
CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

Trees, Part 1: Unbalanced Trees

The �rst part of this chapter takes a look at trees in general and unbalanced binary trees. The
second part looks at various schemes to balance trees and/or make them more e�cient as search
structures.

1 Tree De�nitions

If you already know what a binary tree is, but not a general tree, then pay close attention, because
binary trees are not a special case of general trees with degree two. There are various ways of
de�ning trees; this one is consistent with the one de�ned in Data Structures and Algorithms, by
Mark Allen Weiss.

De�nition 1. A tree T consists of a possible empty set of nodes. If T is not empty, it consists
of a distinguished node r called the root of T and zero or more non-empty subtrees T1, T2, . . . , Tk

such that there is a directed edge from r to each of the roots of T1, T2, . . . , Tk.

Note. The preceding de�nition allows a tree to be empty, but it does not allow it to have empty
subtrees. It would make no sense for it to allow empty subtrees, because if it did, then the answer
to the question, �how many subtrees does T have� would be unde�ned. It could have any number
of empty subtrees.

De�nition 2. A forest is a collection of non-empty trees.

Note. You can always create a tree from a forest by creating a new root node and making it the
parent of the roots of all of the trees in the forest. Conversely, if you lop o� the root of a tree, what
is left is a forest.

These notes assume that you are familiar with the terminology of binary trees, e.g., parents, children,
siblings, ancestors, descendants, grandparents, leaf nodes, internal nodes, external nodes, and so
on, so their de�nitions are not repeated here. Because the de�nitions of height and depth may vary
from one book to another, their de�nitions are included here, using the ones from the textbook.

De�nition 3. A path from node n1 to node nk is a sequence of nodes n1, n2, . . . , nk such that ni

is the parent of ni+1 for 1 ≤ i < k. The length of a path is the number of edges in the path, not
the number of nodes1.

Because the edges in a tree are directed, all paths are �downward�, i.e., towards leaves and away
from the root. The height of a node is the length of the longest path from the node to any of
its descendants. Naturally the longest path must be to a leaf node. The depth of a node is the
length of the path from the root to the node. The root has depth 0. All leaf nodes have height 0.

The height of a tree is the height of its root. The degree of a node is the number of children
of the node. The degree of a tree is the maximum degree of the degrees of its nodes. The tree in
Figure 1 has height 3 and degree 6. The children of each node happen to be drawn in sorted order
from left to right.

1Some authors de�ne the length of a path to be the number of nodes, which will always be one greater than the

number of edges.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

B C D S T U

JH M V E F

P R

A

Figure 1: A general tree.

Problem 4. It is not hard to see that a tree with N nodes must have N − 1 edges because every
node except the root has exactly one incoming edge. How many edges are in a forest with N nodes
and K trees?

2 Applications of General Trees

A general tree is useful for representing hierarchies in which the number of children varies. There
are many applications for which this is true.

In a modern �le system, for example, a node represents a �le, and if the �le is a directory, then it
is an internal node whose children are the �les contained in the directory. Some �le systems do not
restrict the number of �les per folder, implying that the number of children per node is varying and
unbounded. Some �le systems also allow hard links (as UNIX does) and the directory hierarchy is
not in fact a tree because there can be edges from a node to one of its ancestors. In this case the
structure is called a cyclic directed graph .

In the version control software git, the state of the source code is represented by a general tree.
There are two kinds of nodes, ordinary nodes, called blobs, and tree nodes. Tree nodes can have
any number of children.

In computational linguistics, as sentences are parsed, the parser creates a representation of the
sentence as a tree whose nodes represent grammatical elements such as predicates, subjects, prepo-
sitional phrases, and so on. Some elements such as subject elements are always internal nodes
because they are made up of simpler elements such as nouns and articles. Others are always leaf
nodes, such as nouns. The number of children of the internal nodes is unbounded and varying.

In genealogical software, the tree of descendants of a given person is a general tree because the
number of children of a given person is not �xed.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

3 Tree Implementations

Because one does not know the maximum degree that a tree may have, and because it is ine�cient to
create a structure with a very large �xed number of child entries, the most extensible implementation
of a general tree uses a linked list to store the children of a node. It is not exactly what you might
imagine immediately; it is a bit more subtle. A tree node contains an element and two pointers:
one to the leftmost-child of the node and another to the sibling that is to the immediate right of a
node:

struct TreeNode

{

Object element;

TreeNode * firstChild;

TreeNode * nextSibling;

};

Figure 2 illustrates how this structure is used to represent the tree in Figure 1. The advantage of
this representation is that this same node can be used to represent all nodes in the tree.

B C D S T U

H J M V E F

P R

A

Figure 2: Implementation of tree from Figure 1.

3.1 General Tree Traversal

There are a few di�erent ways to traverse a tree, some more e�cient than others depending on the
tree implementation. If a tree represents a directory hierarchy, then a pre-order traversal could
be used to print the �les and folders in the hierarchy in a natural way, much the way one sees them
listed in a �le browser window. The following pseudo-code description of such a function does this.
It is written as if it were a member function of some class that represents a �le (which also includes
directories, which are really �les.) Assume that printname(int depth) is a function that prints
the name of the current �le indented in proportion to its integer parameter, depth.

1 void file:: listAll( int depth = 0) const

2 {

3 printname(depth);

4 if (isDirectory () )

5 foreach child c in this directory

6 c.listAll(depth + 1);

7 }

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

The algorithm is a pre-order traversal because it visits the root of every subtree (which is a directory)
prior to visiting any of the children. The pseudo-code of the algorithm does not specify the order
that the foreach loop uses to visit all of the children in a directory, but for the sake of precision, let
us assume that they are visited in a �left-to-right� order. Bear in mind that a general tree has no
notion of left and right. The easiest implementation will just descend the firstChild pointer of
the directory node and then travel along the nextSibling pointers until it reaches a node that has
no nextSibling (i.e., its nextSibling pointer is null.) If printname() prints a word with depth

many tab characters preceding it, then this will print an indented listing of the directory tree, with
�les at depth d having d tabs to their left. For the tree in Figure 1, the output of this algorithm
would be

A

B

C

D

H

J

M

S

V

P

R

T

U

E

F

Notice that the children are listed in dictionary order, because the children of each node were stored
that way in the tree structure implementation.

There is no single notion of in-order traversal because of the fact that the number of subtrees
varies from one node to the next and the root may be visited in many positions relative to its
children. However, one can de�ne post-order traversals of general trees. One use of post-order is
in computing disk block usage for each directory. For example, the UNIX du command will display
the amount of disk space used by every �le, and cumulatively, for every directory in its command-
line argument. In order to do this, it must obtain the usage of the child nodes before the parent
node. The general algorithm would be of the form

1 int file:: disk_usage () const

2 {

3

4 int size = usage(); // some function that counts disk blocks

of the current file

5

6 if (isDirectory () )

7 foreach child c in this directory

8 size = size + c.disk_usage ();

9 return size;

10 }

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

The usage() function is a member function that returns the number of disk blocks used by the
current �le. Line 8 contains a recursive call of the disk_usage() function on child c. There will be
no in�nite recursion if the directory structure has no links back to ancestors.

4 Binary Trees

A binary tree is not a general tree because binary trees distinguish between the left and right
subtrees. A binary tree is either empty or it has a root node and a left and right subtree, each
of which are binary trees, and whose roots are children of the root of the tree. Structurally, the
following typi�es the de�nition of a binary tree node:

typedef binary_tree_node* node_ptr;

struct binary_tree_node

{

Object element;

node_ptr left;

node_ptr right;

};

Notice that its structure looks like that of a node in a doubly-linked list - it has a data item and
two pointers. The di�erence of course is that these pointers point to children of the node, not its
left and right neighbors!

The most important applications of binary trees are in compiler design and in search structures.
The binary search tree is an important data structure. These notes assume that you are familiar
with them from a previous course. The objective here is to look at how they can be implemented
using C++ and how we can overcome the ine�ciencies of unbalanced binary trees.

5 Binary Search Trees

A binary search tree (BST) is a binary tree that stores comparable elements in such a way that
insertions, deletions, and �nd operations never require more than O(h) operations, where h is the
height of the tree. To be clear, a BST is de�ned as follows.

De�nition 5. A binary relation ≤ on a set S is a total ordering of S if, for any elements a, b, c ∈ S

• a ≤ a (re�exivity)

• if a ≤ b and b ≤ a then a = b (antisymmetry)

• if a ≤ b and b ≤ c then a ≤ c (transitivity)

• either a ≤ b or b ≤ a (completeness)

De�nition 6. (S,≤) is a totally ordered set if S is a set and ≤ is a total ordering on S.

De�nition 7. If x is a node, element(x) is the element contained in node x.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

De�nition 8. A binary search tree for the totally ordered set (S,≤) is a binary tree in which

• for each node x, element(x) ∈ S, and

• for every node z in the left subtree of x, element(z) ≤ element(x), and for every node z in the
right subtree of x,element(x) ≤ element(z)

• for each element a ∈ S, there exists a unique node x such that element(x) = a.

It is important to realize that binary search trees use an implicit ordering relation to organize their
data, and that a comparison operation must always be de�ned for this data.

A binary search tree must support insertion, deletion, �nd, a test for emptiness, and a �nd-minimum
operation. It should also support a list-all operation that lists all elements in sorted order. Since a
binary search tree is a container (an object that contains other objects), it needs to provide methods
to create an empty binary search tree, and to make a new tree as a copy of an existing tree, as well
as methods to destroy instances of trees. Following is a partial interface for a BST template class,
containing the essential methods. Note that this code has a nested class de�nition: the bst_node

struct de�nition is contained within the BST class de�nition. Earlier versions of C++ did not
support this. Because the struct de�nition is contained in the BST de�nition, the references to
bst_node do not need to be written using the template parameter in implementations of the BST
member functions.

template <typename Comparable >

class BST

{

public:

BST ( ); // default

BST ( const BST & tree); // copy constructor

~BST ( ); // destructor

// Search methods:

const Comparable& find ( const Comparable& x) const;

const Comparable& findMin () const;

const Comparable& findMax () const;

// Displaying the tree contents:

void print ( ostream& out ) const;

// Tree modifiers:

void clear (); // empty the tree

void insert( const Comparable& x); // insert element x

void remove( const Comparable& x); // remove element x

private:

// The node definition is inaccessible to clients of the tree

class

struct bst_node

{

Comparable element;

bst_node* left;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

bst_node* right;

// node constructor:

bst_node( const Comparable& item , bst_node* lt , bst_node*

rt):

element(item), left(lt), right(rt) {}

};

// The pointer to the root of tree is the only data item

bst_node *root;

// Recursive methods called by public methods:

void insert ( const Comparable& x, bst_node* & t );

void remove ( const Comparable& x, bst_node* & t );

bst_node* find ( const Comparable& x, bst_node* t )

const;

bst_node* findMin ( bst_node* t) const;

bst_node* findMax ( bst_node* t) const;

void make_empty ( bst_node* t );

void print ( ostream& out , bst_node* t) const;

bst_node* copy (bst_node* t) const;

};

5.1 Algorithms

Most tree algorithms are expressed easily using recursion. On the other hand, to do so requires that
the parameter of the algorithm is a pointer to the current node, as in this pseudo-code recursive
function:

void some_tree_function ( bst_node* p )

{

if ( null != p )

some_tree_function ( p->left )

}

However, a function like this should not be in the public part of a class de�nition because one
does not want to expose the node pointers to an object's clients. Nodes should be hidden from the
object's clients. Put another way, the clients should not know nor should they care about how the
data is structured inside the tree; in fact, they should not even know that it is a tree! The binary
search tree should be a black box with hooks to the methods it makes available to its clients, and
no more.

While this may seem like a conundrum, it is not. An elegant solution is to create a �wrapper� public
method that the client calls that wraps a call to a recursive function. This is exactly how many
of the methods are implemented. Below are a few implementations. The rest are similar, but you
should not skip them; you have to make sure you understand how this class implementation works!

5.1.1 The find Algorithm

The find algorithm recursively descends the tree's pointers. In short, if the current node is empty,
it returns an indication that the key being sought is not in the tree, otherwise if the key is smaller

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

than the current node's element, it descends and searches in the left subtree, or if it is larger, it
searches in the right subtree. Otherwise the key is equal to the element in the current node and has
been found. The recursive implementation is thus

template <class Comparable >

bst_node* BST <Comparable >:: find ( const Comparable& x, bst_node*

t ) const

{

if ( NULL == t )

return NULL;

else if ( x < t->element )

return find( x, t->left );

else if ( t->element < x )

return find( x, t->right );

else

return t; // found it

}

and the public wrapper would be

template <class Comparable >

const Comparable& find ( const Comparable& x) const

{

bst_node* t;

t = find(x, root);

if ( NULL != t )

return t->element;

else

// return some indication that it was not found

}

5.1.2 The insert algorithm

Insertion is also recursive and similar to the find algorithm. It is like searching for the element to
be inserted, except that if it is not in the tree, we insert it and if it is in the tree we do nothing.
In short, if the current node is empty, we reached the point in the tree at which the element is
supposed to be but it is not there, so we insert a new node there containing the element. Otherwise,
if the element to be inserted is smaller than the one in the current node, we call insert() with the
left subtree pointer, if it is larger, we call insert() with the right subtree pointer, and if it is equal
to the current node's element, if the tree does not allow duplicates, we do nothing. (A variation
of this tree would support duplicates, in which case the node would have a counter and possibly a
pointer to a list of elements with the given key.)

template <class Comparable >

void BST <Comparable >:: insert( const Comparable & x, bst_node* & t

)

{

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

if ( NULL == t )

t = new bst_node( x, NULL , NULL );

else if ( x < t->element )

insert( x, t->left );

else if ( t->element < x )

insert( x, t->right );

else

; // Duplicate; do nothing

}

and the public wrapper is

template <class Comparable >

void BST <Comparable >:: insert( const Comparable & x )

{

insert( x, root );

}

5.1.3 The remove Algorithm

The remove, or delete, algorithm is the most complex. It depends on how many children the node
to be deleted has. If it has no children, it is easy: it just deletes the node. If it has one child, it
deletes the node and makes the only child the child of the node's parent. If it has two children, then
it �nds the smallest node in the node's right subtree and copies it into the node, overwriting the
element that was in the node and therefore deleting it, and then deleting the node that contained
the smallest node in the right subtree. That node cannot possibly have two children because if
it did, one would have to be smaller than the node, contradicting the assumption that it was the
smallest node in the right subtree.

The algorithm makes a call to the private, recursive findMin() function, which �nds the smallest
element in the tree whose pointer it is given:

bst_node* findMin ( bst_node* t) const

{

if ( NULL == t )

return NULL;

if (NULL == t->left )

return t;

return findMin ( t->left );

}

(The recursion in this algorithm is easily removed. ) The remove algorithm is implemented with
the following private recursive function and public wrapper.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

template <class Comparable >

void BST <Comparable >:: remove ( const Comparable& x, bst_node* & t

)

{

if ( NULL == t )

return; // Item not found; do nothing

if ( x < t->element )

remove( x, t->left );

else if ( t->element < x )

remove( x, t->right );

else if ( t->left != NULL && t->right != NULL ) { // Two

children

t->element = findMin( t->right )->element;

remove( t->element , t->right );

}

else {

bst_node *oldNode = t;

t = ( t->left != NULL ) ? t->left : t->right;

delete oldNode;

}

}

template <class Comparable >

void BST <Comparable >:: remove( const Comparable & x )

{

remove( x, root );

}

Notes

• The call to findMin() followed by the recursive call to remove() could be replaced by a call
to a single function that �nds the minimum and deletes it at the same time, thereby avoiding
the second traversal down the right subtree when remove() is called.

• If the BST is used in an application in which elements are not deleted very often, lazy deletion

can be used to reduce the running time of deleting at the expense of increased storage. In lazy
deletion, the nodes contain an additional member, either a count or a boolean �ag. When an
element is inserted, the count is set to 1. When it is deleted, it is set to 0. The node itself
is not deleted. The running time to delete a node is greatly reduced - it is the same as a
�nd operation - but the number of nodes in the tree is larger than the number of elements.
Another bene�t is that if the element is inserted again after a deletion, a new node does not
have to be allocated; the node's count is reset to 1. This change in the node structure also
supports having duplicate nodes in the tree.

5.1.4 Other Algorithms

The remaining methods are fairly easy to �gure out, except possibly the copy() method, which is
used by the BST class's copy constructor. The copy() method can be implemented recursively as
follows:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

template <class Comparable>

bst_node* BST<Comparable>::copy (bst_node* t) const

{

if ( NULL == t )

return NULL;

else

return new bst_node( t->element, copy(t->left), copy(t->right) );

}

Notice the two recursive calls in the return statement. For large trees this is very ine�cient and is
better implemented non-recursively!

The print() method is just an in-order traversal of the tree, and the make_empty() function is a
post-order traversal in which the operation at each node is a call to delete the node.

5.2 Performance Analysis

The insertion, deletion, and search algorithms each take a number of steps that, in the wost case,
is proportional to the height of the tree. Deletion may involve a larger constant than insertion
and search because of the extra steps involved when the element to be deleted is in a node with
two subtrees, but it still does not visit more nodes than the length of the longest path in the tree.
The running time of these algorithms is therefore dependent on the height of the tree. Hence the
question, what is the expected, or average, height of a binary search tree?

The order of insertions determines the shape and therefore the height of the tree. If the values 24,
36, 16, 10, 17, 8, 27, 31, 20, 6, 22 are inserted into an initially empty binary search tree, it will
result in the tree in Figure 3, whose height is 4. On the other hand, if the values are inserted in the
order 36, 31, 27, 24, 22, 20, 17, 16, 10, 8, 6, the tree will be linear, with height 10.

24

16

10

6 8

17

20

22

36

27

31

Figure 3: A binary search tree

The preceding argument shows that the order of insertions a�ects tree height and that in the worst
case the height is O(N). But what about the average height? To clarify the problem, we can assume

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

that keys are positive integers. Since the actual numeric di�erence between successive keys does
not a�ect the shape of the tree, we might as well assume that a tree with N nodes consists of the
integers 1 through N . In other words, we get the same tree with the sequence 1, 2, 3 as we do with
1, 20, 400 or 2, 23, 800, so we assume that the sequence is 1, 2, 3, . . . , N .

Suppose that the �rst key to be inserted into the initially empty tree is the number i, where
1 ≤ i ≤ N . This implies that the left subtree must have (i − 1) nodes and the right subtree must
have (N − i) nodes, because there are (i− 1) numbers less than i and (N − i) numbers greater than
i. This statement is true of every subtree of the tree, namely that the value of the root determines
the sizes of its left and right subtrees.

De�nition 9. The internal path length of a tree is the sum of the depths of all nodes in the tree.

Let D(N) denote the average internal path length of an arbitrary tree T with N nodes. Suppose
that the root is the number i. Then the left subtree has (i − 1) nodes and it has average internal
path D(i − 1). To get from the root to any node in the left subtree requires traversing one extra
edge, so the path to each of the (i− 1) nodes in the left subtree is one edge longer and the average
internal path length of the left subtree starting at the root is D(i − 1) + (i − 1). For analogous
reasons the right subtree has an average internal path length of D(N − i) + (N − i). This leads to
the recurrence relation:

D(1) = 0

D(N) = D(i− 1) + D(N − i) + (i− 1) + (N − i)

= D(i− 1) + D(N − i) + (N − 1) (1)

If all sequences 1, 2, . . . , N are equally likely then there is a uniform 1/N probability that the �rst
number will be i. In other words, the root may be any of 1, 2, . . . , N with equal probability, and
hence, the average internal path length is the sum of the right-hand sides of Eq. 1 with i taking on
the values 1, 2, . . . , N divided by N :

D(N) =
1

N

N∑
i=1

(D(i− 1) + D(N − i) + N − 1)

=
1

N

N∑
i=1

D(i− 1) +
1

N

N∑
i=1

D(N − i) +
1

N
(N · (N − 1))

=
1

N

N−1∑
i=0

D(i) +
1

N

N−1∑
i=0

D(i) + (N − 1)

=
2

N

N−1∑
i=0

D(i) + (N − 1)

This recurrence relation will be solved in a later chapter. It will be shown that D(N) is O(N logN).
Therefore the average binary search tree has a total path length of O(N logN). Since this is the
total of all path lengths of a tree with N nodes, the average path is length O(logN).

This shows that on average, insertions, deletions, and �nds are O(logN) operations if the trees are
constructed randomly from N keys. But if trees are subjected to deletions, then their shapes are

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 4 Trees, Part 1

Prof. Stewart Weiss

much harder to analyze. This is because the set of all possible binary search trees will not have a
uniform distribution, and the problem cannot be modeled as we just did. Some studies have shown
that, when insertions and deletions alternate, the expected depth will be Θ(

√
N). Furthermore, the

deletion algorithm favors one side or the other when it must delete an element from a node with
two children. To avoid this, the deletion algorithm could alternate between choosing the smallest
element in the right subtree and the largest in the left subtree. The e�ect of this change has not
been established de�nitively.

A more interesting solution to the problem was invented by Tarjan in the early 1980s and the tech-
nique was subsequently generalized to other problems. He invented self-adjusting trees, which after
each operation, not just insertions and deletions, restructured the tree to make future operations
more e�cient.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/ 

	1 Tree Definitions
	2 Applications of General Trees
	3 Tree Implementations
	3.1 General Tree Traversal 

	4 Binary Trees
	5 Binary Search Trees
	5.1 Algorithms
	5.1.1 The find Algorithm
	5.1.2 The insert algorithm
	5.1.3 The remove Algorithm
	5.1.4 Other Algorithms

	5.2 Performance Analysis


