idx to the �rst index in the array, 0. It does not matter. What matters is where rear_idx is in
relation to it. If the invariant assertion about front_idx and rear_idx are that front_idx points to the
�rst item and rear_idx points to the last, when front_idx == rear_idx, this should mean that the queue
has a single item in it. This in turn implies that when the queue is empty, rear_idx is the index before
front_idx, or stated mathematically, front_idx == (rear_idx + 1) % MAX_QUEUE. Therefore, we set the
initial value of rear_idx to MAX_QUEUE-1.

We will maintain the size of the queue in the num_items member variable as we did with the linked imple-
mentation, so the tests for emptiness remains the same. We will also need a test for fullness, because it is
possible that the array reaches capacity. The test for fullness will be that num_items == MAX_QUEUE.

It is worth pointing out that when the queue is full, every array element contains an item. This implies that
rear_idx is the index before front_idx, or that front_idx == (rear_idx + 1) % MAX_QUEUE. But this is
exactly the same condition as occurs when the queue is empty. This is why it is especially important that
we use the num_items variable to test whether the queue is empty or full.

With the preceding discussion in mind, the array-based queue implementation is given below.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

class Queue

{

public:

// same interface as above plus

bool full() const;

private:

QueueItemType items[MAX_QUEUE]; // array of MAX_QUEUE many items

int front_idx; // index of front of queue

int rear_idx; // index of rear of queue

int num_items; // number of items in the queue

};

Remarks. The implementation is very straightforward:

• Because the array is a statically allocated structure, the copy constructor and destructor are simple
and omitted here.

• The test for emptiness when the counter variable num_items is present reduces to num_items == 0.

• The remaining operations are all as described above.

The implementation:

Queue::Queue(): front_idx(0), rear_idx(MAX_QUEUE-1), num_items(0) { }

// end default constructor

bool Queue::empty() const

{

return num_items == 0);

}

bool Queue::full() const

{

return num_items == MAX_QUEUE);

}

void Queue::enqueue(QueueItemType new_item) throw(queue_exception)

{

if (num_items == MAX_QUEUE)

throw queue_exception("queue_exception: queue full on enqueue");

else {

// queue is not full; insert item

rear_idx = (rear_idx+1) % MAX_QUEUE;

items[rear_idx] = new_item;

++num_items;

}

}

void Queue::dequeue() throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue, cannot dequeue");

else {

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Queues

Prof. Stewart Weiss

// queue is not empty; remove front

front_idx = (front_idx+1) % MAX_QUEUE;

--num_items;

}

}

void Queue::dequeue(QueueItemType& queueFront) throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue, cannot dequeue");

else {

// queue is not empty; retrieve and remove front

queueFront = items[front_idx];

front_idx = (front_idx+1) % MAX_QUEUE;

--num_items;

}

}

void Queue::front(QueueItemType& queueFront) const throw(queue_exception)

{

if (0 == num_items)

throw queue_exception("queue_exception: empty queue, cannot get front");

else

// queue is not empty; retrieve front

queueFront = items[front_idx];

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

http://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	The Queue ADT
	Refining the Queue ADT
	The C++ Queue Template Class Interface
	Queue Applications
	Example Application

	Queue Implementations
	Linked Implementation
	Array Implementation

