
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 17: Protection

17.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 17: Protection

 Goals of Protection
 Principles of Protection
 Protection Rings
 Domain of Protection
 Access Matrix
 Implementation of Access Matrix
 Revocation of Access Rights
 Role-based Access Control
 Mandatory Access Control (MAC)
 Capability-Based Systems
 Other Protection Implementation Methods
 Language-based Protection

17.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Discuss the goals and principles of protection in a modern
computer system

 Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

 Examine capability and language-based protection systems
 Describe how protection mechanisms can mitigate system

attacks

17.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Goals of Protection

 In one protection model, computer consists of a collection of
objects, hardware or software

 Each object has a unique name and can be accessed through
a well-defined set of operations

 Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

17.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Principles of Protection

 Guiding principle – principle of least privilege
 Programs, users and systems should be given just enough

privileges to perform their tasks
 Properly set permissions can limit damage if entity has a

bug, gets abused
 Can be static (during life of system, during life of process)
 Or dynamic (changed by process as needed) – domain

switching, privilege escalation
 Compartmentalization a derivative concept regarding

access to data
 Process of protecting each individual system

component through the use of specific permissions and
access restrictions

17.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Principles of Protection (Cont.)

 Must consider “grain” aspect
 Rough-grained privilege management easier, simpler, but

least privilege now done in large chunks
 For example, traditional Unix processes either have

abilities of the associated user, or of root
 Fine-grained management more complex, more overhead,

but more protective
 File ACL lists, RBAC

 Domain can be user, process, procedure
 Audit trail – recording all protection-orientated activities,

important to understanding what happened, why, and catching
things that shouldn’t

 No single principle is a panacea for security vulnerabilities –
need defense in depth

17.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Protection Rings

 Components ordered by amount of privilege and protected
from each other
 For example, the kernel is in one ring and user

applications in another
 This privilege separation requires hardware support
 Gates used to transfer between levels, for example the

syscall Intel instruction
 Also traps and interrupts
 Hypervisors introduced the need for yet another ring
 ARMv7 processors added TrustZone(TZ) ring to protect

crypto functions with access via new Secure Monitor Call
(SMC) instruction
 Protecting NFC secure element and crypto keys from

even the kernel

17.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Protection Rings (MULTICS)

 Let Di and Dj be any two domain rings
 If j < I  Di  Dj

17.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Android use of TrustZone

17.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

ARM CPU Architecture

17.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Domain of Protection

 Rings of protection separate functions into domains and order them hierarchically
 Computer can be treated as processes and objects

 Hardware objects (such as devices) and software objects (such as files,
programs, semaphores

 Process for example should only have access to objects it currently requires to
complete its task – the need-to-know principle

 Implementation can be via process operating in a protection domain
 Specifies resources process may access
 Each domain specifies set of objects and types of operations on them
 Ability to execute an operation on an object is an access right

 <object-name, rights-set>
 Domains may share access rights
 Associations can be static or dynamic
 If dynamic, processes can domain switch

17.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Domain Structure

 Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

 Domain = set of access-rights

17.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Domain Implementation (UNIX)

 Domain = user-id
 Domain switch accomplished via file system

 Each file has associated with it a domain bit (setuid bit)
 When file is executed and setuid = on, then user-id is

set to owner of the file being executed
 When execution completes user-id is reset

 Domain switch accomplished via passwords
 su command temporarily switches to another user’s

domain when other domain’s password provided
 Domain switching via commands

 sudo command prefix executes specified command in
another domain (if original domain has privilege or
password given)

17.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Domain Implementation (Android App IDs)

 In Android, distinct user IDs are provided on a per-application basis
 When an application is installed, the installd daemon assigns it a

distinct user ID (UID) and group ID (GID), along with a private data
directory (/data/data/<appname>) whose ownership is granted to this
UID/GID combination alone.

 Applications on the device enjoy the same level of protection provided
by UNIX systems to separate users

 A quick and simple way to provide isolation, security, and privacy.
 The mechanism is extended by modifying the kernel to allow certain

operations (such as networking sockets) only to members of a
particular GID (for example, AID INET, 3003)

 A further enhancement by Android is to define certain UIDs as
“isolated,” prevents them from initiating RPC requests to any but a bare
minimum of services

17.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Access Matrix

 View protection as a matrix (access matrix)
 Rows represent domains
 Columns represent objects
 Access(i, j) is the set of operations that a process

executing in Domaini can invoke on Objectj

17.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj, then “op
” must be in the access matrix

 User who creates object can define access column for that
object

 Can be expanded to dynamic protection
 Operations to add, delete access rights
 Special access rights:

 owner of Oi

 copy op from Oi to Oj (denoted by “*”)
 control – Di can modify Dj access rights
 transfer – switch from domain Di to Dj

 Copy and Owner applicable to an object
 Control applicable to domain object

17.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy
 Mechanism

 Operating system provides access-matrix + rules
 If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly enforced
 Policy

 User dictates policy
 Who can access what object and in what mode

 But doesn’t solve the general confinement problem

17.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Access Matrix of Figure A with Domains as Objects

17.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Access Matrix with Copy Rights

17.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Access Matrix With Owner Rights

17.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modified Access Matrix of Figure B

17.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Access Matrix

 Generally, a sparse matrix
 Option 1 – Global table

 Store ordered triples <domain, object,
rights-set> in table

 A requested operation M on object Oj within domain
Di -> search table for < Di, Oj, Rk >
 with M R∈ R k

 But table could be large -> won’t fit in main memory
 Difficult to group objects (consider an object that all

domains can read)

17.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Access Matrix (Cont.)

 Option 2 – Access lists for objects
 Each column implemented as an access list for one

object
 Resulting per-object list consists of ordered pairs

<domain, rights-set> defining all domains with
non-empty set of access rights for the object

 Easily extended to contain default set -> If M default ∈ R
set, also allow access

17.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Access Matrix (Cont.)

 Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

 Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy

17.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Access Matrix (Cont.)

 Option 3 – Capability list for domains
 Instead of object-based, list is domain based
 Capability list for domain is list of objects together with operations

allows on them
 Object represented by its name or address, called a capability
 Execute operation M on object Oj, process requests operation and

specifies capability as parameter
 Possession of capability means access is allowed

 Capability list associated with domain but never directly accessible
by domain

 Rather, protected object, maintained by OS and accessed
indirectly

 Like a “secure pointer”
 Idea can be extended up to applications

17.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Access Matrix (Cont.)

 Option 4 – Lock-key
 Compromise between access lists and capability lists
 Each object has list of unique bit patterns, called locks
 Each domain as list of unique bit patterns called keys
 Process in a domain can only access object if domain

has key that matches one of the locks

17.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Comparison of Implementations

 Many trade-offs to consider
 Global table is simple, but can be large
 Access lists correspond to needs of users

 Determining set of access rights for domain non-
localized so difficult

 Every access to an object must be checked
– Many objects and access rights -> slow

 Capability lists useful for localizing information for a given
process
 But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

17.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Comparison of Implementations (Cont.)

 Most systems use combination of access lists and
capabilities
 First access to an object -> access list searched

 If allowed, capability created and attached to
process

– Additional accesses need not be checked
 After last access, capability destroyed
 Consider file system with ACLs per file

17.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Revocation of Access Rights

 Various options to remove the access right of a domain to an
object
 Immediate vs. delayed
 Selective vs. general
 Partial vs. total
 Temporary vs. permanent

 Access List – Delete access rights from access list
 Simple – search access list and remove entry
 Immediate, general or selective, total or partial,

permanent or temporary

17.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Revocation of Access Rights (Cont.)

 Capability List – Scheme required to locate capability in the system
before capability can be revoked
 Reacquisition – periodic delete, with require and denial if revoked
 Back-pointers – set of pointers from each object to all capabilities

of that object (Multics)
 Indirection – capability points to global table entry which points to

object – delete entry from global table, not selective (CAL)
 Keys – unique bits associated with capability, generated when

capability created
 Master key associated with object, key matches master key for

access
 Revocation – create new master key
 Policy decision of who can create and modify keys – object

owner or others?

17.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Role-based Access Control

 Protection can be applied to non-file
resources

 Oracle Solaris 10 provides role-
based access control (RBAC) to
implement least privilege
 Privilege is right to execute

system call or use an option
within a system call

 Can be assigned to processes
 Users assigned roles granting

access to privileges and
programs
 Enable role via password to

gain its privileges
 Similar to access matrix

17.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mandatory Access Control (MAC)

 Operating systems traditionally had discretionary access control (DAC) to
limit access to files and other objects (for example UNIX file permissions
and Windows access control lists (ACLs))
 Discretionary is a weakness – users / admins need to do something

to increase protection
 Stronger form is mandatory access control, which even root user can’t

circumvent
 Makes resources inaccessible except to their intended owners
 Modern systems implement both MAC and DAC, with MAC usually a

more secure, optional configuration (Trusted Solaris, TrustedBSD
(used in macOS), SELinux), Windows Vista MAC)

 At its heart, labels assigned to objects and subjects (including processes)
 When a subject requests access to an object, policy checked to

determine whether or not a given label-holding subject is allowed to
perform the action on the object

17.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Capability-Based Systems

 Hydra and CAP were first capability-based systems
 Now included in Linux, Android and others, based on POSIX.1e (that

never became a standard)
 Essentially slices up root powers into distinct areas, each

represented by a bitmap bit
 Fine grain control over privileged operations can be achieved by

setting or masking the bitmap
 Three sets of bitmaps – permitted, effective, and inheritable

 Can apply per process or per thread
 Once revoked, cannot be reacquired
 Process or thread starts with all privs, voluntarily decreases set

during execution
 Essentially a direct implementation of the principle of least

privilege
 An improvement over root having all privileges but inflexible (adding new

privilege difficult, etc)

17.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Capabilities in POSIX.1e

17.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Other Protection Improvement Methods

 System integrity protection (SIP)
 Introduced by Apple in macOS 10.11
 Restricts access to system files and resources, even by

root
 Uses extended file attribs to mark a binary to restrict

changes, disable debugging and scrutinizing
 Also, only code-signed kernel extensions allowed and

configurably only code-signed apps
 System-call filtering

 Like a firewall, for system calls
 Can also be deeper –inspecting all system call arguments
 Linux implements via SECCOMP-BPF (Berkeley packet

filtering)

17.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Other Protection Improvement Methods (cont.)

 Sandboxing
 Running process in limited environment
 Impose set of irremovable restrictions early in startup of

process (before main())
 Process then unable to access any resources beyond

its allowed set
 Java and .net implement at a virtual machine level
 Other systems use MAC to implement
 Apple was an early adopter, from macOS 10.5’s

“seatbelt” feature
 Dynamic profiles written in the Scheme language,

managing system calls even at the argument level
 Apple now does SIP, a system-wide platform profile

17.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Other Protection Improvement Methods (cont.)

 Code signing allows a system to trust a program or script
by using crypto hash to have the developer sign the
executable
 So code as it was compiled by the author
 If the code is changed, signature invalid and (some)

systems disable execution
 Can also be used to disable old programs by the

operating system vendor (such as Apple) cosigning
apps, and then invaliding those signatures so the code
will no longer run

17.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Language-Based Protection

 Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

 Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

 Interpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system

17.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Protection in Java 2

 Protection is handled by the Java Virtual Machine (JVM)
 A class is assigned a protection domain when it is loaded by

the JVM
 The protection domain indicates what operations the class

can (and cannot) perform
 If a library method is invoked that performs a privileged

operation, the stack is inspected to ensure the operation can
be performed by the library

 Generally, Java’s load-time and run-time checks enforce type
safety

 Classes effectively encapsulate and protect data and
methods from other classes

17.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stack Inspection

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 17

	Chapter 17: Protection
	Chapter 17: Protection
	Objectives
	Goals of Protection
	Principles of Protection
	Principles of Protection (Cont.)
	Protection Rings
	Protection Rings (MULTICS)
	Android use of TrustZone
	ARM CPU Architecture
	Domain of Protection
	Domain Structure
	Domain Implementation (UNIX)
	Domain Implementation (Android App IDs)
	Access Matrix
	Use of Access Matrix
	Use of Access Matrix (Cont.)
	Access Matrix of Figure A with Domains as Objects
	Access Matrix with Copy Rights
	Access Matrix With Owner Rights
	Modified Access Matrix of Figure B
	Implementation of Access Matrix
	Implementation of Access Matrix (Cont.)
	Slide 24
	Slide 25
	Slide 26
	Comparison of Implementations
	Comparison of Implementations (Cont.)
	Revocation of Access Rights
	Revocation of Access Rights (Cont.)
	Role-based Access Control
	Mandatory Access Control (MAC)
	Capability-Based Systems
	Capabilities in POSIX.1e
	Other Protection Improvement Methods
	Other Protection Improvement Methods (cont.)
	Slide 37
	Language-Based Protection
	Protection in Java 2
	Stack Inspection
	End of Chapter 17

