
CSci 493.66 UNIX System Programming

Programming Rules

Prof. Stewart Weiss

Programming Rules

NOTE. A rule is a requirement ; it must be followed. A guideline is a suggestion; it is strongly encouraged
but does not have to be followed. The following are rules; to receive full credit on an assignment they must
be followed.

1. You must make sure that your program is free of all errors when it is compiled, linked, and executed on
the department's network gateway machine, named eniac.geo.hunter.cuny.edu, prior to submitting
it. Sometimes a program will run correctly on one machine but not another, for one reason or another.
This requirement stipulates that it must run correctly on eniac.

2. You must submit all of the source code and nothing else, unless the assignment states otherwise. Do
not submit an executable, or data �les.

3. For full credit, an assignment must be submitted to me in the manner described in the assignment by
the end of the day on the due date. Each day after the due date, the program loses 20% of its total
value. A program that is �ve days late will be scored 0.

4. The program must be your work, and your work alone. If you do not understand what it does or why it
works because someone else's hand is in it, I will discover that one way or another. You are forewarned
that I think it is reasonable for you to explain to me how your program works if I ask you to do so. If
you cannot explain it, then it is not �yours�. Attributing someone else's work as your own is plagiarism,
and it is a violation of Hunter College policy. I will �le an o�cial complaint against any student who
I believe has committed plagiarism.

5. Every program must be professionally documented. Every distinct source code �le must contain a
preamble with the �le's title, author, brief purpose and description, date of creation, and a revision
history. The description must be a few sentences long at the minimum. A revision history is a list of
brief sentences describing revisions to the �le, with the date and author (you) of the revision. This is
an example of a suitable preamble:

/**

Title : drawing_stars.c

Author : Stewart Weiss

Created on : April 2, 2010

Description : Draws stars of any size in a window, by dragging the mouse to

define the bounding rectangle of the star

Purpose : Reinforces drawing with the backing-pixmap method, in which the

application maintains a separate, hidden pixmap that gets drawn

to the drawable only in the expose-event handler. Introduces the

rubberbanding technique.

Usage : drawing_stars

Press the left mouse button and drag to draw a 5-pointed star

Build with : gcc -o drawing_demo_03 drawing_stars.c \

`pkg-config --cflags --libs gtk+-2.0`

Modifications :

**/

All function prototypes in your program, whether members of a class or not, must have a prologue
containing comments for each parameter and appropriate pre-and post-conditions. These prologues
must not be in the implementation �les of classes, but in the class interfaces. All non-trivial algorithms

1

CSci 493.66 UNIX System Programming

Programming Rules

Prof. Stewart Weiss

must be documented in plain English in a multi-line comment block. All non-trivial declarations must
have adjoining, brief comments. Documentation is usually worth 10% of the grade.

6. Every program must follow commonly accepted stylistic guidelines regarding the use of blank lines,
white space, indentation, and naming of program entities such as variables, classes, functions, and
constants. Your program must be consistent in its use of typographical format for distinguishing
types, variables, functions, and constants. For example, you might decide that all type names should
begin with an uppercase letter and all variables begin with lowercase letters, or that all variables use
underscores to separate the words in the name, as in number_of_scores and first_author, or that
they use changes in case, as in numberOfScores and firstAuthor. Style is usually worth 10% of the
grade.

7. Every program must be correct to receive full credit. "Correct" means that for every possible input,
it produces output that is consistent with the speci�cation. If the program produces correct results
for some, but not all, inputs, it is not correct. Since there may be in�nitely many possible inputs,
you cannot possibly establish your program's correctness by running it on all inputs. You must use
a combination of sampling (i.e., testing) and logical analysis to convince yourself of its correctness.
Correctness is usually 50% to 70% of the grade. A very common mistake I have found is for students
to hand in programs that do not even run correctly on the input �le I gave out. In other words, students
have failed to check the outputs of their programs before submitting them. This is just laziness.

8. Every program must satisfy speci�ed performance requirements if these are stated. This means that
it uses an amount of storage and running time within speci�ed or reasonable limits. Performance may
be worth between 10% and 30% of the grade, depending on the assignment.

9. There are no rigid rules. All rules can be broken, but it is best to check with me before taking a big
chance.

2

