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Chapter 17: Protection

 Goals of Protection 
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 Protection Rings
 Domain of Protection
 Access Matrix 
 Implementation of Access Matrix 
 Revocation of Access Rights 
 Role-based Access Control
 Mandatory Access Control (MAC)
 Capability-Based Systems 
 Other Protection Implementation Methods
 Language-based Protection
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Objectives

 Discuss the goals and principles of protection in a modern 
computer system

 Explain how protection domains combined with an access 
matrix are used to specify the resources a process may 
access

 Examine capability and language-based protection systems
 Describe how protection mechanisms can mitigate system 

attacks
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Goals of Protection

 In one protection model,  computer consists of a collection of 
objects, hardware or software

 Each object has a unique name and can be accessed through 
a well-defined set of operations

 Protection problem - ensure that each object is accessed 
correctly and only by those processes that are allowed to do so
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Principles of Protection

 Guiding principle – principle of least privilege
 Programs, users and systems should be given just enough 

privileges to perform their tasks
 Properly set permissions can limit damage if entity has a 

bug, gets abused
 Can be static (during life of system, during life of process) 
 Or dynamic (changed by process as needed) – domain 

switching, privilege escalation
 Compartmentalization a derivative concept regarding 

access to data 
 Process of protecting each individual system 

component through the use of specific permissions and 
access restrictions
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Principles of Protection (Cont.)

 Must consider “grain” aspect
 Rough-grained  privilege management easier, simpler, but 

least privilege now done in large chunks
 For example, traditional Unix processes either have 

abilities of the associated user, or of root
 Fine-grained management more complex, more overhead, 

but more protective
 File ACL lists, RBAC

 Domain can be user, process, procedure
 Audit trail – recording all protection-orientated activities, 

important to understanding what happened, why, and catching 
things that shouldn’t

 No single principle is a panacea for security vulnerabilities – 
need defense in depth
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Protection Rings

 Components ordered by amount of privilege and protected 
from each other
 For example, the kernel is in one ring and user 

applications in another
 This privilege separation requires hardware support
 Gates used to transfer between levels, for example the 

syscall Intel instruction
 Also traps and interrupts
 Hypervisors introduced the need for yet another ring
 ARMv7 processors added TrustZone(TZ) ring to protect 

crypto functions with access via new Secure Monitor Call 
(SMC) instruction
 Protecting NFC secure element and crypto keys from 

even the kernel
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Protection Rings (MULTICS)

 Let Di and Dj be any two domain rings
 If j < I  Di   Dj
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Android use of TrustZone
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ARM CPU Architecture
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Domain of Protection

 Rings of protection separate functions into domains and order them hierarchically  
 Computer can be treated as processes and objects

 Hardware objects (such as devices) and software objects (such as files, 
programs, semaphores

 Process for example should only have access to objects it currently requires to 
complete its task – the need-to-know principle

 Implementation can be via process operating in a protection domain
 Specifies resources process may access
 Each domain specifies set of objects and types of operations on them
 Ability to execute an operation on an object is an access right

 <object-name, rights-set>
 Domains may share access rights
 Associations can be static or dynamic
 If dynamic, processes can domain switch
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Domain Structure

 Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can 
be performed on the object 

 Domain = set of access-rights 
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Domain Implementation (UNIX)

 Domain = user-id
 Domain switch accomplished via file system

 Each file has associated with it a domain bit (setuid bit)
 When file is executed and setuid = on, then user-id is 

set to owner of the file being executed
  When execution completes user-id is reset 

 Domain switch accomplished via passwords
 su command temporarily switches to another user’s 

domain when other domain’s password provided
 Domain switching via commands

 sudo command prefix executes specified command in 
another domain (if original domain has privilege or 
password given)
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Domain Implementation (Android App IDs)

 In Android, distinct user IDs are provided on a per-application basis
 When an application is installed, the installd daemon assigns it a 

distinct user ID (UID) and group ID (GID), along with a private data 
directory (/data/data/<appname>) whose ownership is granted to this 
UID/GID combination alone. 

 Applications on the device enjoy the same level of protection provided 
by UNIX systems to separate users

 A quick and simple way to provide isolation, security, and privacy. 
 The mechanism is extended by modifying the kernel to allow certain 

operations (such as networking sockets) only to members of a 
particular GID (for example, AID INET, 3003)

 A further enhancement by Android is to define certain UIDs as 
“isolated,” prevents them from initiating RPC requests to any but a bare 
minimum of services
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Access Matrix

 View protection as a matrix (access matrix)
 Rows represent domains
 Columns represent objects
 Access(i, j) is the set of operations that a process 

executing in Domaini can invoke on Objectj
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Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj, then “op
” must be in the access matrix

 User who creates object can define access column for that 
object

 Can be expanded to dynamic protection
 Operations to add, delete access rights
 Special access rights:

 owner of Oi

 copy op from Oi to Oj (denoted by “*”)
 control – Di can modify Dj access rights
 transfer – switch from domain Di to Dj

 Copy and Owner applicable to an object
 Control applicable to domain object
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Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy
 Mechanism 

 Operating system provides access-matrix + rules
 If ensures that the matrix is only manipulated by 

authorized agents and that rules are strictly enforced
 Policy

 User dictates policy
 Who can access what object and in what mode

 But doesn’t solve the general confinement problem
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Access Matrix of Figure A with Domains as Objects
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Access Matrix with Copy Rights
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Access Matrix With Owner Rights
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Modified Access Matrix of Figure B
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Implementation of Access Matrix

 Generally, a sparse matrix
 Option 1 – Global table

 Store ordered triples <domain, object, 
rights-set> in table

 A requested operation M on object Oj within domain 
Di -> search table for < Di, Oj, Rk > 
 with M  R∈ R k

 But table could be large -> won’t fit in main memory
 Difficult to group objects (consider an object that all 

domains can read)
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Implementation of Access Matrix (Cont.)

 Option 2 – Access lists for objects
 Each column implemented as an access list for one 

object
 Resulting per-object list consists of ordered pairs 

<domain, rights-set> defining all domains with 
non-empty set of access rights for the object

 Easily extended to contain default set -> If M  default ∈ R
set, also allow access
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Implementation of Access Matrix (Cont.)

 Each column = Access-control list for one object 
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read
       

 Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy
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Implementation of Access Matrix (Cont.)

 Option 3 – Capability list for domains
 Instead of object-based, list is domain based
 Capability list for domain is list of objects together with operations 

allows on them
 Object represented by its name or address, called a capability
 Execute operation M on object Oj, process requests operation and 

specifies capability as parameter
 Possession of capability means access is allowed

 Capability list associated with domain but never directly accessible 
by domain

 Rather, protected object, maintained by OS and accessed 
indirectly

 Like a “secure pointer”
 Idea can be extended up to applications
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Implementation of Access Matrix (Cont.)

 Option 4 – Lock-key
 Compromise between access lists and capability lists
 Each object has list of unique bit patterns, called locks
 Each domain as list of unique bit patterns called keys
 Process in a domain can only access object if domain 

has key that matches one of the locks
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Comparison of Implementations

 Many trade-offs to consider
 Global table is simple, but can be large
 Access lists correspond to needs of users

 Determining set of access rights for domain non-
localized so difficult

 Every access to an object must be checked
– Many objects and access rights -> slow

 Capability lists useful for localizing information for a given 
process
 But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely 
from domain to domain, easy revocation 
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Comparison of Implementations (Cont.)

 Most systems use combination of access lists and 
capabilities
 First access to an object -> access list searched

 If allowed, capability created and attached to 
process

– Additional accesses need not be checked
 After last access, capability destroyed
 Consider file system with ACLs per file
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Revocation of Access Rights

 Various options to remove the access right of a domain to an 
object
 Immediate vs. delayed
 Selective vs. general
 Partial vs. total
 Temporary vs. permanent

 Access List – Delete access rights from access list
 Simple – search access list and remove entry
 Immediate, general or selective, total or partial, 

permanent or temporary
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Revocation of Access Rights (Cont.)

 Capability List – Scheme required to locate capability in the system 
before capability can be revoked
 Reacquisition – periodic delete, with require and denial if revoked
 Back-pointers – set of pointers from each object to all capabilities 

of that object (Multics)
 Indirection – capability points to global table entry which points to 

object – delete entry from global table, not selective (CAL)
 Keys – unique bits associated with capability, generated when 

capability created
 Master key associated with object, key matches master key for 

access
 Revocation – create new master key
 Policy decision of who can create and modify keys – object 

owner or others?
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Role-based Access Control

 Protection can be applied to non-file 
resources

 Oracle Solaris 10 provides role-
based access control (RBAC) to 
implement least privilege
 Privilege is right to execute 

system call or use an option 
within a system call

 Can be assigned to processes
 Users assigned roles granting 

access to privileges and 
programs
 Enable role via password to 

gain its privileges
 Similar to access matrix
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Mandatory Access Control (MAC)

 Operating systems traditionally had discretionary access control (DAC) to 
limit access to files and other objects (for example UNIX file permissions 
and Windows access control lists (ACLs))
 Discretionary is a weakness – users / admins need to do something 

to increase protection
 Stronger form is mandatory access control, which even root user can’t 

circumvent
 Makes resources inaccessible except to their intended owners
 Modern systems implement both MAC and DAC, with MAC usually a 

more secure, optional configuration (Trusted Solaris, TrustedBSD 
(used in macOS), SELinux), Windows Vista MAC)

 At its heart, labels assigned to objects and subjects (including processes)
 When a subject requests access to an object, policy checked to 

determine whether or not a given label-holding subject is allowed to 
perform the action on the object 
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Capability-Based Systems 

 Hydra and CAP were first capability-based systems
 Now included in Linux, Android and others, based on POSIX.1e (that 

never became a standard)
 Essentially slices up root powers into distinct areas, each 

represented by a bitmap bit
 Fine grain control over privileged operations can be achieved by 

setting or masking the bitmap
 Three sets of bitmaps – permitted, effective, and inheritable

 Can apply per process or per thread
 Once revoked, cannot be reacquired
 Process or thread starts with all privs, voluntarily decreases set 

during execution
 Essentially a direct implementation of the principle of least 

privilege
 An improvement over root having all privileges but inflexible (adding new 

privilege difficult, etc)
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Capabilities in POSIX.1e 
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Other Protection Improvement Methods

 System integrity protection (SIP)
 Introduced by Apple in macOS 10.11
 Restricts access to system files and resources, even by 

root
 Uses extended file attribs to mark a binary to restrict 

changes, disable debugging and scrutinizing
 Also, only code-signed kernel extensions allowed and 

configurably only code-signed apps
 System-call filtering

 Like a firewall, for system calls
 Can also be deeper –inspecting all system call arguments
 Linux implements via SECCOMP-BPF (Berkeley packet 

filtering)
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Other Protection Improvement Methods (cont.)

 Sandboxing
 Running process in limited environment
 Impose set of irremovable restrictions early in startup of 

process (before main())
 Process then unable to access any resources beyond 

its allowed set
 Java and .net implement at a virtual machine level
 Other systems use MAC to implement
 Apple was an early adopter, from macOS 10.5’s 

“seatbelt” feature
 Dynamic profiles written in the Scheme language, 

managing system calls even at the argument level
 Apple now does SIP, a system-wide platform profile
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Other Protection Improvement Methods (cont.)

 Code signing allows a system to trust a program or script 
by using crypto hash to have the developer sign the 
executable
 So code as it was compiled by the author
 If the code is changed, signature invalid and (some) 

systems disable execution
 Can also be used to disable old programs by the 

operating system vendor (such as Apple) cosigning 
apps, and then invaliding those signatures so the code 
will no longer run
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Language-Based Protection

 Specification of protection in a programming language 
allows the high-level description of policies for the 
allocation and use of resources

 Language implementation can provide software for 
protection enforcement when automatic hardware-
supported checking is unavailable

 Interpret protection specifications to generate calls on 
whatever protection system is provided by the hardware 
and the operating system
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Protection in Java 2

 Protection is handled by the Java Virtual Machine (JVM)
 A class is assigned a protection domain when it is loaded by 

the JVM
 The protection domain indicates what operations the class 

can (and cannot) perform
 If a library method is invoked that performs a privileged 

operation, the stack is inspected to ensure the operation can 
be performed by the library

 Generally, Java’s load-time and run-time checks enforce type 
safety

 Classes effectively encapsulate and protect data and 
methods from other classes
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Stack Inspection
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End of Chapter 17
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