
CSci340 Operating Systems

Comments on Assignment 1

Prof. Stewart Weiss

Topics Needing Clari�cation

In grading Assignment 1, I realized that there are several topics that are not clearly understood by a majority
of those who submitted the assignment. The purpose of this short document is to clarify those areas.

Timers. The timer referred to in the question is not the same thing as the hardware or system clock. A
timer is associated with the process currently running on the CPU, and it is used by the operating system to
implement time-slicing of the CPU. It is controlled by the operating system with hardware support. When a
process is scheduled onto the CPU, the operating system sets the timer equal to a speci�ed number of ticks.
The length of a tick depends on the operating system and hardware. On a fast, modern processor such as
a Pentium, a tick might be a millisecond. The timer is decremented with each tick until it becomes zero,
at which point a timer interrupt occurs and the process is removed from the CPU. The decrementing may
be done in hardware or software. On older systems each tick caused an interrupt to decrement the timer
in software. Modern processors have special hardware timers that decrement themselves. A user process
should not be able to modify the timer because if it could, it could prevent the operating system from ever
running.

Zeroing memory. Every process needs the ability to clear memory, or �ll a range of addresses with
zeros. On UNIX, the bzero() and memset() library functions do exactly this. The questions is, should
this instruction be privileged? The answer is that it depends on what other protections exist in the CPU.
Most modern processors have support for memory protection in the form of either segmentation or base-limit
registers, usually in a separate memory management unit or MMU. In modern CPUs, when an address is
generated, it is a logical address, not a physical one, and the corresponding physical address is generated
by the MMU, which does the required checking. Discussion of how this is done has to wait until we cover
memory management. If a processor does have an MMU, then the instruction to clear memory does not
need to be privileged, because if the range of address will be validated in the MMU. If it does not, then the
kernel would have to validate the range before zeroing the memory, so it would have to be privileged.

Traps. A trap is a speci�c type of exception. An exception is an interrupt generated by the processor as a
result of executing an instruction. The exception may be due to an erroneous or anomalous condition, such
as dividing by zero or trying to access a part of memory outside of the process's legal range. Such exceptions
are known as faults. Traps are sometimes purposely executed to force the kernel to run. Traps can be used
as a means of implementing system calls. Traps are the principal method of implementing debuggers as well.
When a break-point is set in a program, a trap is inserted into the code. Traps must be executable in user
mode, otherwise a user program could never relinquish the CPU voluntarily to let the kernel run.

Changing the mode bit. If a user process were able to change the mode from user to privileged, then
there would be no distinction between user mode and privileged mode, since all instructions could be executed
by user processes. Obviously then, this instruction must be privileged and can only be executed by a process
running with kernel privileges, i.e., it can only be done by a process that has the privilege to do it. This
sounds like a paradox: only privileged processes can execute the instruction that allows them to acquire the
privilege to execute privileged instructions. Obviously, there has to be a catch here. Roughly speaking, two
values are required to implement dual mode, a Current Privilege Level, associated with the running process,
and a Code Privilege Level, associated with the code to be executed in privileged mode. Suppose 0 and 1
are the two values each can have and that 1 means kernel privilege and 0 means user privilege. When a user
process needs the kernel to do something for it, it issues a call that causes a trap that causes kernel code to
run brie�y in user mode. The kernel code has Code Privilege 1, which is greater than 0, so it is allowed to
change the mode, setting Current Privilege Level to 1. When it �nishes, it sets it back to 0 before letting a

1



CSci340 Operating Systems

Comments on Assignment 1

Prof. Stewart Weiss

user process run. It is actually much more complex than this, and the terms I use are my own, but this is
the basic idea.

On dual-mode in the 0x86 series. The point of this question was to get you to investigate exactly how
dual mode works in the 0x86 series of processors. It is not as simple as it was in the Motorola series. Intel
had to make sure that what they did in the 386 was backwards compatible with all of those DOS programs
that ran amok on the unprotected earlier CPUs. So they created a real mode, a protected mode, and a virtual
real mode. Real mode is the mode of the earlier CPUS like the 8088, completely unprotected. Legacy DOS
programs could only run in real mode. Protected mode provided four di�erent levels of privilege, which
they called rings. Ring 0 is the most privileged and ring 3, the least. Modern operating systems run in
protected mode. Systems like UNIX that use a two-level privilege system use rings 0 and 3. In Linux for
example, the kernel runs (mostly) in ring 0 and user mode is in ring 3. The set of operations available to
ring 3 code is restricted by hardware-enforced security mechanisms such as segmentation, paging, and I/O
privilege restrictions.

2


