
Chapter 8 Monte Carlo Methods

“There is no such thing as a perfectly random number.” - Harold Bailey, my 8thgrade math
teacher

Preface

When I was a youngster, I was the captain of my junior high school math team. One day, one of my
teammates posed a problem that required Mr. Bailey, our coach, to pick a random number.

“Pick a perfectly random number, “ he was challenged.

“What do you mean?” he replied.

“Pick a number that is as random as it can be,” said my teammate, to which Mr. Bailey replied,

“There is no such thing as a perfectly random number.”

And thus came to an end an idea that my friend once thought was pretty obvious, and one about which I
had never given much thought. It is several decades later, and I will spend a few pages here on the subject
of random numbers, their creation, and use.

8.1 Introduction

This chapter introduces a very important class of problem solving techniques known as Monte Carlo methods,
which are based on the idea of randomization. A Monte Carlo method is an algorithm that uses streams of
random numbers to solve a problem. Its name comes from the fact that the algorithm resembles gambling,
because the solution is a guess based on probabilistic techniques, with a nonzero chance that it is incorrect.
The Monte Carlo method arose out of discussions among John von Neumann, Robert Richtmyer, Stanislaw
Ulam, and Nicholas Metropolis in the course of their research on nuclear radiation while working at Los
Alamos Scientific Laboratory in the period from 1945 through 1947[9, 3], and named by John von Neumann,
after the famous casino in Monaco.

8.2 Applications of Monte Carlo Methods

Many problems that arise in the physical and social sciences, pure mathematics, and many other disci-
plines, cannot be solved by ordinary deterministic methods. Many of these problems ultimately require the
evaluation of multidimensional definite integrals. A multidimensional integral is of the form

ˆ ˆ ˆ
. . .

ˆ
f(x1, x2, x3, . . . , xn)dx1dx2dx3 · · · dxn

where the bounds of integration for each dimension are independent of each other. Evaluating an integral of
this form using a deterministic method such as Simpson’s Rule or the trapezoid or rectangular method does
not work well because each dimension requires a large number of independent intermediate points. If, for
example, we need 100 points in each of 30 dimensions, then we would need to evaluate the function 10030

times. (If this is not obvious, change the integrals to a discrete sum of the form
∑100

x2=1

∑
100
x1=1f(x1)f(x2)...

to see the number of evaluations of the product.) This is often called the curse of dimensionality. Such
high-dimensionality integrals arise in quantum physics and quantum mechanics with regularity. To compute

1

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

the energy of a molecule that has n electrons, each of which has three spatial coordinates and one spin
coordinate, requires solving a complex integral of dimension 4n many times over.
In economics, calculating risk in business and the future value of the Dow Jones Industrial average are
problems that can only be solved using Monte Carlo methods. Monte Carlo methods are used in space
exploration, image processing, artificial intelligence, and applied statistics. In artificial intelligence, Monte
Carlo methods are used for searching large state spaces for optimal moves in games.

8.2.1 Example: Calculating PI (again)

If you are wondering why it is that calculating an estimate of π arises so often as an example of a method of
computing, it is simply that everyone knows what π is, and that there are so many different and interesting
ways to approximate its value. In this chapter estimating π provides a simple example of one use of the
Monte Carlo method, albeit not the best example to illustrate its power.
A circle of unit radius has area πr2 = π. Imagine a circle of radius 1.0 contained in a square whose sides
have length equal to the circle’s diameter, as shown in Figure 8.1. Since the radius is 1.0, the area of the
circle is π and the area of the square is (2r)2 = 4.0. Hence the ratio of the area of the circle to that of
the square is π/4. Imagine now that the circle and the square are both shallow pans that can hold water,
for instance, and that their sides are of infinitesimal thickness. We can conduct a thought experiment as
follows. We place the two pans, one inside the other, on a flat surface outdoors during a rain storm and
then measure the volume of water in the circular pan and the volume of water in the square pan. Suppose
that the volume of water in the circular pan is Vc and the volume in the square pan is Vs. We expect that
the ratio Vc/(Vc + Vs) should be a good approximation of the area of the circle to the area of the square,
assuming that the rain fell according to a uniform distribution from above, and this ratio should be π/4.
(We will define a uniform distribution formally below. For now, if you are unfamiliar with the term, it is a
probability distribution in which all outcomes of the random variable are equally probable.)

area of circle = π

area of square = 4.0

r = 1.0

Figure 8.1: A circle in a square whose side equals its diameter. If the diameter is 2, then the square has area
4 and the circle has area π. The ratio of the circle’s area to the square’s is π/4.

Imagine now that we simulate the falling rain by generating a sequence of “random” locations within the
square pan at which raindrops would fall. This is, in essence, a method of computing an approximation to π
by generating random numbers, which is an application of the Monte Carlo method. Suppose that the pans
are centered on the origin of the two-dimensional plane. Then a location within a square of side 2 centered
on the origin is a point (x, y) such that −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Some of locations will fall within the
circle and some will not. To be precise, it is exactly those points (x, y) such that x2 + y2 ≤ 1 that lie within
the circle; the others do not. If we count the number of randomly generated points within the circle, say c,
and divide by the total number of points, n, the ratio c/n is an estimate of π/4, assuming that our random
number generator really does generate the coordinates in some uniform, uncorrelated way.
Naturally, we can perform this same experiment by using just the part of the circle in the first quadrant,
as shown in Figure 8.2. The ratio of the quarter circle to the square will still be π/4 and we can generate
values of x and y that lie in the interval [0, 1].

2

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

(1,1)(0,1)

(0,0) (1,0)

Figure 8.2: A quarter circle of unit radius in a square of unit width.

The ratio c/n is a statistical average. If we repeat the experiment with the same number of points we
will get a different ratio because of the randomness of the numbers. However, as the number of sample
points is increased, we should expect the estimate c/n to become more accurate, meaning closer in value to
π/4, or stated another way, the absolute error to become smaller. The absolute error of an estimate
is the absolute difference |a− e| where a is the correct value of the quantity being approximated, and e is
the computed estimate. In this particular example, we can obtain the actual value of π to any degree of
precision that we choose, because it has been computed to millions of decimal digits, so we can compute
the absolute error of the estimate to as much decimal precision as we choose. Using the C library’s random
function, we can write a simple sequential program to implement this algorithm. We choose random rather
than rand because it is known that some implementations of the rand function may not produce sufficiently
random-looking numbers. By running this program with different numbers of sample points, we can examine
how the absolute error changes as the number of sample points is increased. We will do that shortly.

8.3 The Theory

In almost all applications of interest, the correct answer to the problem is not known in advance, otherwise
we would not be seeking it in the first place! Therefore, when a Monte Carlo method is used to obtain an
estimate, it is important to have a method of predicting the absolute error in advance. In order to predict the
possible error, there needs to be an underlying theoretical model or foundation. The Monte Carlo method
has such a foundation, and although it is beyond the scope of these notes to explore the theory in depth, it
is necessary to state some basic results so that we have a way to understand its applicability and limitations.
The basic problem that Monte Carlo methods solve is the computation of expected values. As we do not
assume you know what an expected value is, we define it here. Let X be a discrete random variable whose
values are x1, x2, x3, Then the expected value of X, denoted E[X] (and sometimes denoted µx or µ when
the meaning is clear) is defined by

E[X] =

∞∑
i=1

xiP{X = xi} = limN→∞

N∑
i=1

xiP{X = xi} (8.1)

If X can take on only finitely many values, then the summation in 8.1 would be finite. For example,
suppose we have a fair six-sided die. The outcome of a roll of this die is one of the numbers from 1
to 6. Because it is fair, each has probability 1/6. Therefore, the expected value of a roll of this die is
1 · (1/6) + 2 · (1/6) + 3 · (1/6) + 4 · (1/6) + 5 · (1/6) + 6 · (1/6) = 3.5. The expected value of a function of a
random variable is similarly defined. To be clear, if g(X) is some function of a random variable X, we define
the expected value of g(X) to be

E[g(X)] =

∞∑
i=1

g(xi)P{X = xi}

For example, if there were a payoff associated with each value of a toss of the die, equal to the square of the
face value of the roll, the function g(x) = x2 would be the payoff and the expected value of the payoff would
be

6∑
x=1

x2 · (1
6
) =

(
1 + 4 + 9 + 16 + 25 + 36

6

)
≈ 15.17

3

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

In Monte Carlo approximation, the goal of the computation is to compute an approximation of the expected
value of some random variable. In the approximation of π described above, for example, we can define the
random variable X to represent whether or not a random drop of rain falls within the circular pan, given
that it falls within the square pan. Because either it does or it does not, an observation of X takes on one
of two values: 1, if the raindrop is within the circle, and 0 if not. Assuming that every raindrop is equally
likely, the expected value of a sequence of N raindrops would be

limN→∞

N∑
i=1

xi ·
1

N

where xi ∈ {0, 1}. The symbol SN is often used to denote the value of a statistical guess based on N
observations of the random variable. In this experiment,

SN =

N∑
i=1

xi ·
1

N

The two important questions are

1. Will the statistical guess, SN =
∑N

i=1 xi · 1
N , of the expected value always converge to the real expected

value as the sample size increases? In symbolic terms, does SN converge to µ?

2. Can we establish the rate of convergence to the real expected value?

The answer to both of these questions is yes: the Monte Carlo estimate will converge to the expected value,
and we can predict its rate of convergence. These questions are important because the Monte Carlo estimate
would not be an indicator of the actual value if it did not converge to the expected value of the random
variable, and being able to predict the rate of convergence allows us to predict the difference between the
estimate and the real value in a probabilistic way (such as with a statement like, there is a probability greater
than 0.95 that the estimate is within ϵ units of the actual value.) The positive answer to the first question is
a result of the Weak Law of Large Numbers (WLLN) . The positive answer to the second question is
a result of the Central Limit Theorem. To explain these two important theorems, we need a definition.

Definition 1. A sequence of random variables is independently and identically distributed (iid) if each
variable has the same probability distribution as the others and they are mutually independent of each other
(the outcomes of each do not depend on the outcomes of the others.)

As an example, when you toss a fair coin ten times, the set of outcomes is iid because each new toss does
not depend on previous tosses, and in each toss heads are as likely as tails each time. In other words, each
toss is a separate trial and these trials are independent and have the same probability distributions.
The Weak Law of Large Numbers states that, if X1,X2,... is an independently and identically distributed
sequence of random variables whose expected value is finite, then the sequence of sample means

Sn =
1

n

n∑
k=1

xk

converges in probability to the true expected value E[X] as n → ∞. This means that, as n gets larger,
the probability that the value of Sn differs from the expected value E[X] by a large amount approaches zero.
The Central Limit Theorem states that, if X1,X2,... is an independently and identically distributed sequence
of random variables with positive, finite variance σ2, then

X1 +X2 + · · ·+Xn − nE[X1]√
nσ

(8.2)

converges1 to the standard normal distribution, N(0, 1), as n → ∞. (The standard normal distribution has
a mean of 0 and a variance of 1.) Since

X1 +X2 + · · ·+Xn − nE[X1]√
nσ

=
1
n

∑n
k=1 Xk − E[X1]

σ/
√
n

=

√
n

σ

(
1

n

n∑
k=1

Xk − E[X1]

)
=

√
n

σ
(Sn − µ)

1More accurately, it weakly converges.

4

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Eq. 8.2 is equivalent to the statement that as n → ∞,

√
n

σ
(Sn − µ) ⇒ N(0, 1)

where ⇒ N(0, 1) means that the left-hand side is approximately normally distributed with mean 0 and
variance 1. This in turn implies

Sn − µ ≈ σ√
n
N(0, 1) (8.3)

The notation Xn ⇒ N(0, 1) means that Xn converges in distribution to N(0, 1). Intuitively, the limit of
the distribution of the random variables Xn as n approaches infinity is the normal distribution N(0, 1). In
effect, Eq. 8.3 can be interpreted as follows: if σ2 is the variance of the random variables X1, X2, . . . Xn,
and µ is their true mean, and we define

ϵn = Sn − µ

then for n sufficiently large, ϵn is a normally distributed random variable with mean 0 and standard deviation
σ/
√
(n). As a consequence, the error tends to decrease in proportion to 1/

√
(n) . Therefore to add a

significant digit of accuracy requires increasing the number of samples by a factor of 100. This is not to say
that it will always decrease at this rate or be bounded by any particular value. It means that there is a high
probability that it will be bounded by a particular value. For example, for n sufficiently large, there is a 0.95
probability that

|ϵn| ≤ 1.96
σ√
(n)

where σ is the standard deviation of the random variables.

Definition 2. A continuous random variable X is uniformly distributed with parameters (a, b) if all
intervals of the same length within the interval [a, b] are equally likely, and all intervals in (−∞, a) and
(b,∞) have zero probability. A continuous uniform distribution with parameters (a, b) is denoted U(a, b).
A discrete uniform distribution is a probability distribution in which each value of a discrete random
variable X has equal probability.

A sequence of n random numbers x1, x2, . . . xn generated by a random number generator can be viewed as
a statistical sample of size n. If we can trust the random number generator, then this sequence behaves like
a set of n independent and identically uniformly distributed random variables with finite variance. Hence,
the Central Limit Theorem tells us that the value computed by a Monte Carlo approximation in which the
random variables are obtained from a random number generator has a rate of convergence towards the true
value that is proportional to 1/

√
n.

8.4 Monte Carlo Integration

Suppose that f is a function of a single real variable. The Mean Value Theorem (for functions of a single
variable) states that if f is an integrable function on the interval [a, b] then

I =

ˆ b

a

f(x)dx = (b− a)f̄

where f̄ is the mean value of f on the interval. Another way to say this is that the area under the graph of
f(x) on the interval [a, b] is equal to the area of a rectangle of height f and width b− a. From the results of
Section 8.3, if the n random numbers x1, x2, . . . xn are a statistical sample chosen uniformly from the interval
[a, b], then so are the values f(x1), f(x2), . . . f(xn), and the statistic

f̂n =
1

n

n∑
k=1

f(xk)

5

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

converges to the mean value f̄ of the function f(x) over [a, b]. Therefore, by sampling the interval [a, b] at
n points, we can obtain n values of f(x) and use the statistic

I ≈ (b− a)
1

n

n∑
k=1

f(xk)

as an estimate of the area under the curve of the function f . The problem of estimating the value of π
can be seen as an instance of this type of problem. Let ϕ(x, y) be the function defined on the unit square
0 ≤ x, y ≤ 1 by

ϕ(x, y) =

{
1 x2 + y2 ≤ 1

0 x2 + y2 > 1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 8.3: Graph of ϕ(x, y) on the unit square. The graph is a surface that has the value 1 within the
quarter-circle and the value 0 outside of it. It makes a step along the quarter-arc of the circle.

The function ϕ(x, y) is a function of two variables, and its graph is not a curve, but a two-dimensional
surface. Because ϕ(x, y) is piecewise-defined, and because it takes on only one of two values, 0 or 1, its graph
looks like a curved step, as shown in Figure 8.3. Because the function is zero outside of the quarter-circle, its
volume is zero there. Therefore, the volume under this surface is the volume of the one-quarter cylinder with
radius 1 and height 1 and is therefore π/4. Although the Mean Value Theorem is defined only for functions
of a single variable, it is possible to apply it twice to solve this problem. It turns out that because the
function ϕ(x, y) is integrable over the unit square, it has a mean value ϕ̄ over the set of points within the
unit square. Because the unit square has area of 1, applying the Mean Value Theorem twice we can show
that the volume under the surface is ˆ 1

0

ˆ 1

0

ϕ(x, y) dx dy = ϕ

Therefore, a Monte Carlo estimate of ϕ within this unit square is an estimate of the volume under the surface.
Since a Monte Carlo estimate based on n randomly selected points (x1, y1) within the unit square is

Sn =
1

n

n∑
k=1

ϕ(x1, y1) (8.4)

it follows that Sn is an estimate of π/4. This is what the algorithm we described above does; it computes
an estimate of π/4 by sampling the function ϕ(x, y).

6

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

The sequential program in Listing 8.1 uses the algorithm we described to estimate the value of π, given the
number of sample points as a command-line argument. Its output includes the actual estimate, the absolute
error, and the 95% confidence interval limit on the absolute error for the given sample size and actual sample.

Listing 8.1: seq_monte_carlo_pi.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <math.h>
5 #include <errno.h>
6
7 #define ZVAL_95 1.9599
8
9 int main (int argc , char* argv[])

10 {
11 long incircle = 0; /* counts number of points in circle */
12 double estimate; /* estimated value of PI */
13 double x, y; /* coordinates of random point */
14 long counter = 0; /* counts number of sample points */
15 long num_samples; /* number of sample points for estimate */
16 double mean; /* mean of computed function */
17 double std_dev; /* standard deviation of function */
18 double error; /* absolute error of estimate */
19 double error_bound; /* 95% 2-sided confidence interval */
20
21
22 if (argc < 2) {
23 printf("usage %s <number -of-sample -points >\n", argv [0]);
24 exit (1);
25 }
26
27 /* Get number of samples from command line argument */
28 errno = 0;
29 num_samples = strtol(argv[1], ’\0’, 0);
30 if (errno != 0) {
31 perror("strtol");
32 exit(EXIT_FAILURE);
33 }
34 /* Seed the random number generator with the current time */
35 srandom(time(NULL));
36
37 /* Generate the sequence , count the points in the circle */
38 while (counter < num_samples) {
39 x = (double) (random ()) / RAND_MAX;
40 y = (double) (random ()) / RAND_MAX;
41 if (x*x + y*y <= 1.0)
42 incircle ++;
43 counter ++;
44 }
45
46 /* Compute the estimate , the error , and the statistics */
47 mean = incircle / (double) num_samples;
48 std_dev = sqrt(mean * (1.0 - mean) / (num_samples - 1));
49 error_bound = 4.0 * ZVAL_95 * std_dev;
50 estimate = 4.0 * mean;
51 error = fabs(estimate - M_PI);
52
53 printf("num_samples = %ld\testimate = %12.8f\t", num_samples , estimate);
54 printf("abs_error = %8.7f\t95%% _error_bound = %8.7f\n", error , error_bound);

7

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

55 return 0;
56 }

We ran this program ten times at each sample size, increasing the sample size by a factor of ten, from
N = 103 to N = 109, and we display the results in Table 8.1. Observe from the table that the actual error
decreases roughly in proportion to the calculated confidence limit, and is smaller in every case.

Sample Size (N) Estimated
Value SN of π

Absolute
Error

(ϵN = |π − SN |)

95% Confidence Limit on
Error z0.95σ/

√
N

1000 3.16400000 .02240730 .10085440
10000 3.12200000 .01959300 .03245200

100000 3.13968000 .00191300 .01018700
1000000 3.14332400 .00173100 .00321600

10000000 3.14163500 .00037340 .00101800
100000000 3.14156970 .00013840 .00032200

1000000000 3.14159880 .00003050 .00010200

Table 8.1: Progression of estimates of the value of π using Monte Carlo estimation.

A rate of convergence of 1/
√
n is not a very fast rate of convergence in general. There are methods of

estimating π that converge much more rapidly than this. In general, Monte Carlo methods are not the best
choice when the state space of the problem has low dimension, but when the dimension of the space, i.e.,
the number of integrands, is six or more, there are no deterministic methods that can be used with success,
and Monte Carlo methods are the best option.

8.5 Parallel Algorithms and Monte Carlo Methods

Monte Carlo algorithms are usually easy to convert to parallel algorithms because there are natural data
decompositions of the problems that lead to a set of processes that have little or no inter-process commu-
nication. When this can be done, a program with p processes can find the solution almost p times faster
or to obtain an answer with Θ(

√
p) greater accuracy in the same amount of time. However, both of these

assertions depend on the quality of the random number sequence, and for that reason, before we begin a
study of parallel Monte Carlo algorithms, we summarize the important aspects of random number sequences
and their generation.

8.6 Sequential Random Number Generators

The success of any method of computing that relies on a stream of random numbers depends on the quality
of the random number generator itself. Technically, what we usually call a random number generator is
a pseudo-random number generator, (PRNG) because a deterministic algorithm is usually used to
generate the sequence, and therefore, by many people’s definitions, the numbers are not truly random. On
the other hand, as Knuth [7] said, “being ’apparently random’ is perhaps all that can be said about any
random sequence anyway” and so we will continue to use the term random number generator as it generates
sequences that appear to be random.
There are generators that use physical, random events to generate numbers, such as recording charged
particle emissions in a vacuum tube and using the times of emission to generate a random sequence2. In fact
the earliest random number generators were physical machines, and one of these (named ERNIE) was used
to pick winning lottery tickets in Great Britain[5]. However, most modern generators use various algorithms
and are not physical.

2These times follow a Poisson distribution, but they can be converted to a uniform distribution, as we will see in a subsequent
section.

8

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

What properties should a random number generator have? Although Coddington[2] identifies nine properties
of an ideal random number generator, no generator can have them all. We list some realistic properties that
a good generator should have. The numbers

1. are uniformly distributed,

2. are uncorrelated,

3. satisfy certain standard statistical tests for randomness, such as the χ2 test and the spectral test3,

4. have a very long period (they take a long time before they repeat),

5. are reproducible (so that debugging is easier), and

6. are easy to compute.

Condition (3) is not enough if the random numbers are to be used in a critical way. In this case, the numbers
should be tested more thoroughly. For example, they can be supplied to a Monte Carlo simulation of a
problem that has an exact solution and the results compared.
For parallel computing, we require one additional property:

7. The numbers can be split easily into independent subsequences.

Modern random number generators fall into several different categories, but the most common are

• linear congruential generators

• shift-register feedback

• lagged Fibonacci

• combined generators

Shift-register feedback generators are now known to have poor qualities and will not be discussed, nor will
combined generators.

8.6.1 Linear Congruential Generators

Linear congruential generators (LCG), first introduced by D. H. Lehmer in 1949 [8], generate a
sequence of numbers u0, u1, u2, . . . using the formula

ui+1 = (aui + c)modm

where the initial value u0 is called the seed, a is called the multiplier, c is called the increment, and m is
the modulus. Of necessity, the sequence of numbers will eventually cycle, because m is finite, and there are
at most m different moduli (0 to m− 1); as soon as a number repeats, the entire sequence repeats, because
if uj = uk, then clearly (auj + c)modm = (auk + c)modm. If the choice of a, c, and m is poor, the period
will be small, and if it is good, it will be of length m, the maximum it can be. Obviously, the larger m is,
the longer the period can be, not of necessity, but if the particular choice of m is a good one. (We can have
a very large m but a very small period if the choice of multiplier and increment is bad.) We summarize the
various choices of parameters, both the good ones and the ones to be avoided.

3The χ2test is a standard statistical test that, roughly stated, measures the deviation of a sample from its expected deviation.
The spectral test is a test of a sequence of random numbers that treats them as a sequence of vectors of a given length n.
Many random number generators generate sequences such that, when the vectors are viewed as belonging to the n-dimensional
hypercube, they form a lattice. The spectral test measures the maximum distance between the planes that they form in this
lattice.

9

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

8.6.1.1 When c = 0 (Multiplicative Congruential Method)

When c = 0, the linear congruential method is called a multiplicative congruential method, because it
is purely a multiplication, as it is of the form

ui+1 = aui modm

It is computational slightly faster than when c ̸= 0, as an operation is eliminated. Lehmer’s original idea set
c = 0, and it was only later realized that the cycle can be longer when c ̸= 0. When c = 0, the maximum
period possible is attained when

• u0 is relatively prime to m, and

• a is a primitive element modulo m

We explain the idea of a primitive element. Pick any number u, 0 ≤ u < m that is relatively prime to
m. Consider the powers of u modulo m: u2 modm, u3 modm, . . . and so on. Because there are at most m
distinct values modulo m, by the pigeon-hole principle, for some power k of u, uk modm must be a repeat
of some uj modm, j < k. Therefore, we have uk modm = uj modm, so that

(uk − uj)modm = uj(uk−j − 1)modm = 0

which is another way of saying that uj(uk−j −1) is a multiple of m. Because u is relatively prime to m, so is
uj , and the only way that the product uj(uk−j − 1) can be a multiple of m is if (uk−j − 1)modm = 0. This
implies that uk−j modm = 1. For each u that is relatively prime to m there is a smallest number k such
that uk modm = 1. This is called the order of u modulo m. For example, the order of 4 modulo 15 is 2
because 42 mod 15 = 16mod 15 = 1 and obviously this is the smallest power for which this is true. There
will always be a number u that is relatively prime to m whose order is the largest among all possible values
0, 1, . . . ,m− 1. Such an u is called a primitive element of m.
If m is a prime number, then the primitive elements will all have a period of length m− 1, so making m the
largest prime that can fit in the machine word is a good choice. Not all numbers will have maximum period.
The constraints are limiting when m is prime and there are various tables of values that can be used.
If m is a power of 2, then the period is maximal when a is a number for which amodm = 3 or amodm = 5,
but this is a bad choice of m because there will be subsequences whose low-order bits cycle with very small
period.

Summary. The best choice when c = 0 is to make m = 2w − 1, where w is the word size of the computer,
and if m is not prime (e.g., m = 63) then choose a suitable value for a to maximize the period.

8.6.1.2 When c ̸= 0

When c ̸= 0, the modulus m should be as large as possible to maximize the period. The LCG defined by
the parameters m, a, and c will have a period of length m if and only if

1. c must be relatively prime to m

2. for every prime number p that divides m, a− 1 must be a multiple of p, and

3. if m is a multiple of 4, then a− 1 must be a multiple of 4.

This is stated without proof. See Knuth [7] for its proof. As an example, take m = 8. If a = 3 and c = 3,
then the choice of a does not satisfy (3) because 8 is a multiple of 4 but a − 1 is not a multiple of 4. The
sequence starting with u0 = 0 would be (0, 3, 4, 7, 0, 3, 4, 7, . . .). On the other hand, if a = 5 and c = 3, then
all conditions are satisfied. No matter what choice of u0, the cycle length will be 8. Take u0 = 0 for example.
The sequence would be (0, 3, 2, 5, 4, 7, 6, 1, 0, . . .).

10

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

8.6.1.3 Synopsis

Linear congruential generators are found in many software libraries. The rand function from the C library
uses an LCG. The problem with rand and with many LCGs is that they exhibit correlations of the low-order
bits of the generated numbers. If you were to take the values produced by rand, for example, and divide
by RAND_MAX, so that the resulting numbers were in the interval [0, 1], and then form n-tuples of the form
(ui, ui+2, . . . , ui+n) for many values of i, and plot these inside a unit hypercube of dimension n, you would
see a crystalline lattice (a regular n-dimensional pattern) because of the repeated pattern of the low-order
bits.
Those LCGs that use a modulus that is a power of two, such as drand48, produce numbers with highly-
correlated low-order bits and should be avoided. They also produce long-range correlations, which we will
see can be a problem when used for parallel processes sharing the generator. Those that use prime moduli
are safer in general.
A period of 231, which is roughly 2 billion, is not very large, given the demands of scientific problems to be
solved, which need far many more random variables. Since many architectures are 64 bits, larger choices of
modulus are better.

Summary. On a 64-bit machine, the values a = 2862933555777941757, c = 3037000493, and m = 264 produce
a maximal, 264-length period, although the low-order bit correlations will still be present. In general, 32-bit
LCGs should be avoided when there are alternatives.

8.6.2 Lagged Fibonacci Generators

A lagged Fibonacci generator (LFG) generates a sequence of numbers u0, u1, u2, . . . using the formula

ui = ui−p ⊙ ui−q

where p and q are called the lags, p > q, and ⊙ is any binary arithmetic operator, such as addition,
subtraction, or multiplication, modulo m for some modulus m, or bit-wise exclusive-or, in which case the
modulus is not required. If the operator is addition modulo 2w, where w is the word size of the computer,
you can see that this is a generalization of the Fibonacci sequence; it would be in effect ui = ui−p + ui−q.
This method requires storing the p previous values in an array called the lag table. The larger p is, the
more memory is needed for the lag table. It also requires creating p seed values rather than 1. An LFG is
completely determined by the parameters p, q, m, and the operator ⊙. For example the random function
from the C library is an LFG with parameters p = 31, q = 3, m = 231 − 1 and addition modulo m. Its lag
table is by default of size 314.
Unlike LCGs, LFGs can have an extremely large period. With an LCG, as soon as one of the random
numbers that was generated before is generated again, the sequence from that point will be repeated all over
again. With an LFG, the next number depends on two previous values. The fact that uk = uj for some
k > j does not imply that uk+1 = uj+1 because uk+1 = uk+1−p ⊙ uk+1−q, which will not be of necessity
equal to uj+1−p ⊙ uj+1−q . In fact, if m = 2b, and p and q are suitably chosen5, then the period is

• 2p − 1 if the operation is XOR

• (2p − 1)2b−1 if the operation is addition or subtraction, and

• (2p − 1)2b−3 for multiplication.

For example, the period for the C library random function on a 32-bit processor with the default lags is
231 · 231 = 262 ≈ 4.6× 1018.

4The man page for random states that it is a non-linear additive generator; this is incorrect!
5p and q must be the exponents of a primitive polynomial.

11

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

8.6.2.1 Choosing LFG Parameters

Unfortunately, the length of the period alone is not the only factor in the quality of a random number
generator. There may be unacceptable correlations even with LFGs with long periods. Coddington[2] has
very specific recommendations for the choice of the LFG parameters, which we summarize here.

• Multiplicative LFGs have better randomness properties than additive LFGs in general and are pre-
ferred, especially for integer sequences, given the current speeds of multiplication circuits within modern
processors. XORs should be avoided.

• Lags should be at least 1000 for additive LFGs; the choice p = 1279, q = 1063 is recommended,
provided memory is not an issue.

• Lags for multiplicative LFGs should be at least 100; 127 is a recommended value for p.

• It is best if the seeds for the LFG are generated randomly by a different type of generator, such as an
LCG. The C random function, for example, uses an LCG with parameters u0 = 1, a = 16807, c = 0,
and m = 231 − 1 to generate the 31 seeds needed for the default initial state.

8.7 Parallel Random Number Generators

Parallel algorithms that use random numbers to solve a problem need a method of generating random
numbers for multiple processes. This adds a new set of requirements to the method of random number
generation. Ideally, the following conditions should be satisfied.

• The generator algorithm must work for any number of processes. In other words, it should not be
designed so that there is a limit on how many processes can use the algorithm.

• The sequence seen by any individual process should satisfy the requirements of a good sequential
random number generator for each process. This means, at the very least, that the sequence has a long
period, that it has little, if any, correlations, and that the numbers are uniformly distributed.

• The sequences seen by different processes should not have any correlations between them. For example,
if two processes had sequences such that the kth number in one process’s sequence was always double
that of the second process’s sequence, this would be a violation of this requirement.

• The sequence that is produced should be independent of the number of processes. There are a few
reasons for this. One is that the solution obtained by a parallel algorithm using random numbers
should be the same no matter how many processors are used. Another is that, in order to debug a
parallel program, it is often better to drop down the number of processes, and if the random number
sequence is different for the smaller number of processes, then the results may not be repeatable.

• The generation algorithm should not require much, if any, data movement among processes. Once
the generator is seeded and its initial state created, each process should generate its own stream of
numbers independently of the others.

Most parallel random number generators work by using a sequential generator and distributing the numbers
it generates among the parallel processes in one way or another. Some methods that were once very common,
such as the manager-worker method, are not in use any more and are not described here. The three most
common methods in use are

1. Leapfrogging. This is a cyclic partitioning of the numbers to the processes, just like a deck of cards
being dealt to players.

2. Sequence splitting . In this method, runs of consecutive numbers are given to each process in turn,
analogous to giving each card player his or her full hand, one after the other.

12

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

3. Independent sequencing. In this method, the initial seeds and sometimes the choices of parameters
are different for each process, so that in effect, the single generator acts like multiple generators, one
for each process, producing independent streams for each.

Each of these methods has weaknesses, and in general parallel random number generation is fraught with
dangers. We will make specific recommendations after reviewing the choices.

8.7.1 The Leapfrog Method

In this method, each process uses the same sequential random number generator to produce a sequence of
numbers, but the different processes take numbers from the sequence in a cyclic allocation, in the same way
as cards are dealt in a card game. To be precise, if there are p processes, then the process with rank r takes
the subsequence

ur, ur+p, ur+2p, . . .

This method is called the leapfrog method because each process leapfrogs over the other p processes to
grab its next number from the generator. Figure 8.4 shows how process 3 in a set of 6 processes takes the
elements u3, u9, u15, u21 and so on from the stream.

Figure 8.4: The leapfrog method of parallel random number generation. There is one stream of random
numbers and each process gets a subsequence of this stream by taking every pth value in a cyclic fashion.

The practical issue is how each process can jump ahead in the sequence to get its next number. In other
words, if process r has just used ur and now needs ur+p, how can it generate it efficiently? It would be very
inefficient for it to generate all of the numbers in between and just throw them away. When the sequential
generator is an LCG, it is relatively easy, as the following theorem shows.

Theorem 3. Let a linear congruential generator have parameters a, c, and m. Then

uk+p = (apuk + c(ap − 1)/(a− 1)) modm

Proof. Formally, this can be proved by induction on p. When p = 1, it reduces to

uk+1 = (auk + c) modm

which is true by definition. Assume it is true for p− 1. Then,

uk+p = (auk+p−1 + c) modm

=
(
a
(
ap−1uk + c

(
ap−1 − 1

)
/(a− 1)

)
+ c
)
modm

= (apuk + c (ap − a) /(a− 1) + c) modm

= (apuk + c ((ap − a+ a− 1) /(a− 1))) modm

= (apuk + c(ap − 1)/(a− 1)) modm

which shows it is true for p. We implicitly used two properties of modulo arithmetic, namely

• (a(bmodm)) modm = abmodm

• (a+ (bmodm)) modm = (a+ b)modm.

13

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Figure 8.5: The sequence splitting method of parallel random number generation. There is one stream of
random numbers and each process gets a consecutive sequence of this stream by taking the next n values
from the stream. The value of n is determined by the application.

The theorem implies that each process can use the same algorithm to generate its sequence. Let us denote
the sequence of values that process r generates by u

(r)
0 , u

(r)
1 , u

(r)
2 , Then this sequence is defined as

follows:

• For every process r, u(r)
0 = u0. In other words, every process seeds the generator with the same seed,

u0.

• For every process r, u(r)
1 = ur = aru0 + c(ar − 1)/(a− 1). In other words, each process obtains its own

distinct first random number by leapfrogging to ur.

• Each process generates the remainder of its sequence using the formula

u
(r)
k+1 = Au

(r)
k + Cmodm

where A = ap and C = c(ap − 1)/(a − 1). Notice that A and C only need to be computed once and
stored as variables.

This ensures that each process has a random sample from the same uniform distribution but has its own
sequence.
Problems with leapfrogging include:

• Although the original LCG may pass the spectral test, when a is replaced by A = ap, the parallel RNG
will fail it.

• When the modulus is a power of 2, there are correlations between numbers that are powers of 2 apart
in the sequence, which can become magnified in the parallel generator.

• The sequence that each process sees will change when the number of processes is changed.

Coddington discourages the use of leapfrogging using LCGs, but recommends that if it going to be used, the
modulus should be a prime number and at least 248. Alternatively, leapfrogging can be used with a lagged
Fibonacci generator, but this is more computationally intensive.

8.7.2 Sequence Splitting

In sequence splitting, each process gets a consecutive sequence of numbers that the sequential generator
generates, as shown in Figure 8.5. Several different strategies for dividing up the sequence have been tried.
One strategy gives each process a sequence of length l = m/p , where m is the period of the generator and p
is the number of processes. To use this method, each process would have to jump ahead to its starting place
in the sequence. If the sequential generator is an LCG, the same method could be used as we described for
leapfrogging. If it is an LFG, although it is more time-consuming to jump ahead than with an LCG, it only
has to be done once for each process.
This method has the potential for inter-process correlations, because the long-range correlations in the
original sequence may become manifested as correlations between the sequences of parallel processes. A
second disadvantage is that the sequence seen by each process will change if the number of processes is
changed.

14

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

8.7.3 Independent Sequencing

In both leapfrogging and sequence splitting, processes have to jump ahead in the sequence to get their
numbers. A method that avoids this, and also works for any number of processes without changing the
sequences seen by the different processes, is to use an LFG but assign a different initial state, i.e., a different
lag table, to each process. Each process uses the same lag values but has a different set of starting seeds and
so generates its own unique sequence, with the same distribution. If the number of processes is increased,
new initial states are generated for them.
The quality of this method depends critically on the method of initializing the lag tables for the different
processes. The best way to do this is to use a different random number generator to seed the tables. One
approach is to use an LCG to initialize the lag tables. Another is to use a different sequential LFG, with
different lags than the parallel LFG. In either case it is recommended that a large lag be used for the parallel
generator, to ensure that the sequences seen by the different processes do not overlap. Of course the problem
with giving each process its own lag table and also having a large lag value is that the amount of memory
required by the parallel random number generation might be too large.

8.8 Generating Non-Uniform Random Variables

Random number generators generate uniformly distributed random variables, but very often we need to solve
a problem in which the random events are not uniformly distributed, but are instead variates of some other
probability distribution. For example, what if we wanted to simulate the random toss of two fair dice. The
outcomes are numbers between 2 and 12, but these are not equally likely. The following table contains the
actual probabilities associated with the face value of the toss of two dice. The top row is a list of possible
outcomes xi of the random variable X; the bottom row is the probability pi of the given outcome

Face Value (xi) 2 3 4 5 6 7 8 9 10 11 12
Probability (pi) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

This is an example of a problem in which the random variable X comes from a discrete probability
distribution , which more generally is of the form

P{X = xi} = pi, 1 ≤ i ≤ n (8.5)

To simulate tossing the dice, the respective outcomes must occur with their respective probabilities. To be
precise, we need to be able to repeatedly generate random numbers xi, 2 ≤ xi ≤ 12 , such that each xi has
probability pi of being generated. For an arbitrary discrete probability distribution, one way to solve this
problem is by repeatedly generating a random number u in the interval [0, 1] uniformly and setting the value
of X depending on the value of u, using the following piece-wise defined function of u:

X =

x1 0 < u ≤ p1

x2 p1 < u ≤ p1 + p2

x3 p1 + p2 < u ≤ p1 + p2 + p3
...
xn p1 + p2 + · · ·+ pn−1 < u ≤ p1 + p2 + · · ·+ pn−1 + pn = 1

With this scheme, the lengths of the successive intervals are p1, p2, p3, . . . , pn and so each xi has probability
pi of being generated. The probability distribution of X will be that of Eq. 8.5. For the random variable

15

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

representing the face value of a toss of the pair of dice, the function would be defined by

X =

2 0 < u ≤ 1/36

3 1/36 < u ≤ 3/36

4 3/36 < u ≤ 6/36

5 6/36 < u ≤ 10/36

6 10/36 < u ≤ 15/36

7 15/36 < u ≤ 21/36

8 21/36 < u ≤ 26/36

9 26/36 < u ≤ 30/36

10 30/36 < u ≤ 33/36

11 33/36 < u ≤ 35/36

12 35/36 < u ≤ 1

We can generalize this idea, but first we need some background definitions.

Definition 4. A cumulative distribution function (CDF) describes the probability that a real-valued
random variate X with a given probability distribution takes on a value less than or equal to a number x.
The CDF of a random variable X, denoted FX(x) is given by

FX(x) = Pr{X ≤ x}

The CDF of a random variable is always a non-decreasing function. If the variable is a continuous random
variable, then the CDF is also continuous and represents the area under the curve of the probability density
function (pdf)6 of the variable from −∞ to x, i.e., it is the definite integral of the pdf. If fX(x) denotes
the pdf, then

Pr{X ≤ x} = FX(x) =

xˆ

−∞

fX(t)dt

and the probability that a random variable lies in an interval [a, b] is Pr{a ≤ X ≤ b} =
´ b
a
fX(t)dt.

Definition 5. Given a non-decreasing function F (x) , the generalized function inverse of F , denoted
F−1, is defined as

F−1(y) = inf{x |F (x) ≥ y}

where inf is the infimum of the set, also called the greatest lower bound of the set.

If the function F (x) is continuous and strictly increasing, then the generalized inverse is the inverse of the
function in the usual sense, namely that

F−1(F (x)) = F (F−1(x)) = x (8.6)

for any x.
The CDF F of any probability distribution is always a non-decreasing function, which implies that it always
has a generalized inverse. That inverse may not always be one that we can easily derive, a problem we will
address below. For now, we show how we can use this generalized inverse as a means of generating random
variables that are not uniformly distributed.

6The pdf of a continuous random variable is a function whose value at any given sample can be interpreted as providing a
relative likelihood that the value of the random variable would equal that sample. It is the analog in continuous space to that
of a probability mass function in the discrete case.

16

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Let FU (u) denote the CDF of the uniform distribution over the interval [0, 1], U(0, 1). Then FU (u) is defined
piecewise by

FU (u) =

0 u < 0

u 0 ≤ u ≤ 1

1 1 < u

Thus, on the interval [0, 1], FU (u) = u. We can state our problem formally as follows.

Problem. Given a cumulative distribution function F (x), and a sequence of independent and identically
distributed uniform random variables U1, U2, , U3, . . ., from U(0, 1), generate a sequence of random variables
X1, X2, , X3, . . ., that are governed by the CDF F (x).

8.8.1 The Method of Inversion

To generate random variables whose CDF is some function F (x), we do the following:

1. Generate a uniformly distributed random variable over the interval [0,1].

2. Return the number X = F−1(u) .

This algorithm is known as the inversion method. We now justify why it works, how to use it in practice,
and when it should not be used.
Let U be a U(0, 1) random variable. Then FU (u) = u if 0 ≤ u ≤ 1. Recall that the meaning of this statement
is that Pr{U ≤ u} = u. Suppose that FG(x) represents the CDF of the random variate that we get by
the above procedure. In other words, when we apply steps 1 and 2 above, we generate a random number u
uniformly in the interval [0, 1] and then return F−1(u). The CDF FG is the CDF of the set of numbers so
generated. Then by definition

FG(x) = Pr{F−1(U) ≤ x}
= Pr{FF−1(U) ≤ F (x)}
= Pr{U ≤ F (x)}
= FU (F (x))

Since U is U(0, 1), (which means that FU (v) = v for any v ∈ [0, 1], this last line implies

FG(x) = FU (F (x)) = F (x)

We have established that the set of numbers that this procedure generates follows the probability distribution
defined by the CDF F .

8.8.1.1 Continuous Example: The Exponential Distribution

The exponential distribution is a continuous probability distribution that is associated with various kinds
of natural processes such as

• the decay of radioactive atoms,

• the length of time between successive arrivals of cosmic ray alpha particles,

• the length of time between successive electrical impulses generated by neurotransmitters,

and also associated with less natural events such as

• the time to failure of an electrical or other component in a complex machine,

• the duration of a telephone call,

17

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

CDF and PDF of Normal Distribution

CDF

PDF

Figure 8.6: A probability density function (pdf) and its cumulative distribution function (CDF), in this case
a normal distribution n(x;µ, σ), and the inverse mapping from the interval [0, 1] to a sample from n(x;µ, σ).

• the length of time before the next customer arrives to be serviced at a service center, and

• the length of time before the next car arrives at an entrance ramp of a highway.

In general, the exponential distribution is characterized by the fact that it is the only continuous memory-
less distribution: the probability that an event will not occur within the next s time units from the current
time given that it has not occurred within the past t time units is the same as the probability that it will
not occur within the next s time units, regardless of whether or not it occurred within the past t time units.
It has no memory of the past, so to speak.
The exponential distribution has a single parameter, λ, which is the inverse of its mean, and its probability
density function (pdf) is

f(x) =

{
λe−λx x ≥ 0

0 x < 0

Its CDF is obtained by solving

F (x) =

xˆ

0

λe−λtdt

and is therefore

F (x) =

{
1− e−λx x ≥ 0

0 x < 0

Figure 8.7 shows a graph of the pdf and the CDF of an exponential distribution with mean 3.0 (i.e., parameter
λ = 1/3). The inverse of an exponential CDF is F−1(u) = − ln(1 − u)/λ, which has the same distribution
as F−1(u) = − ln(u)/λ, because u is uniformly distributed over [0, 1]. (The distribution of u in [0, 1] is
the same as the distribution of 1 − u in [0, 1].) Therefore, to simulate a sequence of numbers from an
exponential distribution with parameter λ, we can generate random numbers u1, u2, u3, . . . from U(0, 1)
and then return the sequence − ln(u1)/λ, − ln(u2)/λ,− ln(u3)/λ, and so on, which will be distributed
exponentially. Listing 8.2 contains C functions that can be used for generating such a sequence.

Listing 8.2: A module for generating exponentially-distributed random numbers.
1 /* This function initializes the C library random () function with a much larger

lag table than the default and seeds it. The argument is the size of the lag
table. It allocates memory for the lag table. */

2 char* init_sequence(int state_size)

18

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Exponential CDF and PDF with Mean m = 3.0

F(x) = 1 - e
(-x/m)

f(x) = e
(-x/m)

/ m

Figure 8.7: Graph of the exponential distribution pdf and cdf with mean 3.0.

3 {
4 char * state;
5 state = (char*) malloc (state_size * sizeof(char));
6 if (NULL != state)
7 initstate(time(NULL), state , state_size);
8 return state;
9 }

10
11 /* This function must be called to free the memory allocated by init_sequence. */
12 void finalize (char* state)
13 {
14 free (state);
15 }
16
17 /* This function generates a number that is exponentially distributed with

parameter lambda. */
18 double gen_number(double lambda)
19 {
20 double u = (double) (random ()) / RAND_MAX;
21 return (- log (u) / lambda);
22 }

If we want to simulate a single server system with arriving customers, and the customer arrivals obey an
exponential distribution with parameter 0.2 (a mean of 5 minutes to the next arrival), we can generate a
sequence of inter-arrival times using this algorithm and create a table of arrival times. If the following 9
times-to-next-arrival are so generated:

3.13, 6.60, 7.30, 0.44, 0.15, 3.29, 11.82, 3.75, 7.47

then the table of arrival times would be

19

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Customer Inter-arrival Time Time of Arrival
1 0 0
2 3.13 3.13
3 6.60 9.73
4 7.30 17.03
5 0.44 17.47
6 0.15 17.62
7 3.29 20.91
8 11.82 32.73
9 3.75 36.48
10 7.47 43.95

The average of these 9 inter-arrival times is about 4.83, very close to 5. The longer the sequence, the closer
to the mean the average will be.

8.8.1.2 Discrete Example: The Geometric Distribution

The geometric distribution is a discrete probability distribution that models the probability that a given
number of failures occur before a success when the random event is a Bernoulli trial. A Bernoulli trial
is a random event with two possible outcomes, 1 and 0, representing success and failure respectively. The
Bernoulli probability distribution with parameter p of success is

Pr{X = x} =

{
p x = 1

1− p x = 0

It is easy to generate random variables from this distribution:

1. Generate a random variable U from U(0, 1).

2. If U < p then return 1 and otherwise return 0.

A classic example of the geometric distribution involves a gambler betting at a roulette wheel. Imagine a
gambler in the Monte Carlo casino who places a bet each time on the same number until he wins for the first
time, increasing the amount of the bet each time. Assuming that the wheel is a fair wheel and is not rigged
in any way, there is a fixed parameter of success p with each spin. Let the random variable X be the number
of bets he places up to and including his winning bet. If he increases the bet by a large enough amount each
time, he may make up for his losses when he finally wins, assuming that he has enough money to do this.
The geometric distribution can associate a probability with how much he might win or lose. The geometric
distribution is the only discrete distribution that is memory-less: the probability of a success in the next
trial is independent of whatever events have happened so far. Most people find this counter-intuitive.
A geometric distribution with parameter p is defined by the probability function

Pr{X = k} = p(1− p)k−1 k = 1, 2, 3, . . .

The parameter p is the probability of success of the Bernoulli trial. This definition of the geometric distribu-
tion is the probability that exactly k trials are necessary to get one success7. To generate random variables
from this distribution using the method of inversion, we need the generalized inverse of its CDF. The CDF
FX(x) of this distribution is

FX(x) = 1− (1− p)x

The inverse, F−1
U (u), is easily derived to be

F−1
U (u) =

ln(1− u)

ln(1− p)

7An alternate form is the number of trials until the first success.

20

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Since U is U(0, 1), this is distributed in the same way as the function

F−1
U (u) =

ln(u)

ln(1− p)

Therefore, the method of inversion for this distribution is

1. Generate a random variable U from U(0, 1).

2. Return ln(U)/ ln(1− p).

There is an alternative to this approach, if for some reason, the calls to the math library are to be avoided.
Instead one can repeatedly generate Bernoulli-distributed random variables with parameter p, Y1, Y2, Y3, . . .,
using the method described above, until one of these is a success. If Yk is the first such that Yk = 1, then
the procedure returns k. Of course this is much less efficient than evaluating the fraction.

8.8.2 The Acceptance-Rejection Method

Inversion is an efficient solution when the function F−1 can be determined in closed form for the given CDF
F . This is not always possible though, as the closed form does not always exist. For example, one of the
most prevalent and important probability distribution functions is the normal distribution, also called the
Gaussian distribution, denoted N(µ, σ). Its pdf is defined by

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

and has no closed form inverse. In particular, the pdf of the standard normal, N(0, 1) , defined by

f(x) =
1√
2π

e−x2/2

has no closed form inverse. The CDF of a normal distribution has no closed form either; it is defined by

F (x) =
1

σ
√
2π

xˆ

−∞

e
(t−µ)2

2σ2 dt

To compute the value of this function, the integral must be evaluated numerically. Because the CDF has
no closed form generalized inverse, the inversion method cannot be used to simulate a sequence of normally
distributed random variates. For normal distributions, the Box-Muller transformation can be used
to generate random variates, but the acceptance-rejection method, originally proposed by John von
Neumann in 1947 [9], is a more general method that works for all probability distributions, and so in these
notes we describe how to use it and why it works.
To use this method, we need to find a second probability density function h(x) with two properties:

• it is easy to generate random variables from h, and

• there is a constant c such that c · h(x) majorizes f(x), which means that for all x

c · h(x) ≥ f(x)

which implies that
0 ≤ f(x)/(c · h(x)) ≤ 1.

Because h is a probability density function, the area under its graph is 1:

ˆ ∞

−∞
h(x)dx = 1

We call such a function a blanketing function, because it acts like a blanket covering the function that we
want to sample. The procedure is as follows:

21

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

1. Generate a random variable U from U(0, 1).

2. Generate a random variable Z from h (using the inversion method for example).

3. If U ≤ f(Z)/(c · h(Z)) then return X = Z otherwise go back to step 1 and repeat these steps (which
means that Z is rejected.)

Notes

• In step 3, when the procedure returns X = Z, we say that it accepts Z. If it does not return Z we
say that it rejects Z.

• U and Z are independently distributed random variables from distributions U(0, 1) and h respectively.
For clarity we will write hZ as the density function for Z instead of h.

• Because Z is a random variable, so is the ratio f(Z)/(c · hZ(Z)), which has the property that for all
Z, 0 ≤ f(Z)/(c · hZ(Z)) ≤ 1. Furthermore f(Z)/(c · hZ(Z)) is independent of U .

• Let n be the number of times that steps 1 through 3 are executed in order to return a random variable
X. Then this is a sequence of n − 1 failures followed by a success, and n is a random variable itself
from a geometric distribution with some parameter p we have yet to determine. The value of p is the
probability of success, which in this case is acceptance, which occurs when U ≤ f(Z)/(c · hZ(Z)) for
a random Z chosen from the distribution hZ . Below we establish that p = 1/c. Since a geometric
distribution with parameter p has an expected value of 1/p , the expected number of tries n is c. This
implies that the smaller the value of c, the more efficient the procedure will be. Therefore the choice
of function hZ should be made to make c small.

• It is worth noting that this procedure is itself a Monte Carlo method for finding solutions to a specific
problem, namely the generation of random variables that are from a given probability distribution.

8.8.2.1 Example 1

Suppose that we need random variables from the probability distribution whose CDF is defined by

FX(x) =

0 x ≤ 0
1
2

(
x5 + x4

)
0 ≤ x ≤ 1

1 1 ≤ x

The probability density function for this CDF is

fX(x) =
d

dx
FX(x) =

0 x ≤ 0
5
2x

4 + 2x3 0 ≤ x ≤ 1

0 1 ≤ x

We cannot find a closed form inverse for this CDF because we cannot solve the equation y = 1
2

(
x5 + x4

)
in

terms of y. (It must be solved numerically.) Instead we use acceptance-rejection. We need a pdf h(x) for
which it is easy to generate random variables and for which there is a constant c such that c ·h(x) majorizes
fX(x). Notice that the function fX(x) is at most 9/2 for all x. (It has a maximum at x = 1.) Let

h(x) =

0 x ≤ 0

1 0 ≤ x ≤ 1

0 1 ≤ x

This is just the pdf of the standard uniform distribution, U(0, 1). Then we let c = 9/2 and we have
c · h(x) ≥ f(x) for all x. The procedure is

22

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

1. Generate a random variable U1 from U(0, 1).

2. Generate a second uniform random variable U2 from U(0, 1).

3. If U1 ≤ 2
9 (

5
2U

4
2 +2U3

2) then return X = U2 otherwise go back to step 1 and repeat this (meaning reject
U2.)

8.8.2.2 Example 2: Standard Normal

To generate random variables from the standard normal distribution, we need a function that majorizes that
distribution, whose pdf is redisplayed here for convenience:

f(x) =
2√
2π

e−x2/2

We let h(x) = e−x, an exponential distribution with λ = 1. Figure 8.8 shows how this exponential density
majorizes the standard normal density. The constant c =

√
2e/π will have the property that c ·h(x) ≥ f(x),

or equivalently, that 1 ≥ f(x)/(c · h(x), because

f(x)

c · h(x)
=

2√
2π

e−x2/2√
2e/πe−x

=
2ex−x2/2

√
4e

= ex−x2/2−1/2

= e−(x−1)2/2

≤ 1

because in this last step, the exponent is negative and so the fraction is at most 1. The procedure accepts
if a uniform random variable U is at most e−(Z−1)2/2. Thus the method is

1. Generate a random variable U1 from U(0, 1).

2. Generate an exponential Z with mean 1 using the inverse CDF, − ln(U2), by generating a second
uniform random variable U2 and setting Z = − ln(U2).

3. If U1 ≤ e−(Z−1)2/2 then return either X = Z or X = −Z with equal probability; otherwise go back to
step 1 and repeat this. To return either value with equal probabaility, we can generate a third random
variable U3 from U(0, 1) and return X = Z if U3 < 0.5 and X = −Z otherwise.

8.8.2.3 Digging Deeper: Why This Works

It may seem a bit puzzling that this procedure, originally proposed by John von Neumann in 1947, will
produce random variables from the given distribution. Roughly speaking, the procedure picks random
points from the area under the graph of c · hZ(x) and accepts a point if it lies under the graph of f(x). This
is depicted in Figure 8.8.
We now prove that the method works. Those who have not had a course in basic probability theory can skip
this.

1. Recall that the two random variables, U , from U(0, 1), and Z, from hZ , are independently distributed.

2. We start by proving that the parameter p of the geometric distribution defined above equals 1/c.
Because U is a U(0, 1) random variable, for all y, Pr{U ≤ y} = y. Therefore, for all x

Pr{U ≤ f(Z)

c · hZ(Z)
| Z = x} =

f(x)

c · hZ(x)

23

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Exponential Majorizing Standard Normal Distribution

N(0,1)

Exponential

Figure 8.8: A graph showing the exponential pdf majorizing the standard normal pdf.

This ratio is just the fraction of the line vertical segment from (x, 0) to (x, c · hZ(x)) that lies under
f(x). From probability theory, we know that, if g(u, z) is a probability density of two variables u
and z, then the marginal distribution of u, g(u) =

´∞
−∞ g(u, z)dz =

´∞
−∞ g(u|z)gZ(z)dz where gZ(z)

is the density for z. In this case g(u, z) is the density of the probability distribution of U and Z in
Pr{U ≤ f(Z)

c·hZ(Z)} and gZ is hZ , so we have

p = Pr{U ≤ f(Z)

c · hZ(Z)
}

=

ˆ ∞

−∞
Pr{U ≤ f(Z)

c · hZ(Z)
| Z = x} · hZ(x)dx

p =

ˆ ∞

−∞

f(x)

c · hZ(x)
· hZ(x)dx

=
1

c

ˆ ∞

−∞
f(x)dx

=
1

c

because f is a pdf and so its integral over all real numbers is 1.

3. We use this result to prove that the probability density function of the variables returned by the method
is fX(x) , or equivalently, that its CDF is FX(x). Let us denote the CDF of the variables that are
returned, FG(x).

4. Observe that the probability distribution of the X variables returned by the method is the probability
distribution of the Z variables that are not rejected. In other words, the probability distribution of the
X variables is the same as the conditional probability distribution of Z given that U ≤ f(Z)/(c·hZ(Z)).

5. Therefore, we must show that FX(x) = Pr{Z ≤ x | U ≤ f(Z)/(c · hZ(Z)).

24

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

6. Because U is a U(0, 1) random variable, Pr{U ≤ y} = y. Therefore Pr{U ≤ f(Z)/(c · hZ(Z)) | Z =
x} = f(x)/(c · hZ(x)).

7. Let B denote the event U ≤ f(Z)/(c · hZ(Z)) and let A denote the event Z ≤ x. Then FG(x) =
Pr{Z ≤ x | U ≤ f(Z)/(c · hZ(Z)) = Pr{A|B}. Recall that

Pr{A|B} = Pr{B|A} · Pr{A}/Pr{B}

8. We established in Step 2 above that Pr{B} = Pr{U ≤ f(Z)/(c · hZ(Z))} = 1/c. Also Pr{A} =
Pr{Z ≤ x} = HZ(x) where HZ is the CDF of hZ . Therefore

FG(x) = Pr{A|B}
= Pr{B|A} · Pr{A}/Pr{B}

= Pr{U ≤ f(Z)

c · hZ(Z)
| Z ≤ x} ·HZ(x)/(1/c)

Since

Pr{U ≤ f(Z)

c · hZ(Z)
| Z ≤ x} =

Pr{U ≤ f(Z)
c·hZ(Z) & Z ≤ x}
HZ(x)

=

ˆ x

−∞

Pr{U ≤ f(Z)
c·hZ(Z) | Z = t ≤ x}
HZ(x)

hZ(t)dt

=
1

HZ(x)

ˆ x

−∞

f(t)

c · hZ(t)
· hZ(t)dt

=
1

c ·HZ(x)

ˆ x

−∞
f(t)dt

=
FX(x)

c ·HZ(x)

it follows that

FG(x) =
FX(x)

c ·HZ(x)
·HZ(x)/(1/c)

= FX(x)

which proves that the procedure generates random variables with the distribution CDF FX(x).

8.9 Applications of Monte Carlo Methods

There are many different types of applications of Monte Carlo methods. We discuss and elaborate on a few
of the ones presented by Quinn [12].

8.9.1 Neutron Transport

When a neutron collides with an atom, it may get absorbed by the nucleus of the atom, forming a heavier
atom. It may not be absorbed, but instead might be scattered by the atom. The neutron transport problem
is the problem of modeling the interaction of neutrons and atoms. One method of modeling this interaction
is to shoot neutrons towards a homogeneous metal plate of thickness T and infinite height and width (i.e.,
the height and width do not matter.) Some neutrons are reflected by the plate, others are absorbed by the
plate, and still others pass through the plate completely. The thickness of the plate, the type of particle, and
the material of the plate are three factors that influence the outcome of the bombardment of the plate by
these particles. The fractions of neutrons that are reflected, absorbed, and transmitted through the plate are

25

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

a

b

c

absorbed

reflected

transmitted

x−axis0

T

T

d

Figure 8.9: Particle interaction with metal plate of thickness T . Particles have an initial direction perpen-
dicular to the plate and upon reaching it, they interact with its atoms. The result of this interaction is that
a particle may eventually be reflected, absorbed, or transmitted through the plate.

recorded and form the experimental observations. Such an experiment can be simulated in software. Figure
8.9 illustrates the physical model.
The problem is parametrized by the following constants:

• Cc is called the cross-section of capture, measured in a unit of measurement known as a barn
(10−28m2). It can be thought of as being proportional to the probability that a neutron will be
absorbed by an atom with which it collides.

• Cs is called the cross-section of scatter . It can be thought of as indicating the probability that the
neutron will be scattered away from the atom.

• C = Cc + Cs is the total cross-section.

The distance that a neutron travels in the plate before it interacts with an atom obeys an exponential
distribution with parameter C (i.e., with mean C−1.) Thus, the probability that the neutron travels a
distance at most L is the CDF of an exponential and is thus 1 − e−CL. When a neutron reaches an atom,
the probability that it is absorbed is Cc/C and the probability that it is scattered is Cs/C. If it is scattered,
the direction of its new trajectory is random. The angle that the new direction makes with the horizontal
axis we will denote by d. With this information, we can simulate the experiment as follows.
We choose a number of neutrons n to bombard the plate. For each neutron, we repeatedly simulate the
motion of the neutron in the plate until one of three events happens:

• The neutron is absorbed by an atom. We increment an absorption counter in this event.

• The neutron is transmitted through the plate (its x-coordinate is greater than T .) We increment a
transmission counter in this event.

26

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

• The neutron is reflected by the plate (its x-coordinate is less than 0.) We increment a reflection counter
in this event.

Simulating the motion is one of several steps in which the Monte Carlo method is used. We generate a
random exponential variable L with parameter C; this is the distance that it travels both initially and if it
has interacted with an atom and not been absorbed. Its direction with respect to the x-axis is also a random
variable, but in this case a uniformly distributed random variable d over the interval [0, π). Therefore, the
new x-coordinate is the old coordinate x plus L · cos(d). By the choice of interval, sin(d) is always positive.
This implies that the neutron bounces upwards. This does not matter in this simulation because the plate
has infinite height and all we care about is its motion in the horizontal direction.
If the new position is outside of the plate it has been transmitted or reflected. Otherwise it interacts with
a new atom. To simulate what happens when it interacts with an atom, a third randomization step takes
place, as the probability that it is absorbed is modeled as a Bernoulli trial with success probability Cc/C.
Therefore, a uniform random variable is generated, one from U(0, 1), and if it is less than Cc/C then it
is absorbed and otherwise it is scattered. The sequential algorithm for the simulation of a single neutron’s
interaction is shown in Listing 8.3. In the listing, whenever the variable U appears, it is meant as a short-hand
notation for a randomly-generated U(0, 1) value.

Listing 8.3: Simulation of a single neutron in a plate.
1 const double Thickness; // thickness of plate
2 const double C_capture; // cross section of capture
3 const double C_scatter; // cross section of scatter
4 const double C_total = C_capture + C_scatter;
5
6 double L; // length of trajectory to next location
7 double d; // angle of trajectory wrt x-axis
8 double x; // x-coordinate of neutron position at end of

trajectory
9 int num_reflections = 0;

10 int num_absorptions = 0;
11 int num_transmissions = 0;
12
13 d = 0;
14 x = 0;
15 still_bouncing = TRUE;
16
17 while (still_bouncing) {
18 L = - (1/ C_total) * ln (U); /* U is U(0,1); L is exponential , param C */
19 x = x + L * cos (d); /* new x-position */
20 if (x < 0) { /* reflected */
21 num_reflections ++;
22 still_bouncing = FALSE;
23 }
24 else if (x > Thickness) { /* transmitted */
25 num_transmissions ++;
26 still_bouncing = FALSE;
27 }
28 else if (U < (C_capture/C_total)) { /* absorbed */
29 num_absorptions ++;
30 still_bouncing = FALSE;
31 }
32 else {
33 d = U * PI; /* new angle */
34 }
35 }

27

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Notes

1. This problem is highly data parallel, because it is assumed that neutrons are independent and do not
interfere with each others trajectories.

2. The simulation implicitly takes place over time, but because the problem does not require any output
regarding how much time it takes before a particle is reflected, absorbed, or transmitted, there is no
reason to keep track of actual time. Each time that the while loop is re-entered, time has elapsed
implicitly, but not necessarily the same amount of time. In simulations of this nature in which the
iterations are not constant time intervals, the time is refered to as Monte Carlo time . If we needed
to record the actual elapsed time, we would require velocity and other forces, because these will affect
the time that the neutron travels.

8.9.2 Random Walks and the Dirichlet Problem

In introducing Foster’s design methodology in Chapter 3, we applied it to a boundary value problem in which
we had a one-dimensional insulated rod that had ice baths at its ends. This is actually a simple instance
of a more general problem known as the Dirichlet problem. The Dirichlet problem consists of finding a
function u that is defined, continuous, and differentiable over a closed domain D with a boundary C and
that satisfies Laplace’s Equation on D and the boundary condition on C:

∇2u = 0 on D

u = f on C

where f is some predefined function on the boundary and ∇2 is the Laplacian operator. All of this will
now be explained in simple terms. The reason we state it in its most general form is that it has a great
many applications beyond the particular example we will study, and you should be aware of them. It has
application to fluid flow, to heat transfer in general, to plasma simulation, and to the distribution of energy
in general.
Imagine that an object has heat applied to it at various contact points, and then the heat is removed. Over
time, the heat is transferred to other parts of the object. In the beginning, at each point in the object, the
temperature at that point is in flux; it is changing as a function of time. Eventually, though, the temperature
within the object becomes independent of time; it reaches a state where, for each point in the object, the
temperature at that point is independent of time. When this has happened, the object has reached a steady
state temperature distribution. The temperature at any point of the object can be represented as a
function of the point’s coordinates and a time variable. Conventionally, the function symbol u is used to
represent the temperature as a function of position and time. In three dimensions, it would be u(x, y, z, t).
In two dimensions, it would be u(x, y, t). This function is generally continuous and differentiable on the
interior of the object.
In the past, physical experiments would have to be conducted to understand the conduction of heat. Now
computers can be used to do this. One can model how the heat is transferred when heat is applied to an
object at specific points, by finding the form of this function u. This is, of course, a non-trivial problem.
What is known from physics is that there are natural laws that govern how the heat is transferred, and that
they reduce the problem to solving Laplace’s Equation over the set of points within the object.
The problem gets very complicated for objects of complicated shape, but we can demonstrate all of the same
principles with a two-dimensional version of it. Imagine a two-dimensional plate of isotropic, homogeneous
material, insulated along its entire top and bottom. The fact that the material is isotropic means that the
properties of the material are uniform in all directions; that it is homogeneous means that it is the same
material throughout. Assume the insulator is perfect and that no heat is lost or gained anywhere in the
interior. Now let us assume further that along each of the four edges, the temperature is held fixed and
not necessarily the same. For example, we could make the temperature 0° C along the north and south
edges, and 100° C along the east and west edges. We can easily define a function f(x, y) that satisfies these
conditions. We assume that the temperature within the interior is unknown.

28

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

When the plate reaches a steady state temperature distribution, it means the temperature at every point is
not changing with respect to time. Mathematically, this means that the derivative with respect to time is
zero for all points:

d

dt
u(x, y, t) = 0 (8.7)

A consequence of the laws of physics, which can be proved, is that the rate of change of the temperature at
any point is described by the equation

d

dt
u(x, y, t) = k ·

(
∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2

)
(8.8)

which states, in English, that the rate of change in the temperature over time is a constant times the sum
of the second derivatives of the temperature with respect to the x and y directions. This has an averaging
type of effect. Combining Eqs. 8.7 and 8.8, we conclude that

0 =
∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
(8.9)

This is known as Laplace’s Equation. The operator ∇2 is a shorthand notation often used for the differ-
ential operator (

∂2

∂x
,
∂2

∂y

)
in any number of dimensions. (Think of it as a vector and set the inner product of it with the vector
(u(x, y, t), u(x, y, t)) to zero and you get Eq. 8.9.) Eq. 8.9 is a partial differential equation that sometimes
must be solved numerically, because an analytical solution may not exist. The numerical solution is often
converted to a discrete problem because it is computationally faster. In the discrete version, instead of the
plate’s having infinitely many points, it has a two-dimensional grid of points. It can be shown that Eq. 8.9
is approximated using finite difference methods by the finite difference equation

0 =
u(x+ h, y, t)− 2u(x, y, t) + u(x− h, y, t)

h2
+

u(x, y + k, t)− 2u(x, y, t) + u(x, y − k, t)

k2

and if our grid points are ui,j and we drop the variable t this becomes

0 =
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

k2

Since the grid is evenly spaced, we can let h = k = 1. Simplifying and solving for ui,j , the Laplace equation
becomes

ui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

4

Stated in a simpler way, if uO represents the temperature at an arbitrary point in the interior of the grid, and
uN , uE , uS , and uW represent the temperatures at its north, east, south, and west neighbors respectively,
then the equation is

uO =
uN + uS + uE + uW

4

To solve the problem, we could repeatedly apply this equation to every grid point until the value converges
at that point. Convergence occurs when the difference between successive values at the point is below some
predefined threshold value. Since the temperature at each point is being replaced by the average of the
neighboring points, the number of iterations required for convergence can be very large. As we must solve
this equation for every point, we are looking at a problem that can be computationally expensive. For
example, if the grid were 104 × 104, then we would need to iterate the numerical procedure at each of 108
points. For this reason, it is common to use a Monte Carlo method instead.
The mention of Monte Carlo in this context might lead you to think that we can just randomly pick points
in the grid and solve for the function at those points, but this will not work. Instead we use a Monte Carlo

29

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Figure 8.10: A sequence of random walks from the origin of a 2D grid.

method known as a random walk. Informally, a random walk is a sequence of random steps in a state
space that solves a problem by sampling that space in a specific way. Figure 8.12 shows the result of a
random walk solution to this problem, color-coded by temperature. (Random walks are a type of Markov
chain , for those who know what this is.)

Example 6. Imagine a very drunk person walking in a city with a rectangular street grid, with city walls
enclosing the entire grid. This person starts out at some position within the grid. The person is so drunk
that his walk is completely random. He walks along the current street until he arrives at an intersection,
which represents a decision point. There, he chooses the direction to take next randomly. This can even
include going back down the street from which he just arrived. He takes that direction and walks until the
next intersection, where a decision is made again. He walks and walks until he reaches a city wall, at which
point he stops. This is a random walk. Figure 8.10 illustrates a sequence of random walks that such a drunk
might make from the origin of a grid.

There are many questions that can be asked about such a walk, such as

• Is it guaranteed to reach a city wall?

• If so, what is the average length of the path to the wall?

• If he starts from position [0, 0], how often will he return to [0, 0]?

• Are there intersections he will never visit?

• Are there intersections he will visit infinitely many times?

Let us now define a random walk more rigorously. Let S denote some state space. You can think of it
as the set of intersections on a two or three dimensional grid, or more generally, as a vector space over the
integers. It can even be more general than this; it can be the set of states that a collection of interacting
particles can assume. For now, it is easiest to visualize it as a grid of some kind. We will call the elements
of this state space, points. The space S is assumed to have some structure, such as a coordinate system,
so that it makes sense to talk about the relative positions of two points in the space. Let {X0, X1, X2, . . .}
denote a sequence of random variables that take on values from S. In other words, these random variables
can be points in the space. We think of the subscripts as discrete time steps, so that Xn is a random event
at time n. In Example 6, each Xn is an intersection, or equivalently, a grid point [i, j]. Let us call this
sequence of random variables, a chain.

30

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Figure 8.11: A random walk generated by Listing 8.4.

Definition 7. The transition probability of a chain {Xn, n ∈ N} is the function

pi,j(m,n) = Pr{Xn = j | Xm = i}

which is the conditional probability that, if the chain is in state i at time m it will be in state j at time
n ≥ m.

Definition 8. A chain is time-homogeneous if the transition probability for that chain does not depend
on time:

pi,j(n, n+ 1) = pi,j(m,m+ 1)

for all n,m ∈ N. For a time-homogeneous chain, the transition probability is not a function of n and so is
written pi,j .

Definition 9. A chain is space-homogeneous if pi,j only depends upon the relative positions of i and j
in space.

The concept of spatial homogeneity is that the transition from a point i to a point j depends only on the
directed distance from i to j. If in our drunkard example, the drunk walked in a space homogeneous way,
then if the drunk is at position i = (3, 4), the probability of going to position j = (3, 5) is the same as the
probability that the drunk will go to position j = (8, 3) if he is currently at i = (8, 2), because in both cases,
the vector difference j − i = (0, 1).
Now it is easy to define a random walk.

Definition 10. A random walk is a chain that is both time-homogeneous and space-homogeneous.

These two properties together imply that the next state that the walk visits is independent of wherever it
has been before, and that the choice of direction is independent of the current position, pretty much like
the drunkard from the example. Listing 8.4 is a small program that performs a single random walk on a
two-dimensional grid of fixed size, and Figure 8.11 shows the the results of a single run, plotted on a grid.

Listing 8.4: randomwalk_2Dgrid.c
1 /* include directives omitted */
2

31

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

3 #define NORTH 1
4 #define EAST 2
5 #define SOUTH 3
6 #define WEST 4
7
8 typedef struct { /* A 2D Point */
9 int x;

10 int y;
11 } point2d;
12
13 const point2d East = { 1, 0};
14 const point2d West = {-1, 0};
15 const point2d North = { 0, 1};
16 const point2d South = { 0,-1};
17
18 /* Randomly generate a new direction to walk */
19 point2d next_dir ()
20 {
21 double u = uniform_random ();
22 if (u < 0.25) return North;
23 else if (u < 0.50) return East;
24 else if (u < 0.75) return South;
25 else /* 0.75 <=u */ return West;
26 }
27
28 /* Generate next point from current point and direction */
29 point2d next_point(point2d oldpoint , point2d direction)
30 {
31 point2d temp;
32 temp.x = oldpoint.x + direction.x;
33 temp.y = oldpoint.y + direction.y;
34 return temp;
35 }
36
37 /* Test if given point is on a boundary , Returns non -zero if on a boundary , 0 if

not. */
38 int on_boundary(point2d point , int width , int height)
39 {
40 if (0 == point.x) return WEST;
41 else if (width -1 == point.x) return EAST;
42 else if (0 == point.y) return NORTH;
43 else if (height - 1 == point.y) return SOUTH;
44 else return 0;
45 }
46
47
48 int main (int argc , char * argv[])
49 {
50 point2d current , next;
51 int width = 50; /* Width of grid */
52 int height = 50; /* Height of grid */
53 char *gaptable; /* Gap table for random () */
54 int gaptable_size = 1000; /* Size of gap table */
55
56 /* Start walk from center of grid */
57 current.x = width /2;
58 current.y = height /2;
59 printf("%d\t%d\n", current.x, current.y);
60

32

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

61 /* Generate a larger gap table for random () function */
62 gaptable = init_random(gaptable_size);
63
64 /* Iterate until the walk reaches a boundary */
65 while (1) {
66 next = next_point(current , next_dir ());
67 printf("%d\t%d\n", next.x, next.y);
68 if (on_boundary(next , width , height))
69 break;
70 else
71 current = next;
72 }
73 printf("%d\t%d\n", next.x, next.y);
74 free(gaptable); /* Release memory allocated to gap table */
75 return 0;
76 }

Now that we know what a random walk is, how can we use it to solve our simplified example of the Dirichlet
problem? The idea is that for each grid position, we will do a random walk from that position until we reach
a boundary point. When we reach a boundary, we take the value of that boundary point and add it to an
accumulator, initialized to zero. At each grid point we will do n random walks and use the average of the
values stored in the accumulator as the value of that grid point. Our random walk will randomly choose,
with equal probability, one of the four directions, north, east, south, and west, as the direction to move to
the next point, until a boundary point is reached.
Some treatments of random walks define a random walk as a sum of independently and identically distributed
random variables:

Sn = X0 +X1 +X2 + · · ·+Xn

with appropriate conditions on these variables. We can model our example using this formalism by defining
two unit vectors, e1 = (1, 0) and e2 = (0, 1), and then observing that the next point is always the current
point plus or minus one of these two vectors, i.e., one of Xi ± e1or Xi ± e2, with the choice of ±ej , j = 1, 2
being randomly generated. If we do this, then the current point can be viewed as the sum of the initial
location as a vector plus the randomly generated unit vectors.
It is a remarkable fact that the probability of reaching the boundary is 1 when starting at any interior point.
Another way to say this is that the boundary is reached in finite time, no matter where the walk starts.
Let fk(X) denote the edge temperature added to the accumulator for point X in the kth random walk from
point X. It is also a remarkable fact that the average so obtained

1

n

n∑
k=1

fk(X)

is an unbiased estimate of the actual temperature at that point.
The last question is how to decide how many iterations are necessary to be certain that the heat distribution
has approached an approximate steady state. Since steady state implies that the temperatures of the
neighboring points no longer differ enough to cause a change to the temperature at the current point, one
solution is to define a threshold value ε > 0 and check after each iteration whether all points have changed
value by less than this amount. Therefore, in each iteration, at each point, the absolute difference between
the current average and the new average at that point is compared to the maximum of such differences
among all points in that iteration. When the maximum difference across all points in the grid in a given
iteration is less than ε, the computation terminates.
Listing 8.5 contains the significant parts of a program to carry out the algorithm we just described. Various
initializations and the function definitions have been omitted to save space. The definition of the point2d
structure, the functions on_boundary() and next_point() are the same as those from Listing 8.4.

Listing 8.5: Random walk algorithm for 2D Heat Distribution.
1

33

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

0

20

40

60

80

100

0

20

40

60

80

1000

20

40

60

80

100

Steady State Heat Distribution Produced by Random Walk

Figure 8.12: Visualization of the result of a random walk solution to the heat diffusion problem in a 2D plate
in which the temperature is fixed at 100° C along the east and west edges and 0° C along north and south
edges.

2 #define CONVERGENCE_THRESHOLD 0.05
3
4 /* on_boundary () returns 0 if point is not on boundary , or if it is , it returns

the integer representing the boundary. */
5 int on_boundary(point2d point , int width , int height);
6
7 /* next_point () returns the next point , using a uniformly distributed random

direction added to the old point. */
8 point2d next_point (point2d oldpoint , point2d direction);
9

10 int main (int argc , char * argv[])
11 {
12 point2d current;
13 int i, j;
14 int width , height;
15 double oldvalue , diff;
16 double maxdiff;
17 double tolerance;
18 int location;
19 double boundary_temp [4];
20 double ** plate;
21 double *plate_storage;
22
23 /* 1. Initialize temperatures at the four corners as the average of the

temperatures of the adjacent edges. */
24 plate [0][0] = (boundary_temp [0] + boundary_temp [3]) /2;
25 plate [0][width -1] = (boundary_temp [0] + boundary_temp [1]) /2;
26 plate[height -1][0] = (boundary_temp [3] + boundary_temp [2]) /2;
27 plate[height -1][width -1] = (boundary_temp [2] + boundary_temp [1]) /2;

34

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

28
29 /* 2. Initialize the temperatures along the edges of the plate. */
30 for (j = 1; j < width -1; j++) {
31 plate [0][j] = boundary_temp [0];
32 plate[height -1][j] = boundary_temp [2];
33 }
34 for (i = 1; i < height -1; i++) {
35 plate[i][0] = boundary_temp [3];
36 plate[i][width -1] = boundary_temp [1];
37 }
38
39 /* 3. Initialize the interior temperatures to 0. */
40 for (i = 1; i < height -1 ; i++)
41 for (j = 1; j < width -1 ; j++)
42 plate[i][j] = 0.0;
43
44 /* 4. Set the acceptable tolerance to a small value and start an iteration

counter. */
45 tolerance = CONVERGENCE_THRESHOLD;
46 count = 0;
47 while (1) {
48 /* Reset maximum difference to 0 at the start of each iteration */
49 maxdiff = 0;
50 /* For each grid point [i,j] */
51 for (i = 1; i < height -1 ; i++) {
52 for (j = 1; j < width -1 ; j++) {
53 /* Do a random walk until a boundary is reached. */
54 current.x = j;
55 current.y = i;
56 while (0 == (location = on_boundary(current , width , height))) {
57 current = next_point(current , next_dir ());
58 }
59 /* Get difference between old average at this point and average

with the new boundary point factored into it. */
60 oldvalue = plate[i][j];
61 plate[i][j] = (oldvalue*count + boundary_temp[location -1]) / (

count + 1);
62 diff = fabs(plate[i][j] - oldvalue);
63
64 /* If the difference at this point is the largest so far in this

iteration , update maxdiff. */
65 if (diff > maxdiff)
66 maxdiff = diff;
67 }
68 }
69 if (maxdiff < tolerance)
70 /* The algorithm has converged sufficiently , so break the loop. */
71 break;
72 else
73 count ++;
74 }
75 }

8.9.3 The Metropolis Algorithm and the Two-Dimensional Ising Model

In this section we introduce a fundamental and powerful Monte Carlo algorithm called the Metropolis
algorithm. The Metropolis algorithm is at the intersection of several key ideas, in that

35

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

• it is a type of random walk;

• it is a type of acceptance-rejection sampling that does not require a blanketing function;

• it contains the key element of an important class of algorithms known as simulated annealing algo-
rithms.

In the preceding problem, we saw an example of a random walk in which the states were locations in a grid,
but as we mentioned when we defined a random walk in Section 8.9.2, a state can be something more general
than this. We use the Ising model to illustrate this concept. The Ising model is a mathematical model of
ferromagnetism used in statistical mechanics to study the behavior of materials such as magnets. Materials
such as iron stay magnetized for a long time, but it was not understood why or for how long. The model
was invented to try to explain this phenomenon [4]. Subsequently it was applied to other problems, such as
the motion of atoms in a gas and the activity of neurons in the brain.
For simplicity, we explore the two-dimensional Ising model, which was the one that Ising originally solved. A
square plate is treated as having a finite Cartesian grid or lattice, whose intersection points are called sites.
Each site σk can be in one of two spin states, up or down . Usually the values +1 and −1 are associated
with the spins up and down respectively 8. The state of a site represents the direction of an atom’s spin
coordinate, i.e., the direction of its nuclear magnetic dipole moment9. The term spin does not imply that
anything is actually spinning; it is a concept from quantum mechanics that has no correspondence in classical
physics. Because atoms have electromagnetic fields, adjacent atoms interact with each other and can affect
each others spins and energy levels.
Imagine a square lattice consisting of 2500 sites, σk, k = 0, 1, . . . , 2499, arranged in a 50 by 50 grid. Each
site can have either up or down spin. A spin configuration, or configuration for short, is a specific
assignment σ of spin values to each site in the lattice. In this example, there are 22500 possible configurations,
corresponding to all possible assignments of the two values +1 or −1 to each site. (It is the number of different
bit-strings of length 2500.) Different configurations represent different thermodynamic states of the material,
i.e., its temperature, electromagnetic properties, available energy, and so on. The problem that the Ising
model tries to solve is to find the configuration associated with thermodynamic equilibrium.
We let Λ denote the set of all sites. The energy of a given configuration σ is given by the function

E(σ) = −
∑
i,j∈Λ

Jσiσj −B
∑
i∈Λ

σi (8.10)

where:

• the first sum is restricted to only those sites σi and σj that interact with each other, which is usually
pairs of sites that are adjacent to each other,

• J is a constant that is the strength of the spin-spin interaction, and

• B is a constant indicating the strength of an external magnetic field.

The energy of a configuration is related to the probability that the material can be in that configuration.
Configurations that have very high energy, for example, are very unlikely because they are unstable, whereas
configurations that are very low energy are much more likely. The probability of any given configuration is
given by the following probability density function:

µ(σ) =
e−E(σ)/κT

Z(T)
(8.11)

where κ is the Boltzmann constant, T is the temperature, and

Z(T) =
∑
σ∈Λ

e−E(σ)/κT

8Quinn uses +1/2 and −1/2 instead in his book [12].
9The nuclear dipole moment is a vector associated with the direction of the spin of the nucleus of the atom.

36

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

is a normalization factor. By dividing by Z(T) in Eq. 8.11, we turn µ(σ) into a pdf:

∑
σ∈Λ

µ(σ) =
∑
σ∈Λ

e−E(σ)/κT

Z(T)
=

∑
σ∈Λ e−E(σ)/κT∑
σ∈Λ e−E(σ)/κT

= 1

Notice that large values of E(σ) in Eq. 8.11 give rise to small values of µ(σ) because the exponent is negated.
To simplify the notation, when the meaning is clear we will assume that all summations are over all sites in
Λ.

Usually, we are trying to obtain an estimate of some physical quantity of the material, such as the mean
magnetization or the mean energy per site. The physical property of interest can be represented by a
function f(σ). The problem then reduces to finding the expected value of f(σ) with respect to the probability
distribution µ(σ). Stated mathematically, we are given a function f(σ) and we need to find the value of the
expression

𭟋 =
∑
σ

f(σ)µ(σ) =
1

Z(T)

∑
σ

f(σ)e−E(σ)/κT

which is, by definition, the expected value of f(σ) with respect to the pdf µ(σ). Typically the function f(σ)
is very difficult to compute, and the energy E(σ) is even harder to compute. Clearly it is impossible to find
the energy of every possible configuration, even for a small number of sites. Instead some type of random
sampling must be done. There are two problems with random sampling:

1. We do not want to pick configurations uniformly, because some configurations have very small proba-
bilities, contributing very little to the expected value of the function f(σ), whereas others have large
probabilities, and they contribute much more. We would not get a statistically meaningful answer
using uniform random sampling.

2. Sampling from the distribution µ is extremely difficult, because it requires computing E(σ) using Eq.
8.10, which must iterate over all pairs of sites, just to get the sample probability, and while this may
be feasible for small two-dimensional lattices, it is not for large lattices and for higher-dimensional
problems. Some problems can have dimensions on the order of 100 or more.

In 1947, Nicholas Metropolis, Stanislaw Ulam, John von Neumann, and other colleagues had a similar
problem to solve while working at Los Alamos National Laboratories. They were trying to solve the problem
of predicting the behavior of neutrons as they interacted with other atoms10. Von Neumann proposed using
a statistical approach to solve this problem, laying the foundation of Monte Carlo computation as well as
the acceptance-rejection method [3, 11, 1]. Their success with this approach led to further applications of
the Monte Carlo technique. In 1950, Marshall Rosenbluth developed a theoretical scattering law, which was
the key to the development and publication in 1953 by Metropolis and others, of an algorithm that could be
used for efficient calculation of the properties of any large system [10]. They showed, in particular, how the
algorithm could be used to calculate the expected value 𭟋 of some property of a collection of N particles
in equilibrium at a given temperature. We first summarize the algorithm as they first described it and then
show in detail how it is applied to the Ising model.
In short, in each step of their algorithm, a single particle is displaced by a random amount and the change
in the total energy ∆E of the system of particles is calculated. If the change is to a lower energy state
(∆E < 0), the new position of the particle is accepted. If the change is to a higher energy state (∆E > 0),
then a probabilistic approach is used to determine whether or not to accept the change. If the change is
accepted, the particle is allowed to remain in the new position and the system is put into a higher energy
state. If the change is not accepted, then the particle is returned to its old position. In either case, for the
purpose of calculating the expected value of the function 𭟋, the system is considered to be in a new state.
I.e., the algorithm computes

�̂� =
1

M

M∑
j=1

𭟋j

10To be clear, they were trying to predict how much energy would be released in the chain reaction that takes place when
neutrons are released during atomic fission.

37

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

where 𭟋j is the energy of the system after the jthparticle move is made. What makes this algorithm so
brilliant is the choice of probabilistic decision, the idea of making a small perturbation so that evaluating
the function 𭟋 and the energy would be easy, and the fact that the system is allowed to jump to seemingly
worse states on occasion. The key features of the algorithm are that

• It uses the acceptance-rejection method to generate random variables that are governed by the proba-
bility density distribution µ.

• It performs a random walk through a sequence of configurations that is computationally feasible because
the next state is a small perturbation of the current state.

• The random walk converges to the limit distribution.

• The method of choosing the next state of the random walk samples the low-energy states with much
higher probability than the high-energy states.

Notice that in this random walk, the successive states are not individual spatial locations but are vectors
representing the locations of all particles in a system. They are highly multi-dimensional.
We now explain the Metropolis algorithm in terms of the Ising model. Let σ be the current configuration.
Assume that E(σ) has already been computed. We need to describe how the algorithm selects the next
configuration; call it ξ.

1. The algorithm randomly picks a site whose spin it will change. (This site is selected using accep-
tance/rejection as well.) Call the state with this site’s spin changed, ξ.

2. The change in energy, ∆E = E(ξ)− E(σ) , is computed.

3. If ∆E < 0 then the random walk advances to state ξ. (It has lower energy than the current state.)

4. Otherwise (∆E > 0), compute the transition probability

pσ,ξ =
µ(ξ)

µ(σ)
=

e−E(ξ)/κT

e−E(σ)/κT
= e(−E(ξ)+E(σ))/κT = e−∆E/κT

5. The random walk chooses the new state ξ with probability pσ,ξ otherwise it remains in the same state
σ.

The acceptance-rejection method is used in this last step:

1. A random variable U is generated from U(0, 1).

2. If U < pσ,ξ then the random walk advances to ξ, otherwise it remains in σ.

A pseudocode description of the application of the Metropolis algorithm to the Ising model appears in Listing
8.6.

Listing 8.6: Metropolis algorithm applied to Ising model.
1 /* Constants */
2 const double kB; /* Boltzmann constant
3
4
5 /* Assume we want to compute the mean value of some function f.
6 Input parameters:
7 double temperature; /* temperature of material */
8 int number_of_sites; /* number of sites in configuration */
9 int sigma[num_of_sites]; /* initial configuration */

10 int max_steps; /* how many times to iterate */
11 */

38

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

12
13 double energy;
14 int x_current[num_of_sites]; /* current configuration */
15 int x_next [num_of_sites]; /* next configuration */
16 double sum_f; /* for accumulating mean value */
17
18 Let x_current = sigma; /* the initial configuration */
19 /* Usually we want to run the algorithm a number of steps , throwing away the

first few steps; we skip that here. */
20 sum_f = 0;
21 i = 0;
22 repeat until i == max_steps {
23 u = random number in [0, num_of_sites); /* pick a random site */
24 x_next = flip(u, x_current); /* let x_next be a configuration

differing from x_current by flipping the spin at site u */
25 energy_change = E(x_next) - E(x_current); /* would not actually compute

both of these energies; just the difference obtained from the change in
spin at the site , which is much easier to compute */

26 if (energy_change < 0) {
27 sum_f += f(x_next);
28 }
29 else {
30 /* acceptance/rejection step: generate a U(0,1) random number */
31 u = random number in [0,1);
32
33 /* compute value of transition probability */
34 p = exp(-energy_change /(kB*temperature));
35
36 /* do the statistical test: */
37 if (u < p)
38 /* if u < p accept the change in state */
39 x_current = x_next;
40
41 /* Now either x_current is the new state or the old one. In either

case , add value of f(x_current) to running sum */
42 sum_f += f(x_current);
43 }
44 i++; /* update counter */
45 }
46 return sum_f/max_steps;
47 }

8.9.3.1 Does This Algorithm Work?

We would like to know whether this algorithm works, but this is a rather vague statement. One question
that must be answered is

• Is the value computed by this function a good approximation to the true mean of the function of
interest?

Mathematically, is

�̂� =
1

M

M∑
j=1

𭟋j

a good approximation to

39

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

𭟋 =
∑
σ

f(σ)µ(σ) =
1

Z(T)

∑
σ

f(σ)e−E(σ)/κT

We will not prove it here, but the answer to this question is that �̂� converges to 𭟋 as M → ∞ [10].
The second question is

• Does the algorithm actually reach a unique stationary distribution?

to which the answer is also yes. The random walk described by the Metropolis algorithm satisfies the
conditions required for a Markov process to have a unique stationary distribution. This means that the
limiting distribution is the underlying distribution. A sufficient condition for this statement to be true is
that it satisfies what is called the detailed balance condition, which basically states that the transitions
are symmetric. To be precise, let P (xi) denote the probability that the walk is in state xi and let P (xj |xi)
denote the transition probability that the walk will move into state xj given that it is currently in xi. The
detailed balance condition is satisfied if for all states xi and xj

P (xi|xj)P (xj) = P (xj |xi)P (xi) (8.12)

which states that it is just as likely to go from xi to xj as it is to go from xj to xi. It is not hard to show
that the algorithm satisfies this condition. There are two cases to consider.
The first case is that E(xi) > E(xj). In this case xj is a lower energy state and the transition probability
P (xj |xi) = 1, so the right-hand side of Eq. 8.12 is P (xi). The left-hand side is

P (xi|xj)P (xj) = e(−E(xi)+E(xj))/κT · e
−E(xj)/κT

Z(T)

=
e−E(xi)/κT

Z(T)

= P (xi)

showing that it is true in this case. The second case is when E(xi) < E(xj). In this case xi is a lower energy
state and the transition probability P (xi|xj) = 1, so the left-hand side of Eq. 8.12 is P (xj). The right-hand
side is

P (xj |xi)P (xi) = e(−E(xj)+E(xi))/κT · e
−E(xi)/κT

Z(T)

=
e−E(xj)/κT

Z(T)

= P (xj)

showing that it is also true in this case.

8.9.4 Simulated Annealing and the Room Assignment Problem

Optimization problems are an extremely important class of computational problems. An optimization
problem is one in which the goal is to find the best solution to a problem from among the set of all feasible
solutions. Stated mathematically, the goal is to minimize some real-valued function, usually of one of many
variables, subject to a set of inequality and/or equality constraints. The function to be minimized is called
the objective function. When the set of variables is discrete, it is called combinatorial optimization.
One of the most famous combinatorial optimization problems is the traveling salesman problem , in which
one is given a number of cities and asked to find a shortest path that a salesman can take that visits each
city exactly once, returning to the original city. The objective function is the length of the path, and the
set of feasible solutions is the set of all paths that visit each city exactly once and return to the original
city. Another, less famous, but important problem in the design of computer processors is to decide how to

40

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

partition the set of circuits onto discrete chips to maximize performance of the combined set of chips. One
wants to minimize the number and total length of wires that have to cross from one chip to another, subject
to constraints such as that the circuits fit into the chip packaging.
The room assignment problem is an instance of a more general combinatorial optimization problem known
as the assignment problem. We can state it as follows. We are given a set of n/2 rooms, each of which has
a two-person occupancy, and a set of n college freshmen. Each student has expressed preferences regarding
roommates, which are codified into an n× n symmetric incompatibility matrix C such that Ci,j is a real
number expressing the extent to which students i and j will be incompatible as roommates. The objective
is to assign students to rooms so that every student is assigned to a room and all rooms have two students,
while minimizing the total incompatibility. A solution is therefore a function a : [0, n−1] → [0, n/2−1] that
maps each student into one of the n/2 rooms. We can represent a solution as an array. Let

fC(a, i, j) =

{
Ci,j if a(i) = a(j)

0 otherwise

We parametrize f by C to indicate that its value depends upon the incompatibility matrix C. The objective
function FC(a) is

FC(a) =
1

2

n−1∑
i=0

∑
j ̸=i

fC(a, i, j)

The sum is divided by two because the matrix is symmetric and FC(a) counts each pair (i, j) twice. It really
does not matter and we could ignore this, as we do not really care what the value of the objective function is
as long as it has been minimized. Notice that the objective function decreases in value when paired students
have low incompatibility.
In this problem, the objective function to be minimized is a function of a number of variables that is
proportional to the number of students. If we change just a few student room assignments, its value can
change, and there might be thousands of students. Therefore, it is not so simple to find an assignment that
minimizes FC . One naive approach might be to try a random walk, starting with one assignment and trying
random changes to it, moving to a new solution if the change reduces the value of FC . Unfortunately, this
will not work well because it may get stuck in a local minimum rather than a global minimum.
To illustrate this, consider the function whose graph is shown in Figure 8.13. It has a single global minimum
and several local minima. An algorithm that accepts a move to a new state if the move decreases the
function’s value can easily descend into any of these local minima, unless it just “got lucky” and happened
to do this in the one place that leads to the global minimum. The algorithm should have a way of avoiding
this problem.
In 1983, Kirkpatrick, Gelatt, and Vecchi had the insight to see how the Metropolis algorithm could serve
as a tool for finding solutions to problems of this nature [6]. They saw a connection between the annealing
process used in statistical mechanics and combinatorial optimization. When physicists need to produce a
material with a uniform, defect-free crystalline structure, they heat the material until it melts, and then very
slowly allow the material to cool. This process is called annealing. When the material is heated, the atoms
in it are in a higher energy state and are therefore more active, allowing them to rearrange themselves. As
the temperature cools, the material tends to move into an equilibrium state in which its atoms take positions
that minimize its energy. Kirkpatrick et al saw a way to simulate this annealing process in the iterative
solution to combinatorial optimization. The objective function to be minimized is analogous to the energy
of the material, and the current solution corresponds to a configuration of the atoms. They needed a way
to add temperature to the algorithm, which is where the Metropolis algorithm comes into play.
In the Metropolis algorithm, if the new state has lower energy than the previous state, it is accepted, and
if the new state has higher energy, then it is accepted with probability e−∆E/κT , where k is Boltzmann’s
constant and T is temperature. The energy difference ∆E can be replaced by the difference in the objective
function from one state to the other, ∆F . Then we use the same procedure as in the Metropolis algorithm:
we can accept the new state if ∆F is negative, and if not, then we accept with probability e−∆F/T . But
here is the twist that Kirkpatrick et al introduced: instead of treating the temperature as a constant, they
turned it into a variable and allowed it to change during the course of the algorithm.

41

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-0.5

0

0.5

1

1.5

Figure 8.13: A function of two variables with many local minima and one global minimum.

As the value of the temperature changes, the probability changes as well. In particular, when x > 0, e−x

approaches 0 as x → ∞. Since ∆F > 0, it follows that e−∆F/T must approach zero as T → 0, because T is in
the denominator, so ∆F/T → ∞. Stated another way, as the temperature T is diminished, the probability
of accepting a new state with a larger value of the objective function becomes smaller. This allows us to
simulate the annealing process by starting the temperature at a high value and gradually diminishing it. In
the beginning of the algorithm, there will be more chances for it to jump out of local minima as it starts
to climb up the local hills, and as the algorithm progresses, there will be less of a tendency to climb up the
hills, instead trying to descend further into the minima. This increases the probability that it will find the
global minimum.
The annealing schedule used in the original article set the initial value of T , denoted T0, to 10 and then
“cooled” the system exponentially with the formula

Tn = 0.9nT0

which is equivalent to the recurrence

T0 = 10

Tn+1 = 0.9Tn

They did not change the temperature with each new change of state. Instead, they used the following rules:

• Stay in the current temperature until there are 10 accepted changes (meaning the objective function
was reduced 10 times), not necessarily consecutive, or until the number of attempts exceeds 100 times
the input size, whichever comes first.

• If 10 accepted changes do not take place at three consecutive temperatures, terminate the algorithm,
because it has become “frozen”.

We can now describe the application of simulating annealing to the room assignment problem. The pseu-
docode description is given in Listing 8.7.

42

CSci 493.65 Parallel Computing
Chapter 8 Monte Carlo Methods

Prof. Stewart Weiss

Listing 8.7: Pseudocode solution to room assignment problem using simulated annealing.
1
2 1. Initialize current_solution to be a random guess at a solution to the problem;
3 2. Set initial temperature = 10;
4 3. Set failure_count = 0;
5 4. repeat forever {
6 set acceptance_counter = 0;
7 set number_of_attempts = 0;
8 repeat {
9 Randomly pick two students in different rooms and swap them.

10 Call this the new_solution;
11 Compute the value of the objective function for the new_solution minus
12 the value of the objective function for the current_solution;
13 set u = random number in [0,1);
14 set p = exp(-objective_function_change/temperature);
15
16 if (objective function has been reduced or u < p) {
17 increment acceptance_counter;
18 set current solution to the new_solution;
19 }
20 else {
21 increment number_of_attempts;
22 }
23 }
24 until (acceptance_counter == 10) or (number_of_attempts >= 100*n)
25 if (acceptance_counter == 10) {
26 set failure_count = 0;
27 }
28 else {
29 increment failure_count;
30 if (failure_count == 3) {
31 break;
32 }
33 }
34 temperature = 0.9* temperature;
35 if (temperature < 0.001) {
36 break;
37 }
38 }
39 5. Return the current_solution and value of objective function;

This algorithm will terminate if either the system becomes frozen or because the temperature became suf-
ficiently close to zero. If the temperature becomes very close to zero, the algorithm will reject almost all
changes of state that increase the value of the objective function, so it will not find a solution very different
from what it currently proposes, and the number of consecutive rejections will cause it to fail. In principle
when the latter happens the system will fail eventually, so this is just a way to stop wasting time.

8.10 Summary

This chapter introduced Monte Carlo methods, a very powerful set of approximation techniques for solving
computationally intractable problems by statistical sampling. Underlying all Monte Carlo methods is the
need to produce reliable streams of random numbers, and so this chapter also introduced a bit of the theory
of random number generation, both sequential and parallel. The theory underlying Monte Carlo methods
was explained, and various types of Monte Carlo methods were illustrated. All of the examples studied here
are forms of Monte Carlo integration. Monte Carlo methods can also be used for simulations. One example
in Section 8.8.1.1 showed how this could be done for exponentially-distributed arrivals.

43

References

[1] Isabel M. Beichl and F. F Sullivan. The metropolis algorithm. IEEE Computing in Science and
Engineering, 2(1):65–69, 2000.

[2] Paul D. Coddington. Random number generators for parallel computers. Technical Report 13, Northeast
Parallel Architecture Center, Syracuse University, 1997.

[3] Roger Eckhardt. Stan ulam, john von neumann, and the monte carlo method. Los Alamos Science
Special Issue, pages 131–143, 1987.

[4] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift fÃŒr Physik, 31(1):253–258, 1925.

[5] M. G. Kendall and B. Babington Smith. Randomness and random sampling numbers. Journal of the
Royal Statistical Society, 101:147–166, 1938.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–
680, 1983.

[7] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[8] D. H. Lehmer. Mathematical methods in large-scale computing units. In Proceedings of a Second
Symposium on Large-Scale Digital Calculating Machinery, pages 141–146, 1949.

[9] Nicholas Metropolis. The beginning of the monte carlo method. Los Alamos Science Special Issue, pages
125–130, 1987.

[10] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[11] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American Statistical
Association, 44:335–341, 1949.

[12] M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.
McGraw-Hill Higher Education, 2004.

44

Subject Index

absolute error, 3
acceptance-rejection method, 21
annealing, 41
assignment problem, 41

Bernoulli trial, 20
blanketing function, 21
Box-Muller transformation, 21

CDF, 16
central limit theorem, 4
chain, 30
combinatorial optimization, 40
cross-section of capture, 26
cumulative distribution function, 16

detailed balance condition, 40
Dirichlet problem, 28
discrete uniform distribution, 5

exponential distribution, 17

Gaussian distribution, 21
generalized function inverse, 16
geometric distribution, 20

homogeneous, 28

iid, 4
increment, 9
independent sequencing, 13
independently and identically distributed, 4
inversion method, 17
Ising model, 36
isotropic, 28

lag, 11
lag table, 11
lagged Fibonacci generator, 11
Laplace equation, 29
Laplace’s Equation, 28
leapfrogging, 12
linear congruential generator, 9

majorize, 21
Mean Value Theorem, 5

Metropolis algorithm., 35
modulus, 9
multiplicative congruential method, 10
multiplier, 9

normal distribution, 21

objective function, 40
optimization problem, 40
order, 10

primitive element, 10
PRNG, 8
pseudo-random number generator, 8

random walk, 30, 31

seed, 9
sequence splitting, 12
sites, 36
space-homogeneous, 31
spin, 36
spin configuration, 36
state space, 30
steady state temperature distribution, 28

time-homogeneous, 31
total cross-section, 26
transition probability, 31
traveling salesman problem, 40

uniformly distributed, 5

Weak Law of Large Numbers, 4

45

	8 Monte Carlo Methods
	8.1 Introduction
	8.2 Applications of Monte Carlo Methods
	8.2.1 Example: Calculating PI (again)

	8.3 The Theory
	8.4 Monte Carlo Integration
	8.5 Parallel Algorithms and Monte Carlo Methods
	8.6 Sequential Random Number Generators
	8.6.1 Linear Congruential Generators
	8.6.1.1 When c=0 (Multiplicative Congruential Method)
	8.6.1.2 When c=0
	8.6.1.3 Synopsis

	8.6.2 Lagged Fibonacci Generators
	8.6.2.1 Choosing LFG Parameters

	8.7 Parallel Random Number Generators
	8.7.1 The Leapfrog Method
	8.7.2 Sequence Splitting
	8.7.3 Independent Sequencing

	8.8 Generating Non-Uniform Random Variables
	8.8.1 The Method of Inversion
	8.8.1.1 Continuous Example: The Exponential Distribution
	8.8.1.2 Discrete Example: The Geometric Distribution

	8.8.2 The Acceptance-Rejection Method
	8.8.2.1 Example 1
	8.8.2.2 Example 2: Standard Normal
	8.8.2.3 Digging Deeper: Why This Works

	8.9 Applications of Monte Carlo Methods
	8.9.1 Neutron Transport
	8.9.2 Random Walks and the Dirichlet Problem
	8.9.3 The Metropolis Algorithm and the Two-Dimensional Ising Model
	8.9.3.1 Does This Algorithm Work?

	8.9.4 Simulated Annealing and the Room Assignment Problem

	8.10 Summary

