
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 10: Virtual Memory

10.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Background

 Although code needs to be in memory to be executed, the entire
program does not need to be.
 Only small sections execute in any small window of time, and
 Error code, unusual routines, large data structures do not

need to be in memory for the entire execution of the program
 What if we do not load the entire program into memory?

 Program no longer constrained by limits of physical memory
 Each program takes less memory while running implies

more programs run at the same time
 Increased CPU utilization and throughput with no increase

in response time or turnaround time
 Less I/O needed to load or swap programs into memory ->

each user program runs faster

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

10.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Virtual memory

 Virtual memory – separation of user logical memory from
physical memory
 Only part of the program and its data needs to be in

memory for execution
 Logical address space can therefore be much larger than

physical address space
 Also allows address spaces to be shared by several

processes
 Allows for more efficient process creation
 More programs running concurrently
 Less I/O needed to load or swap processes

10.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Virtual memory (Cont.)

 Virtual address space – logical view of how process is
stored in memory
 Usually starts at address 0, contiguous addresses until

end of space
 48-bit virtual addresses implies 2^48 bytes of virtual

memory
 Physical memory is still organized into page frames
 MMU must map virtual to physical

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

10.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Virtual Address Translation

 Translation of a 32-bit virtual address to a 30-bit physical
address:

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

10.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Translation Using Just a Page Table

10.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Demand Paging

 In demand paging:
 pages are brought into memory only when needed:

 Less I/O needed, no unnecessary I/O
 Less memory needed
 Faster response
 More users

 If a page is needed, it implies a reference made to it
 invalid reference  abort
 not-in-memory  bring into memory

 Lazy swapper – never brings a page into memory unless page will be
needed
 Swapper that deals with pages is called a pager

10.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Steps in Handling a Page Fault (Cont.)

10.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Free-Frame List

 When a page fault occurs, the operating system must bring
the desired page from secondary storage into main memory.

 Most operating systems maintain a free-frame list -- a pool
of free frames for satisfying such requests.

 Operating system typically allocate free frames using a
technique known as zero-fill-on-demand -- the content of
the frames zeroed-out before being allocated.

 When a system starts up, all available memory is placed on
the free-frame list.

10.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Stages in Demand Paging – Worse Case

1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the

location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is
serviced

2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

10.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Stages in Demand Paging (Cont.)

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O

completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now

in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page

table, and then resume the interrupted instruction

10.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Performance of Demand Paging

 Three major activities
 Service the interrupt – careful coding means just several hundred

instructions needed
 Read the page – lots of time
 Restart the process – again just a small amount of time

 Page Fault Rate 0  p  1
 if p = 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
 EAT = (1 – p) x memory access

 + p (page fault overhead
 + swap page out
 + swap page in)

10.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Demand Paging Example

 Memory access time = 200 nanoseconds
 Average page-fault service time = 8 milliseconds
 EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p x 200 + p x 8,000,000
 = 200 + p x 7,999,800
 If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!!
 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

 p < .0000025
 < one page fault in every 400,000 memory accesses

10.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

What Happens if There is no Free Frame?

 Used up by process pages
 Also in demand from the kernel, I/O buffers, etc
 How much to allocate to each?
 Page replacement – find some page in memory, but not

really in use, page it out
 Algorithm – terminate? swap out? replace the page?
 Performance – want an algorithm which will result in

minimum number of page faults
 Same page may be brought into memory several times

10.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Page Replacement

 Prevent over-allocation of memory by modifying
page-fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

 Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

10.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Need For Page Replacement

10.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Basic Page Replacement

1. Find the location of the desired page on disk
2. Find a free frame:

 - If there is a free frame, use it
 - If there is no free frame, use a page replacement
algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update

the page and frame tables
4. Continue the process by restarting the instruction that

caused the trap

Note now potentially 2 page transfers for page fault –

increasing EAT

10.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Page Replacement

10.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines
 How many frames to give each process
 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string
 String is just page numbers, not full addresses
 Repeated access to the same page does not cause a page fault
 Results depend on number of frames available

 In all our examples, the reference string of referenced page
numbers is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

10.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Graph of Page Faults Versus The Number of Frames

10.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly
 How to track ages of pages?

 Just use a FIFO queue

15 page faults\

10.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

FIFO Illustrating Belady’s Anomaly

10.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs

10.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?

10.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?

10.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

LRU Algorithm (Cont.)
 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find
smallest value
 Search through table needed

 Stack implementation
 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

