
9.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

The Model

 A running process generates a stream of memory references :
 machine code fetches instructions, data, and stores data, 

so we can view it as a memory reference generator.
 We use this abstraction to understand how memory is 

managed.



9.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Background

 Executable programs are loaded into memory from disk
 Main memory and registers are the only storage CPU can 

access directly
 Memory unit only sees a stream of:

 addresses + read requests, or 
 address + data and write requests

 Register access is done in one CPU clock (or less)
 Main memory can take many cycles, causing a stall
 Cache sits between main memory and CPU registers
 Protection of memory required to ensure correct operation



9.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Protection

 Need to censure that a process can access only access those 
addresses in its address space.

 We can provide this protection by using  a pair of base and limit 
registers define the logical address space of a process



9.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware Address Protection

 CPU must check every memory access generated in user 
mode to be sure it is between base and limit for that user

 the instructions to loading the base and limit registers are 
privileged 



9.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address Binding

 Programs on disk, ready to be brought into memory to execute form an 
input queue
 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 
0000 
 How can it not be?

 Addresses represented in different ways at different stages of a 
program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute 

addresses
 i.e. 74014

 Each binding maps one address space to another



9.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses 
can happen at three different stages
 Compile time:  If memory location known a priori, absolute 

code can be generated; must recompile code if starting 
location changes

 Load time:  Must generate relocatable code if memory 
location is not known at compile time

 Execution time:  Binding delayed until run time if the process 
can be moved during its execution from one memory segment 
to another
 Need hardware support for address maps (e.g., base and 

limit registers)



9.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a 
separate physical address space is central to proper memory 
management
 Logical address – generated by the CPU; also referred to 

as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time 
and load-time address-binding schemes; logical (virtual) and 
physical addresses differ in execution-time address-binding 
scheme

 Logical address space is the set of all logical addresses 
generated by a program

 Physical address space is the set of all physical addresses 
generated by a program



9.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical 
address

 Many methods possible, covered in the rest of this chapter



9.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging

 Physical  address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages
 Keep track of all free frames
 To run a program of size N pages, need to find N free frames and 

load program
 Set up a page table to translate logical to physical addresses
 Backing store likewise split into pages
 Still have Internal fragmentation



9.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n



9.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Hardware



9.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Model of Logical and  Physical Memory



9.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Example 

 Logical address:  n = 2 and  m = 4. Using a page size of 4 bytes and a 
physical memory of 32 bytes (8 pages)



9.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging -- Calculating internal fragmentation

 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB



9.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Free Frames

Before allocation After allocation



9.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Implementation of Page Table

 Page table is kept in main memory
 Page-table base register (PTBR) points to the page 

table
 Page-table length register (PTLR) indicates size of the 

page table
 In this scheme every data/instruction access requires two 

memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use 
of a special fast-lookup hardware cache called  translation 
look-aside buffers (TLBs) (also called associative 
memory).



9.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Translation Look-Aside Buffer 

 Some TLBs store address-space identifiers (ASIDs) in 
each TLB entry – uniquely identifies each process to 
provide address-space protection for that process
 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster 

access next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast 

access



9.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware

 Associative memory – parallel search 

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

P a g e  # F r a m e  #



9.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Hardware With TLB



9.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory Protection

 Memory protection implemented by associating protection bit 
with each frame to indicate if read-only or read-write access is 
allowed
 Can also add more bits to indicate page execute-only, and 

so on
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ 
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical 
address space

 Or use page-table length register (PTLR)
 Any violations result in a trap to the kernel



9.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Valid (v) or Invalid (i) Bit In A Page Table



9.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems)
 Similar to multiple threads sharing the same process 

space
 Also useful for interprocess communication if sharing of 

read-write pages is allowed
 Private code and data 

 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear 

anywhere in the logical address space



9.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Shared Pages Example



9.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward 
methods
 Consider a 32-bit logical address space as on modern 

computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)
 If each entry is 4 bytes  each process 4 MB of physical 

address space for the  page table alone
 Don’t want to allocate that contiguously in main memory

 One simple solution is to divide the page table into smaller 
units

 Hierarchical Paging
 Hashed Page Tables
 Inverted Page Tables



9.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hierarchical Page Tables

 Break up the logical address space into multiple page tables
 A simple technique is a two-level page table
 We then page the page table



9.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 10-bit page number 
 a 12-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table

 Known as forward-mapped page table



9.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address-Translation Scheme



9.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234 

bytes in size
 And possibly 4 memory access to get to one physical memory 

location


