
CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Classes Revisited: Templates and Inheritance

1 Introduction

The purpose of these notes is to introduce basic concepts of templates and inheritance, not to explain either
topic in an exhaustive way. Templates are a complex subject and inheritance is even more complex. We
begin with concepts about the di�erent types of constructors and destructors, then move on to templates,
and then move into an introduction to inheritance.

2 Constructors, Copy Constructors, and Destructors

This is an overview of the basics of constructors and destructors and things related to them. First, a refresher
about constructors:

• Constructors have no return values and have the same name as the class. They cannot contain a return
statement.

• Constructors can have arguments.

• A default constructor is a constructor that can be called with no arguments. If a class does not
have a user-supplied default constructor, the compiler generates one at compile time. We call this a
compiler-generated constructor.

• If a class must initialize its data members, then the class needs a user-de�ned constructor because the
compiler-generated constructor will not be able to do this.

• A class should always have a default constructor, i.e., one that requires no arguments.

2.1 Copy Constructors

A copy constructor is a kind of constructor for a class. It is invoked in the following situations:

1. When an object needs to be constructed because of a declaration with initialization from another object
of a type that can be converted to the object's class, as in

ScreenData C;

ScreenData B = C; // copy constructor called here

ScreenData B(C); // copy constructor called here

2. When an object is passed by value to a function. For example, if the function redraw_screen has the
signature

void redraw_screen(ScreenData S);

and it is used in the following code snippet:

ScreenData new_screen;

// code to fill in new_screen

redraw_screen(new_screen);

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

then new_screen will be copied into S.

3. When an object is returned by value from a function. If the function get_old_screen() has the
signature

ScreenData get_old_screen(ScreenData S);

then with the call

old_screen = get_old_screen(C);

the ScreenData object returned by get_old_screen() will be copied into old_screen by the copy
constructor.

4. Note that it is not invoked here:

ScreenData screen2 = ScreenData(params);

The ordinary constructor is used to create the object screen2 directly. The right-hand side is not a
call to a constructor. The compiler arranges for screen2 to be initialized from a constructor that is
given the parameters params.

To illustrate, suppose that Date is the following class:

class Date

{

public:

Date (int y = 1970, int m = 1, int d = 1);

Date (const Date &date);

string get ();

private:

short year;

short month;

short day;

};

It has three private members that store the date as a day, month, and year, and three member functions.
The �rst constructor serves as both a default constructor and a constructor that can be supplied values for
the private members. The second is a copy constructor. A copy constructor has a single argument which is
a reference to an object of the class. We would provide a de�nition of this copy constructor such as

Date::Date (const Date &date)

{

year = date.year;

month = date.month;

day = date.day;

}

Because the parameter is not being changed, it is always safer to make it a const reference parameter.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

2.2 Copy Assignment Operators

The copy constructor is called only when an object is being created for the �rst time, not when it already
exists and is being assigned a new value. In this case the copy assignment operator is invoked. The
operator= is the copy assignment operator. It is invoked when one object is assigned to an existing object.

Unlike constructors, the copy assignment operator must return a value, and not just any value: it must
return the object on which it is invoked. For example, if we were to add a copy assignment operator to the
Date class, it would be de�ned as follows:

Date Date::operator= (const Date &date)

{

this->year = date.year;

this->month = date.month;

this->day = date.day;

return *this;

}

This function returns a Date object by value, not reference. It �rst copies the values out of the argument
passed to it, into the object on which it is called. It then returns this object. The value of any assignment
operation is always the value assigned to the left-hand side of the assignment; returning the object is required
to maintain this semantics.

2.3 Destructors

A destructor is called when an object goes out of scope or is deleted explicitly by a call to delete(). The
compiler supplies destructors if the user does not. The reason to supply a destructor is to remove memory
allocated by a call to new(), to close open �les, and so on. If your object does not dynamically allocate
memory, directly or indirectly, you do not have to write a destructor for the class; it is su�cient to let the
compiler create one for you.

The form of a destructor de�nition is similar to that of a constructor, except that

• it has a leading tilde ('~'), and

• it has no parameters.

As with constructors, it has no return type.

Some, but not all, of the situations in which a destructor is called are

• when the program terminates, for objects with static storage duration (e.g. global variables or static
variables of functions),

• when the block in which an object is created exits, for objects with automatic storage duration (i.e.,
for local variables of a function when the function terminates),

• when delete() is called on an object created with new().

The following listing is a program that writes messages to standard output showing when the constructors
and destructors are called. Running it is a good way to explore what the lifetimes of various types of objects
are in C++. The class and main program are in a single �le here, for simplicity.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

#inc lude <s t r i ng>
#inc lude <iostream>
us ing namespace std ;

c l a s s MyClass
{
pub l i c :

MyClass (i n t id=0, s t r i n g mssge = "") ; // con s t ruc to r
~MyClass () ; // de s t ru c t o r

p r i va t e :
i n t m_id ; // s t o r e s object ' s unique id
s t r i n g m_comment ; // s t o r e s comment about ob j e c t

} ; // end o f MyClass d e f i n i t i o n

// Constructor and de s t ru c t o r d e f i n i t i o n s
MyClass : : MyClass (i n t id , s t r i n g comment)
{

m_id = id ;
m_comment = comment ;

cout << " MyClass CONSTRUCTOR: id = " << m_id
<< " : " << m_comment << endl ;

}

MyClass : : ~ MyClass ()
{

cout << " MyClass DESTRUCTOR: id = " << m_id
<< " : " << m_comment << endl ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ main program f i l e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

MyClass Object1 (1 , " g loba l , s t a t i c v a r i ab l e ") ;

void foo () ;
void bar () ;

i n t main ()
{

cout << "main () s t a r t ed . \ n " ;

MyClass Object2 (2 , " l o c a l automatic in main () ") ;
s t a t i c MyClass Object3 (3 , " l o c a l s t a t i c in main () ") ;

cout << " c a l l i n g foo () . . . \ n " ;
foo () ;
cout << " foo () returned con t r o l to main () . . . \ n " ;
cout << "main () i s about to execute i t s r e turn statement \n " ;
re turn 0 ;

}

void foo ()
{

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

cout << " foo () s t a r t ed . \ n " ;

MyClass Object5 (5 , " l o c a l automatic in foo () ") ;
s t a t i c MyClass Object6 (6 , " l o c a l s t a t i c in foo () ") ;

cout << " foo () i s c a l l i n g bar () . . . \ n " ;
bar () ;
cout << "bar () returned con t r o l to foo () . \ n " ;
cout << " foo () ended . \ n " ;

}

void bar ()
{

cout << "bar () s t a r t ed . \ n " ;
MyClass Object7 (7 , " l o c a l automatic in bar () ") ;
s t a t i c MyClass Object8 (8 , " l o c a l s t a t i c in bar () ") ;
cout << "bar () ended . \ n " ;

}

3 Templates

One di�erence between C and C++ is that C++ allows you to de�ne templates for both classes and functions.
It is easier to understand class templates if you �rst understand function templates, and so we start with
these.

Suppose that in the course of writing many, many programs, you �nd that you need a swap function here
and there. Sometimes you want a swap function that can swap two integers, sometimes you want one that
can swap two doubles, and sometimes you need to swap objects of a class. In C, you have to write a swap
function for each type of object, or you can reduce the work by writing something like this1:

typedef int elementType;

void swap (elementType *x, elementType *y)

{

elementType temp = *x;

*x = *y;

*y = temp;

}

and you would call this with a call such as

int a, b;

a = ... ; b = ... ;

swap(&a, &b);

In C, the parameters need to be pointers to the variables to be swapped, and their address must be passed.
If you wanted to swap doubles, you would change the typedef by replacing the word �int� by �double.�

In C++, you could do the same thing using reference parameters:

1There are other methods as well, but these are the two principal approaches.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

typedef int elementType;

void swap (elementType &x, elementType &y)

{

elementType temp = x;

x = y;

y = temp;

}

and you could call this with code such as

int a, b;

a = ... ; b = ... ;

swap(a, b);

Although you do not have to write a separate swap function for each di�erent element type, it is inconvenient.
The C++ language introduced function templates as a way to avoid this.

3.1 Function Templates

A function template is a template for a function. It is not an actual function, but a template from which
the compiler can create a function if and when it sees the need to create one. This will be clarifed shortly.
A template for the swap function would look like this:

template <class elementType>

void swap (elementType &x, elementType &y)

{

elementType temp = x;

x = y;

y = temp;

}

The word �class� in the template syntax has nothing to do with classes in the usual sense. It is just a
synonym for the word �type.� All types in C++ are classes. The syntax of a (single-parameter) function
template de�nition is

template <class type_parameter> function-definition

where function-de�nition is replaced by the body of the function, as swap() above demonstrates. The syntax
for a (single-parameter) function template declaration (i.e., prototype) is

template <class type_parameter > function-declaration

You need to repeat the line

template <class type_parameter>

before both the declaration and the de�nition. For example:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

// Declare the function template prototype

template <class T>

void swap(T & x, T & y);

int main()

{

int n= 5;

int m= 8;

char ch1 = 'a', ch2 = 'b';

// more stuff here

swap(n,m);

swap(ch1, ch2);

// ...

}

// Define the function template declared above

template <class T>

void swap(T & x, T & y)

{

T temp = x;

x = y;

y = temp;

}

You will often see just the letter �T� used as the type parameter in the template.

When the compiler compiles the main program above, it sees the �rst call to a function named swap. It is
at that point that it has to create an instance of a function from the template. It infers from the types of its
parameters that the type of the template's parameter is int, and it creates a function from the template,
replacing the type parameter by int. When it sees the next call, it creates a second instance whose type is
char.

Because function templates are not functions, but just templates from which the compiler can create func-
tions, there is a bit of a problem with projects that are in multiple �les. If you want to put the function
prototype in a header �le and the function de�nition in a separate .cpp �le, the compiler will not be able
to compile code for it in the usual way if you use that function in a program. To demonstrate, suppose that
we create a header �le with our swap function prototype, an implementation �le with the de�nition, and a
main program that calls the function.

This is swap.h:

#ifndef SWAP_H

#define SWAP_H

template <class T>

void swap(T &x, T &y);

#endif

and swap.cpp:

template <class T>

void swap(T &x, T &y)

{

T temp = x;

x = y;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

y = temp;

}

and main.cpp:

#include "swap.h"

int main ()

{

int a = 10, b = 5;

swap(a,b);

return 0;

}

When we run the command

g++ -o demo swap.cpp main.cpp

we will see the error message

/tmp/ccriQBJX.o: In function `main':

main.cpp:(.text+0x29): undefined reference to `void swap<int>(int&, int&)'

collect2: ld returned 1 exit status

This is because the function named swap does not really exist when main is compiled. It has a reference
only to a function template. The solution is to put the function template implementation into the header
�le, as unsatisfying as that is because it breaks the wall that separates interface and implementation. This
can be accomplished with an #include directive:

#ifndef SWAP_H

#define SWAP_H

template <class T>

void swap(T &x, T &y);

#include �swap.cpp�

#endif

The general rule then, is to put the function template prototypes into the header �le, and at the bottom,
include the implementation �les using an #include directive. There will be no problem with multiply-de�ned
symbols in this case when you compile the code.

Note. Function templates, and templates in general, can have multiple parameters, and they do not have to
be classes, but that is a topic beyond the scope of this introduction. You may also see the word typename

used in place of the word class as the type of the template parameter. For the most part, these are
interchangeable, but it is better to use class until you know the subtle di�erence. The interested reader
can refer to a good C++ book for the details.

3.2 Class Templates

Imagine that you want to implement a list class, such as the one we described in the introduction to this
course. If you go back and look at the list ADT, you will �nd nothing in it that is speci�c to any particular
type of data object, other than the ability to copy objects. For the sorted list ADT, the objects did have to

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

be comparable to each other in some linear ordering, but that was about it, in terms of speci�c properties.
It stands to reason that you should be able to create a generic sort of list, one whose de�nition does not
depend on the underlying element type. This is one reason that C++ allows you to create templates for
classes as well. A class template is like a generic description of that class that can be instantiated with
di�erent underlying data types.

De�ning Class Templates

As with function templates, a C++ class template is not a class, but a template for a class. An example of
a simple class template interface is

template <class T>

class Container

{

public:

Container();

Container(T initial_data);

void set(T new_data);

T get() const;

private:

T mydata;

};

Notice that a class template begins with the template keyword and template parameter list, after which the
class de�nition looks the same as an ordinary class de�nition. The only di�erence is that it uses the type
parameter T from the template's parameter list. The syntax for the implementations of the class template
member functions when they are outside of the interface is a bit more complex. The above functions would
have to be de�ned as follows:

template <class T>

void Container<T>::set (T new_data)

{

mydata = new_data;

}

template <class T>

T Container<T>::get() const

{

return mydata);

}

Notice the following:

1. Each member function is actually a function template de�nition.

2. All references to the class are to Container<T> and not just Container. Thus, the name of each
member function must be preceded by Container<T>::.

In general the syntax for creating a class template is

template <class T> class class_name { class_definition };

and a member function named foo would have a de�nition of the form

template <class T>

return_type class_name<T>::foo (parameter_list) { function definition }

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Declaring Objects

To declare an object of a class that has been de�ned by a template requires , in the simplest case, using a
syntax of the form

class_name<typename> object_name;

as in

Container<int> int_container;

Container<double> double_container;

If the Container class template had a constructor with a single parameters, the declarations would instead
be something like

Container<int> int_container(1);

Container<double> double_container(1.0);

The following is a complete listing of a very simple program that uses a class template.

Listing 1: A program using a simple class template.

#inc lude <iostream>
us ing namespace std ;

template <c l a s s T>
c l a s s MyClass
{

pub l i c :
MyClass (T i n i t i a l_va l u e) ;
void s e t (T x) ;
T get () ;

p r i va t e :
T va l ;

} ;

template < c l a s s T >
MyClass < T >:: MyClass (T i n i t i a l_va l u e)
{

va l = i n i t i a l_va l u e ;
}

template < c l a s s T >
void MyClass < T >:: s e t (T x)
{

va l = x ;
}

template < c l a s s T >
T MyClass < T >:: get ()
{

re turn va l ;
}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

i n t main ()
{

MyClass<int> in t ob j (0) ;
MyClass<double> f l o a t o b j (1 . 2) ;

cout << " in t ob j va lue = " << in t ob j . get ()
<< " and f l o a t o b j va lue = " << f l o a t o b j . get () << endl ;

i n t ob j . s e t (1 000) ;
f l o a t o b j . s e t (0 . 1 2 3 4 5) ;
cout << " in t ob j va lue = " << in t ob j . get ()

<< " and f l o a t o b j va lue = " << f l o a t o b j . get () << endl ;

r e turn 0 ;
}

Again, remember that a class template is not an actual de�nition of a class, but of a template for a class.
Therefore, if you put the implementation of the class member functions in a separate implementation �le,
which you should, then you must put an #include directive at the bottom of the header �le of the class
template, including that implementation �le. In addition, make sure that you do not add the implementation
�le to the project or compile it together with the main program. For example, if myclass.h, myclass.cpp,
and main.cpp comprise the program code, with myclass.h being of the form

#ifndef MYCLASS_H

#define MYCLASS_H

// stuff here

#include �myclass.cpp�

#endif // MYCLASS_H

and if main.cpp includes myclass.h, then the command to compile the program must be

g++ -o myprogram main.cpp

not

g++ -o myprogram myclass.cpp main.cpp

because the latter will cause errors like

myclass.cpp:4:6: error: redefinition of `void MyClass<T>::set(T)'

myclass.cc :4:6: error: `void MyClass<T>::set(T)' previously declared here

This is because the compiler will compile the .cpp �le twice! This is not a problem with function templates,
but it is with classes, because classes are turned into objects.

4 Inheritance

Inheritance is a feature that is present in many object-oriented languages such as C++, Ei�el, Java, Ruby,
and Smalltalk, but each language implements it in its own way. This chapter explains the key concepts of
the C++ implementation of inheritance.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

4.1 Deriving Classes

Inheritance is a feature of an object-oriented language that allows classes or objects to be de�ned as extensions
or specializations of other classes or objects. In C++, classes inherit from other classes. Inheritance is useful
when a project contains many similar, but not identical, types of objects. In this case, the task of the
programmer/software engineer is to �nd commonality in this set of similar objects, and create a class that
can serve as an archetype for this set of classes.

Examples

• Squares, triangles, circles, and hexagons are all 2D shapes; hence a Shape class could be an archetype.

• Faculty, administrators, o�ce assistants, and technical support sta� are all employees, so an Employee

class could be an archetype.

• Cars, trucks, motorcycles, and buses are all vehicles, so a Vehicle class could be an archetype.

When this type of relationship exists among classes, it is more e�cient to create a class hierarchy rather
than replicating member functions and properties in each of the classes. Inheritance provides the mechanism
for achieving this.

Syntax

The syntax for creating a derived class is very simple. (You will wish everything else about it were so simple
though.)

class A

{/* ... stuff here ... */};

class B: [access-specifier] A

{/* ... stuff here ... */};

in which an access-speci�er can be one of the words, public, protected, or private, and the square brackets
indicate that it is optional. If omitted, the inheritance is private.

In this example, A is called the base class and B is the derived class. Sometimes, the base class is called
the superclass and the derived class is called a subclass.

Five Important Points (regardless of access speci�er):

1. The constructors and destructors of a base class are not inherited.

2. The assignment operator is not inherited.

3. The friend functions and friend classes of the base class are not inherited.

4. The derived class does not have access to the base class's private members.

5. The derived class has access to all public and protected members of the base class.

Public inheritance expresses an is-a relationship: a B is a particular type of an A, as a car is a type of
vehicle, a manager is a type of employee, and a square is a type of shape.

Protected and private inheritance serve di�erent purposes from public inheritance. Protected inheritance
makes the public and protected members of the base class protected in the derived class. Private inheritance
makes the public and protected members of the base class private in the derived class. These notes do not
discuss protected and private inheritance.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Example

In this example, a Shape class is de�ned and then many di�erent kinds of shapes are derived from it.

class Shape {

private:

Point Centroid;

public:

void Move(Point newCentroid); // move Shape to new centroid

/* more stuff here */

};

class Square : public Shape {/* stuff here */ };

class Triangle : public Shape {/* stuff here */ };

class Hexagon : public Shape {/* stuff here */ };

/* and so forth */

4.2 Implicit Conversion of Classes

The C++ language allows certain assignments to be made even though the types of the left and right sides
are not identical. For example, it will allow an integer to be assigned to a �oating-point type without an
explicit cast. However, it will not in general let a pointer of one type be assigned to a pointer of another
type. One exception to this rule has to do with assigning pointers to classes. I will begin this section by
stating its conclusion. If you do not want to understand why it is true or get a deeper understanding of the
nature of inheritance, you can then just skip to the next section.

Implicit Conversion of Classes: The address of an object of a derived class can be assigned to a pointer

declared to the base class, but the base class pointer can be used only to invoke member functions of the base

class.

Because a Square is a speci�c type of Shape, a Square is a Shape. But because a Square has other attributes,
a Shape is not necessarily a Square. But consider a Shape* pointer. A Shape* is a pointer to a Shape. A
Square* is a pointer to a Square. A Square* is not the same thing as a Shape*, since one points to Squares
and the other points to Shapes, and so they have no inherent commonality other than their "pointerness."

However, since a Square is also a Shape, a Square* can be used wherever a Shape* can be used. In other
words, Squares, Triangles, and Hexagons are all Shapes, so whatever kinds of operations can be applied
to Shapes can also be applied to Squares, Triangles, and Hexagons. Thus, it is reasonable to be able to
invoke any operation that is a member function of the Shape class on any dereferenced Shape*, whether it
is a Square, a Triangle, or a Hexagon. This argument explains why, in C++, the address of any object
derived from a Shape can be assigned to a Shape pointer; e.g., a Square* can be assigned to a Shape*.

The converse is not true; a Shape* cannot be used wherever a Square* is used because a Shape is not
necessarily a Square! Dereferencing a Square* gives access to a specialized set of operations that only work
on Squares and cannot be applied to arbitrary shapes. If a Square* contained the address of a Shape object,
then after dereferencing the Square*, you would be allowed to invoke a member function of a Square on a
Shape that does not know what it is like to be a Square, and that would make no sense. So this cannot be
allowed.

The need to make the preceding argument stems from the undecidability of the Halting Problem and the
need for the compiler designer to make sensible design decisions. If you are not familiar with the Halting
Problem, you can think of it as a statement that there are problems for which no algorithms exist. One
consequence of the Halting Problem is that it is not possible for the compiler to know whether or not the
address stored in a pointer is always going to be the address of any speci�c object. To illustrate this, consider
the following code fragment, and assume that the Square class is derived from the Shape class.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

1. Square* pSquare;

2. Shape* pShape;

3. void* ptr;

4. Shape someShape;

5. Square someSquare;

6. /* */

7. if (some condition that depends on user input)

8. ptr = (void*) &someShape;

9. else

10. ptr = (void*) &someSquare;

11. pShape = (Shape*) ptr;

The compiler cannot tell at compile time whether the true or false branch of the if-statement will always be
taken, ever be taken, or never taken. If it could, we could solve the Halting Problem. Thus, at compile-time,
it cannot know whether the assignment in line 11 will put the address of a Square or a Shape into the
variable pShape. Another way to say this is that, at compile-time, the compiler cannot know how to bind an
object to a pointer. The designer of C++ had to decide what behavior to give to this assignment statement.
Should it be allowed? Should it be a compile time error? If it is allowed, what operations can then be
performed on this pointer?

The only sensible and safe decision is to allow the assignment to take place, but to play it "safe" and allow
the dereferenced pShape pointer to access only the member functions and members of the Shape class, not
any derived class, because those operations are available to both types of objects.

4.3 Multiple Inheritance

Suppose that the shapes are not geometric abstractions but are instead windows in an art-deco building
supply store. Then what they also have in common is the property of being a window, assuming they are all
the same type of window (e.g., double hung, casement, sliding, etc.). Then geometric window shapes really
inherit properties from di�erent archetypes, i.e., the property of being a shape and the property of being a
window. In this case we need multiple inheritance, which C++ provides:

Example

class Shape {

private:

Point Centroid;

public:

void Move(Point newCentroid); // move Shape to new centroid

/* more stuff here about being a Shape */

};

class Window

{

/* stuff here about being a Window */

};

class SquareWin : public Shape, public Window {/* stuff here */ };

class TriangleWin : public Shape, public Window {/* stuff here */ };

class HexagonWin : public Shape, public Window {/* stuff here */ };

/* and so forth */

Note the syntax. The derived class is followed by a single colon (:) and a comma-separated list of base
classes, with the inheritance quali�er (public) attached to each base class. The set of classes created by the
above code creates the hierarchy depicted in Figure 1.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Window Shape

SquareWin TriangleWin HexagonWin

Figure 1: Multiple inheritance.

4.4 Extending Functionality of Derived Classes with Member Functions

Inheritance would be relatively useless if it did not allow the derived classes to make themselves di�erent
from the base class by the addition of new members, whether data or functions. The derived class can add
members that are not in the base class, making it like a subcategory of the base class.

Example

The Rectangle class below will add a member function not in the base class.

class Shape

{

private:

Point Centroid;

public:

void Move(Point newCentroid); // move Shape to new centroid

Point getCentroid() const;

/* more stuff here */

};

class Rectangle : public Shape

{

private:

float length, width;

public:

/* some stuff here too */

float LengthDiagonal() const;// functionality not in Shape class

};

The Rectangle class can add a LengthDiagonal function that was not in the base class since it did not
makes sense for it to be in the base class and only the Rectangle class has all diagonals of the same length.
Remember though that the member functions of the derived class cannot access the private members of the
base class, so the base class must either make protected or public accessor functions for its subclasses if they
need access to the private members.

4.5 Rede�ning Member Functions in Derived Classes (Overriding)

Derived classes can rede�ne member functions that are declared in the base class. This allows subclasses to
specialize the functionality of the base class member functions for their own particular needs. For example,
the base class might have a function print() to display the �elds of an employee record that are common to

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

all employees, and in a derived class, the print() function might display more information than the print()
function in the base class.

Note. A function in a derived class overrides a function in the base class only if its signature is identical to
that of the base class except for some minor di�erences in the return type. It must have the same parameters
and same quali�ers. Thus,

void print();

void print() const;

are not the same and the compiler will treat them as di�erent functions, whereas

void print() const;

void print() const;

are identical and one would override the other. Continuing with the Shape example, suppose that a Shape

has the ability to print only its Centroid coordinates, but we want each derived class to print out di�erent
information. Consider the Rectangle class again, with a print() member function added to Shape and
Rectangle classes.

class Shape

{

private:

Point Centroid;

public:

void Move(Point newCentroid); // move Shape to new centroid

Point getCentroid() const;

void print() const; // prints just Centroid coordinates

/* more stuff here */

};

class Rectangle : public Shape

{

private:

float length, width;

public:

/* some stuff here too */

float LengthDiagonal() const;// functionality not in Shape class

void print() const

{ /* print stuff that Rectangle class has here */ }

};

/* */

Shape myShape;

Rectangle myRect;

myRect.print();

myShape.print();

The call to myRect.print() will invoke the print() member function of the Rectangle class, since myRect
is bound to a Rectangle at compile time. Similarly, the call to myShape.print() will invoke the Shape

class's print() function. But what happens here:

Shape* pShape;

pShape = new Rectangle;

pShape->print();

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 16

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

In this case, the address of the dynamically allocated, anonymous Rectangle object is assigned to a Shape

pointer, and referring back to Section 4.2 above, the dereferenced pShape pointer will point to the print()
member function in the Shape class, since the compiler binds a pointer to the member functions of its own
class. Even though it points to a Rectangle object, pShape cannot invoke the Rectangle's print() function.
This problem will be overcome below when virtual functions are introduced.

5 Revisiting Constructors and Destructors

5.1 Constructors

Let us begin by answering two questions.

When does a class need a constructor?

If a class must initialize its data members, then the class needs a user-de�ned constructor because the
compiler-generated constructor will not be able to do this.

If a class is derived from other classes, when does it need a user-de�ned constructor?

To understand the answer, it is necessary to understand what happens at run time when an object is created.
Class objects are always constructed from the bottom up, meaning that the lowest level base class object is
constructed �rst, then any base class object immediately derived from that is constructed, and so on, until
the constructor for the derived class itself is called. To make this concrete, suppose that four classes have
been de�ned, and that they form the hierarchy depicted in Figure 2, in which D is derived from C, which is
derived from B, which is derived from A.

A

B

C

D

Figure 2: Class hierarchy.

Then when an object of class D is created, the run time system will recursively descend the hierarchy until
it reaches the lowest level base class (A), and construct A, then B, then C, and �nally D.

From this discussion, it should be clear that a constructor is required for every class from which the class
is derived. If a base class's constructors require arguments, then there must be a user-supplied constructor
for that class, and any class derived from it must explicitly call the constructor of the base class, supplying
the arguments to it that it needs. If the base class has at least one default constructor, the derived class
does not need to call it explicitly, because the default constructor can be invoked implicitly as needed. In
this case, the derived class may not need a user-de�ned constructor, because the compiler will arrange to
have the run time system call the default constructors for each class in the correct order. But in any case,
when a derived class object is created, a base class constructor must always be invoked, whether or not the
derived class has a user-de�ned constructor, and whether or not it requires arguments. The short program
that follows demonstrates the example described above.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 17

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Example

class A {

public:

A() {cout <�< "A constructor called\n";}

};

class B : public A {

public:

B() {cout <�< "B constructor called\n";}

};

class C : public B {

public:

C() {cout <�< "C constructor called\n";}

};

class D : public C {};

void main() {

D d;

}

This program will display

A constructor called

B constructor called

C constructor called

because the construction of d implicitly requires that C's constructor be executed beforehand, which in turn
requires that B's constructor be executed before C's, which in turn requires that A's constructor be executed
before B's. To make this explicit, you would do so in the initializer lists:

class A {

public:

A() {}

};

class B : public A {

public:

B(): A() {}

};

class C : public B {

public:

C(): B() {}

};

class D : public C {

public:

D(): C() {}

};

This would explicitly invoke the A(), then B(), then C(), and �nally D() constructors.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 18

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Summary

The important rules regarding constructors are:

• A base class constructor is ALWAYS called if an object of the derived class is constructed, even if
the derived class does not have a user-de�ned constructor.

• If the base class does not have a default constructor, then the derived class must have a constructor
that can invoke the appropriate base class constructor with arguments.

• The constructor of the base class is invoked before the constructor of the derived class.

• If the derived class has members in addition to the base class, these are constructed after those of the
base class.

5.2 Destructors

Destructors are slightly more complicated than constructors. The major di�erence arises because destructors
are rarely called explicitly. They are invoked for only one of two possible reasons:

1. The object was not created dynamically and execution of the program left the scope containing the
de�nition of the class object, in which case the destructors of all objects created in that scope are
implicitly invoked, or

2. The delete operator was invoked on a class object that was created dynamically, and the destructors
for that object and all of its base classes are invoked.

Notes

• When a derived class object must be destroyed, for either of the two reasons above, it will always cause
the base class's destructor to be invoked implicitly.

• Destructors are always invoked in the reverse of the order in which the constructors were invoked when
the object was constructed. In other words, the derived class destructor is invoked before the base
class destructor, recursively, until the lowest level base class destructor is called.

• If a class used the new operator to allocate dynamic memory, then the destructor should release dynamic
memory by called the delete operator explicitly.

• From the preceding statements, it can be concluded that the derived class releases its dynamic memory
before the classes from which it was derived.

To illustrate with an example, consider the following program. The derived class has neither a constructor
nor a destructor, but the base class has a default constructor and a default destructor, each of which prints
a short message on the standard output stream.

class A

{

public:

A() {cout <�< "base constructor called.\n";}

~A() {cout <�< "base destructor called.\n";}

};

class B : public A // has no constructor or destructor

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 19

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

{ };

void main()

{

B* pb; // pb is a derived class pointer

pb = new B; // allocate an object of the derived class

delete pb; // delete the object

}

This program will display two lines of output:

base constructor called.

base destructor called.

This con�rms that the base class destructor and constructor are called implicitly.

6 Virtual Functions

I stressed above that the compiler always binds pointers to the member functions of the class to which they
are declared to point to in their declarations (i.e., at compile time.) This is not a problem if derived objects
are never created dynamically. In this case, inheritance is really only buying a savings in the amount of code
needed in the program; it does not give the language polymorphism. Polymorphism exists when objects
can alter their behavior dynamically. This is the reason for the virtual function speci�er, "virtual."

Example

Suppose that you have an application that draws di�erent types of shapes on the screen. The number and
type of shapes that may appear on the screen will vary over time, and you decide to create an array to store
and process them. The array will therefore need to access Shape objects of all kinds. Since you do not know
in advance which cells of the array will access which objects, the array must be able to change what it can
hold dynamically, i.e., at run time. If the array element type is Shape*, then each array element can point
to a Shape of a di�erent class. However, because the pointers are of type Shape*, the program will only be
able to access the member functions of the Shape class through this pointer, not the member functions of
the derived classes. The following �gure illustrates this idea.

What is needed is a way to allow the pointer to the base class to access the members of the derived class.
This is the purpose of a virtual function. Declaring a function to be virtual in the base class means that
if a function in a derived class overrides it and a base class pointer is dereferenced, that pointer will access
the member function in the derived class. To demonstrate, consider the following program.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 20

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

class CBase

{

public:

virtual void print()

{ cout<�< "Base class print() called. " <�< endl; }

};

class CDerived : public CBase

{

public:

void print()

{ cout<�< "Derived class print function called." <�< endl; }

};

void main()

{

CBase* baseptr;

baseptr = new CDerived;

baseptr->print();

}

When this program is run, even though the type of baseptr is CBase*, the function invoked by the dereference
"baseptr->print()" will be the print() function in the derived class, CDerived, because the run time
environment bound baseptr->print() to the derived object when it was assigned a pointer of type CDerived
and it knew that print() was virtual in the base class.

6.1 Virtual Destructors and Constructors

Constructors cannot be virtual. Each class must have its own constructor. Since the name of the constructor
is the same as the name of the class, a derived class cannot override it. Furthermore, constructors are not
inherited anyway, so it makes little sense.

On the other hand, destructors are rarely invoked explicitly and surprising things can happen in certain
circumstances if a destructor is not virtual. Consider the following program.

class CBase {

public:

CBase()

{ cout <�< "Constructor for CBase called." <�< endl;}

~CBase()

{ cout <�< "Destructor for CBase called." <�< endl;}

};

class CDerived: public Cbase {

public:

CDerived()

{ cout <�< "Constructor for CDerived called." <�< endl;}

~CDerived()

{ cout <�< "Destructor for CDerived called." <�< endl;}

};

void main() {

CBase *ptr = new CDerived();

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 21

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

delete ptr;

}

When this is run, the output will be

Constructor for CBase called.

Constructor for CDerived called.

Destructor for CBase called.

The destructor for the CDerived class was not called because the destructor was not declared to be a virtual
function, so the call "delete ptr" will invoke the destructor of the class of the pointer itself, i.e., the CBase
destructor. This is exactly how non-virtual functions work. Now suppose that we make the destructor in
the base class virtual. Even though we cannot actually override a destructor, we still need to use the virtual
function speci�er to force the pointer to be bound to the destructor of the most-derived type, in this case
CDerived.

class CvirtualBase {

public:

CVirtualBase()

{ cout <�< "Constructor for CVirtualBase called." <�< endl; }

virtual ~CVirtualBase() // THIS IS A VIRTUAL DESTRUCTOR!!!

{ cout <�< "Destructor for CVirtualBase called." <�< endl; }

};

class CDerived: public CvirtualBase {

public:

CDerived()

{ cout <�< "Constructor for CDerived called." <�< endl; }

~CDerived()

{ cout <�< "Destructor for CDerived called." <�< endl; }

};

void main() {

CVirtualBase *ptr = new CDerived();

delete ptr;

}

The output of this program will be:

Constructor for CVirtualBase called.

Constructor for CDerived called.

Destructor for CDerived called.

Destructor for CVirtualBase called.

This is the correct behavior.

In summary, a class C must have a virtual destructor if both of the following conditions are true:

• A pointer p of type C* may be used as the argument to a delete call, and

• It is possible that this pointer may point to an object of a derived class.

There are no other conditions that need to be met. You do not need a virtual destructor if a derived class
destructor is called because it went out of scope at run time. You do not need it just because the base class
has some virtual functions (which some people will tell you.)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 22

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

6.2 Pure Virtual Functions

Suppose that we want to create an Area() member function in the Shape class. This is a reasonable function
to include in this base class because every closed shape has area. Every class derived from the Shape class
can override this member function with its own area function, designed to compute the area of that particular
shape. However, the Area() function in the base class has no implementation because a Shape without any
particular form cannot have a function that can compute its area. This is an example of a pure virtual
function. A pure virtual function is one that has no possible implementation in its own class.

To declare that a virtual function is pure, use the following syntax:

virtual return-type function-name(parameter-list) = 0;

For example, in the Shape class, we can include a pure Area() function by writing

class Shape

{

private:

Point Centroid;

public:

void Move(Point newCentroid);

Point getCentroid() const;

virtual double Area() = 0; // pure Area() function

};

7 Abstract Classes

A class with at least one pure virtual function cannot have any objects that are instances of it, because at
least one function has no implementation. Such a class is called an abstract class. In contrast, a class
that can have objects is called a concrete class. An abstract class can serve as a class interface that
can have multiple implementations, by deriving classes from it that do not add any more functionality but
provide implementations of the pure virtual functions. It can also serve as an abstraction that is extended
in functionality by deriving more speci�c classes from it.

7.1 Abstract Classes as Interfaces

An abstract class can act like a class interface, without divulging the �secret implementation.� The following
code demonstrates this idea.

class List // an abstract List class

{

public:

List(); // default constructor

~List(); // destructor

virtual bool is_empty() const = 0;

virtual int length() const = 0;

virtual void insert(int new_position,

list_item_type new_item, bool& Success) = 0;

void delete(int position, bool& Success) = 0;

void retrieve(int position, list_item_type & DataItem,

bool& Success) const = 0;

};

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 23

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Classes Revisited: Templates and Inheritance

Prof. Stewart Weiss

Shape

Polygon ClosedCurve

IrregularPolygon RegularPolygon

Square RegPentagon RegHexagon EquiLatTriangle

Figure 3: An abstract class hierarchy

We do not have to specify in this abstract class how the List is actually represented, such as whether an
array stores the list, or a vector, or some linked representation. There is no private data in this class, and it
has no implementation. We can derive a new class from it and let the derived class implement it. Any such
derived class must conform to the abstract base class's interface, but it is free to add private members.

7.2 Abstract Class Hierarchies

When a class is derived from an abstract class and it does not rede�ne all of the pure virtual functions, it
too is an abstract class, because it cannot have objects that represent it. This is often exactly what you
want.

Using the Shape example again, imagine that we want to build an extensive collection of two-dimensional
shapes with the Shape class at the root of a tree of derived classes. We can subdivide shapes into polygons
and closed curves. Among the polygons we could further partition them into regular and irregular polygons,
and among closed curves, we could have other shapes such as ellipses and circles. The class Polygon could
be derived from the Shape class and yet be abstract, because just knowing that a shape is a polygon is still
not enough information to implement an Area member function. In fact, the Area member function cannot
be implemented until the shape is pretty much nailed down. This leads to a multi-level hierarchy that takes
the shape of a general tree with the property that the interior nodes are abstract classes and the leaf nodes
are concrete classes. A portion of that hierarchy is shown in Figure 3.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 24

http://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Constructors, Copy Constructors, and Destructors
	Copy Constructors
	Copy Assignment Operators
	Destructors

	Templates
	Function Templates
	Class Templates

	Inheritance
	Deriving Classes
	Implicit Conversion of Classes
	Multiple Inheritance
	Extending Functionality of Derived Classes with Member Functions
	Redefining Member Functions in Derived Classes (Overriding)

	Revisiting Constructors and Destructors
	Constructors
	Destructors

	Virtual Functions
	Virtual Destructors and Constructors
	Pure Virtual Functions

	Abstract Classes
	Abstract Classes as Interfaces
	Abstract Class Hierarchies

