
9.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

The Model

 A running process generates a stream of memory references :
 machine code fetches instructions, data, and stores data,

so we can view it as a memory reference generator.
 We use this abstraction to understand how memory is

managed.

9.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Background

 Executable programs are loaded into memory from disk
 Main memory and registers are the only storage CPU can

access directly
 Memory unit only sees a stream of:

 addresses + read requests, or
 address + data and write requests

 Register access is done in one CPU clock (or less)
 Main memory can take many cycles, causing a stall
 Cache sits between main memory and CPU registers
 Protection of memory required to ensure correct operation

9.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Protection

 Need to censure that a process can access only access those
addresses in its address space.

 We can provide this protection by using a pair of base and limit
registers define the logical address space of a process

9.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware Address Protection

 CPU must check every memory access generated in user
mode to be sure it is between base and limit for that user

 the instructions to loading the base and limit registers are
privileged

9.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address Binding

 Programs on disk, ready to be brought into memory to execute form an
input queue
 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at
0000
 How can it not be?

 Addresses represented in different ways at different stages of a
program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute

addresses
 i.e. 74014

 Each binding maps one address space to another

9.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages
 Compile time: If memory location known a priori, absolute

code can be generated; must recompile code if starting
location changes

 Load time: Must generate relocatable code if memory
location is not known at compile time

 Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment
to another
 Need hardware support for address maps (e.g., base and

limit registers)

9.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management
 Logical address – generated by the CPU; also referred to

as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

 Logical address space is the set of all logical addresses
generated by a program

 Physical address space is the set of all physical addresses
generated by a program

9.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical
address

 Many methods possible, covered in the rest of this chapter

9.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging

 Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages
 Keep track of all free frames
 To run a program of size N pages, need to find N free frames and

load program
 Set up a page table to translate logical to physical addresses
 Backing store likewise split into pages
 Still have Internal fragmentation

9.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

9.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Hardware

9.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Model of Logical and Physical Memory

9.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Example

 Logical address: n = 2 and m = 4. Using a page size of 4 bytes and a
physical memory of 32 bytes (8 pages)

9.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging -- Calculating internal fragmentation

 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

9.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Free Frames

Before allocation After allocation

9.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Implementation of Page Table

 Page table is kept in main memory
 Page-table base register (PTBR) points to the page

table
 Page-table length register (PTLR) indicates size of the

page table
 In this scheme every data/instruction access requires two

memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called translation
look-aside buffers (TLBs) (also called associative
memory).

9.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Translation Look-Aside Buffer

 Some TLBs store address-space identifiers (ASIDs) in
each TLB entry – uniquely identifies each process to
provide address-space protection for that process
 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster

access next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast

access

9.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware

 Associative memory – parallel search

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

P a g e # F r a m e #

9.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Hardware With TLB

9.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory Protection

 Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed
 Can also add more bits to indicate page execute-only, and

so on
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical
address space

 Or use page-table length register (PTLR)
 Any violations result in a trap to the kernel

9.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Valid (v) or Invalid (i) Bit In A Page Table

9.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)
 Similar to multiple threads sharing the same process

space
 Also useful for interprocess communication if sharing of

read-write pages is allowed
 Private code and data

 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear

anywhere in the logical address space

9.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Shared Pages Example

9.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward
methods
 Consider a 32-bit logical address space as on modern

computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)
 If each entry is 4 bytes each process 4 MB of physical

address space for the page table alone
 Don’t want to allocate that contiguously in main memory

 One simple solution is to divide the page table into smaller
units

 Hierarchical Paging
 Hashed Page Tables
 Inverted Page Tables

9.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hierarchical Page Tables

 Break up the logical address space into multiple page tables
 A simple technique is a two-level page table
 We then page the page table

9.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 10-bit page number
 a 12-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

 Known as forward-mapped page table

9.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address-Translation Scheme

9.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234

bytes in size
 And possibly 4 memory access to get to one physical memory

location

