The Model

B A running process generates a stream of memory references :

® machine code fetches instructions, data, and stores data,
SO we can view it as a memory reference generator.

B We use this abstraction to understand how memory is
managed.

Y
<

Operating System Concepts — 10* Edition 9.4 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/7
4{

]
GF7 Background

B Executable programs are loaded into memory from disk

B Main memory and registers are the only storage CPU can
access directly

B Memory unit only sees a stream of:

® addresses + read requests, or

® address + data and write requests
Register access is done in one CPU clock (or less)
Main memory can take many cycles, causing a stall
Cache sits between main memory and CPU registers

Protection of memory required to ensure correct operation

Protection

B Need to censure that a process can access only access those
addresses in its address space.

B We can provide this protection by using a pair of base and limit
registers define the logical address space of a process

1024000 ,
operating
system
880000
process
420940 < base + limit
process
300040 5 e
process
256000
0

Operating System Concepts — 10* Edition 9.6 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware Address Protection

B CPU must check every memory access generated in user
mode to be sure it is between base and limit for that user

CPU

base

trap to operating system
illegal addressing error memory

base + limit

B the instructions to loading the base and limit registers are

privileged

Operating System Concepts — 10" Edition

9.7

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

g . -
e Address Binding

B Programs on disk, ready to be brought into memory to execute form an
input queue

® Without support, must be loaded into address 0000

B Inconvenient to have first user process physical address always at
0000

® How can it not be?

B Addresses represented in different ways at different stages of a
program’s life

® Source code addresses usually symbolic
® Compiled code addresses bind to relocatable addresses
> i.e. “14 bytes from beginning of this module”

® Linker or loader will bind relocatable addresses to absolute
addresses

> i.e. 74014
® Each binding maps one address space to another

Operating System Concepts — 10 Edition 9.8 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/;\%\

,«,ka » - - =
%w Binding of Instructions and Data to Memory

S\

B Address binding of instructions and data to memory addresses
can happen at three different stages

® Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

® Load time: Must generate relocatable code if memory
location is not known at compile time

® Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment
to another

» Need hardware support for address maps (e.g., base and
limit registers)

Logical vs. Physical Address Space

B The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

® Logical address — generated by the CPU; also referred to
as virtual address

® Physical address — address seen by the memory unit

B [ogical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

B Logical address space is the set of all logical addresses
generated by a program

B Physical address space is the set of all physical addresses
generated by a program

Operating System Concepts — 10t Edition 9.11 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

4% Memory-Management Unit (MMU)

\"{,V i
LA\

B Hardware device that at run time maps virtual to physical
address

logical physical
address address

physical
MMU memory

\/

CPU

Y

B Many methods possible, covered in the rest of this chapter

Operating System Concepts — 10 Edition 9.12 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

»

)) I
T Paging

B Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

® Avoids external fragmentation
® Avoids problem of varying sized memory chunks
B Divide physical memory into fixed-sized blocks called frames
® Size is power of 2, between 512 bytes and 16 Mbytes
B Divide logical memory into blocks of same size called pages
B Keep track of all free frames

B To run a program of size N pages, need to find N free frames and
load program

B Set up a page table to translate logical to physical addresses

Backing store likewise split into pages
B Still have Internal fragmentation

Operating System Concepts — 10t Edition 9.24 Silbel‘schatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/q%
,.ff.@*"ﬁ-s

T Address Translation Scheme

B Address generated by CPU is divided into:

® Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

® Page offset (d) — combined with base address to define the
physical memory address that is sent to the memory unit

Dage number page offset
P (
m - N

® For given logical address space 2mand page size 2n

J (o
= A\EE
T

//
4{

o

Operating System Concepts — 10* Edition 9.25 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 202

i Paging Hardware

frame e
logical address physical address 0x000

I = ‘1' i frame f

CPU —> p | d i|d
)

Bl Oxfff

> f frame g

physical memory
page table

R

Operating System Concepts — 10 Edition 9.26 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Model of Logical and Physical Memory

frame
number
page 0 0
0|1
page 1 112 1| page0
2 [
age 2 2
pag N
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Operating System Concepts — 10* Edition 9.27 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Paging Example

B |ogical address: n =2 and m = 4. Using a page size of 4 bytes and a
physical memory of 32 bytes (8 pages)

0| a 0
1|b
2 |
3 |id
4| e 4 i
5 [k i
619 0 k
7 | h 16 |
5| 2[1] & |m
9|] 32 n
10| k (o]
111 page table p
12| m 12
13| n
14| o
15 BB
logical memory 16
20 | @
b
c
d
24 [©
f
g
h
28

physical memory

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 9.28

)

@“i{;"f“ Paging -- Calculating internal fragmentation
B Page size = 2,048 bytes
B Process size = 72,766 bytes
B 35 pages + 1,086 bytes
B [nternal fragmentation of 2,048 - 1,086 = 962 bytes
B Worst case fragmentation = 1 frame — 1 byte
B On average fragmentation = 1 / 2 frame size
B So small frame sizes desirable?
B But each page table entry takes memory to track
B Page sizes growing over time

® Solaris supports two page sizes — 8 KB and 4 MB

: \,/‘}ﬁ\x\.
=

Operating System Concepts — 10* Edition 9.29 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

«W"hv-&
> Free Frames
free-frame list free-frame list
14 156
13 13 13 [page 1
18
20 14 14 [page O
15
P N 15 P 15
Y N
page O 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
19 o[i4 19
118
20 2|18 20 [page 3
3120
21 new-process page table 21
(a) (b)
Before allocation After allocation

U B
A N

Operating System Concepts — 10t Edition 9.30 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Implementation of Page Table

B Page table is kept in main memory

® Page-table base register (PTBR) points to the page
table

® Page-table length register (PTLR) indicates size of the
page table

B [|n this scheme every data/instruction access requires two
memory accesses

® One for the page table and one for the data / instruction

B The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called translation
look-aside buffers (TLBs) (also called associative
memory).

Operating System Concepts — 10t Edition 9.31 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Translation Look-Aside Buffer

B Some TLBs store address-space identifiers (ASIDs) in
each TLB entry — uniquely identifies each process to
provide address-space protection for that process

® Otherwise need to flush at every context switch
B TLBs typically small (64 to 1,024 entries)

B On a TLB miss, value is loaded into the TLB for faster
access next time

® Replacement policies must be considered

® Some entries can be wired down for permanent fast
access

Operating System Concepts — 10* Edition 9.32 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware

B Associative memory — parallel search

Page # Frame #

B Address translation (p, d)
® If pis in associative register, get frame # out
® Otherwise get frame # from page table in memory

Operating System Concepts — 10* Edition 9.33 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

N Paging Hardware With TLB

CPU

logical

address
—>| p | d |

physical
F address

d

e
o

page frame
number number
E TLB hit
E !
f
TLB i
P
TLB miss
> f
page table

physical
memory

B

Operating System Concepts — 10" Edition 9.34 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

g -
G Memory Protection

<)
s

B Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed

® Can also add more bits to indicate page execute-only, and
SO on

B Valid-invalid bit attached to each entry in the page table:

® “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

® “invalid” indicates that the page is not in the process’ logical
address space

® Or use page-table length register (PTLR)
B Any violations result in a trap to the kernel

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 9.36

Valid (v) or Invalid (i) Bit In A Page Table

00000

page 0

page 1

page 2

page 3

page 4

10,468

page 5

12,287

Operating System Concepts — 10" Edition

0
1
2| page 0
frame number valid—invalid bit
\ / 3| page 1
O [
1 By 4| page 2
2 [Eaui 5
3 [(FEE
4|8 |v 6
5 FERIE
6/0]i 7| page 3
7 8| page 4
page table
9| page 5
L]
page n
9.37 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

g
ot Shared Pages

B Shared code

® One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)

® Similar to multiple threads sharing the same process
space

® Also useful for interprocess communication if sharing of
read-write pages is allowed

B Private code and data
® Each process keeps a separate copy of the code and data

® The pages for the private code and data can appear
anywhere in the logical address space

l &
AU

/
°
@ =
= AN
v =

o

Operating System Concepts — 10 Edition 9.38 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 202

Shared Pages Example

libc 1
ibc T 0
libc 2 Ba
| 4 | 1| libc4
libc 3 o
1 2
libc 4 |
page table ; 3 libc 1
libc 1 180
iel for P, =
3
process P, libe 4 5 pai2
libc 3 2] 5
1
libc 4 =] 6 .
: page table Ibg
libc 1 i i for P,
3 7
libc 2 B process P,
libc 3 i -
1
libc 4 = .
page table
- for P physical memory
process P,

Operating System Concepts — 10 Edition 9.39 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

%’ Structure of the Page Table

B Memory structures for paging can get huge using straight-forward
methods

® Consider a 32-bit logical address space as on modern
computers

Page size of 4 KB (212)
Page table would have 1 million entries (232 / 212)

If each entry is 4 bytes =» each process 4 MB of physical
address space for the page table alone

» Don’t want to allocate that contiguously in main memory

® One simple solution is to divide the page table into smaller
units

> Hierarchical Paging
» Hashed Page Tables
» Inverted Page Tables

= .;\‘\‘H
Sl
J@@i\‘
74 ‘E”D
A W

Operating System Concepts — 10* Edition 9.40 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hierarchical Page Tables

B Break up the logical address space into multiple page tables
B A simple technique is a two-level page table
B We then page the page table

7]

100

/ \

500
708 .
-\
. 708
outer page \..__* 929 .
table - N =00
900 />< :
page of 829
page table
page table .
memory

Operating System Concepts — 10 Edition 9.41 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

P .
ot Two-Level Paging Example

B A logical address (on 32-bit machine with 1K page size) is divided into:
® a page number consisting of 22 bits
® a page offset consisting of 10 bits

B Since the page table is paged, the page number is further divided into:
® a 10-bit page number
® a 12-bit page offset

B Thus, a logical address is as follows:

page humber page offset
P1 P2 d
10 10 12

B where p; is an index into the outer page table, and p; is the
displacement within the page of the inner page table

B Known as forward-mapped page table

Operating System Concepts — 10t Edition 9.42 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Address-Translation Scheme

logical address
Pi | P2 | d

.

:

=

outer page d
table {

page of
page table

Operating System Concepts — 10 Edition 9.43 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/;\%\

4%’ 64-bit Logical Address Space

.
‘i—" NS

B Even two-level paging scheme not sufficient

B [f page size is 4 KB (212)
® Then page table has 252 entries
® If two level scheme, inner page tables could be 210 4-byte entries
® Address would look like

outer page inner page offset
P1 P2 d
42 10 12

® Quter page table has 242 entries or 244 bytes
® One solution is to add a 2nd outer page table

® But in the following example the 2nd outer page table is still 234
bytes in size

» And possibly 4 memory access to get to one physical memory
location

