
CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

Lesson 2: GTK+ Basics

1 A First GTK+ Program

We will begin with a very simple GTK+ program in order to demonstrate some of the key tasks that every
GTK+ main program must perform. The program, hello_world.c, is found in many books and articles
about GTK+ in one form or another because it contains most of the basic elements.

Listing 1: First GTK+ program: hello_world.c

1: #include <gtk/gtk.h>

2:

3: int main (int argc ,

4: char *argv [])

5: {

6: GtkWidget *window;

7:

8: /* Initialize GTK+ and all of its supporting libraries. */

9: gtk_init (&argc , &argv);

10:

11: /* Create new window , give it a title and display to the user. */

12: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

13: gtk_window_set_title (GTK_WINDOW (window), " Hello World ");

14: gtk_widget_show (window);

15:

16: /* Hand control over to the main loop. */

17: gtk_main ();

18: return 0;

19: }

This program will not terminate normally; in order to terminate it, you will have to kill it with a signal such
as Control-C issued from the terminal. If you click the close-box in the window when it runs, the window
will disappear but the process will continue to run in a windowless state. (Use the ps command to see the
list of running processes after closing the window to prove it to yourself.)

Note that line 1 includes <gtk/gtk.h> , the GTK+ header �le that includes all GTK+ de�nitions as well
as headers for all libraries required by GTK+. It must always be present in any GTK+ program. You will
usually need no other header �le in order to use the GTK+ libraries.

Building the Application A GTK+ program depends on several libraries, not just the GTK+ library.
This fact is obscured because <gtk/gtk.h> includes many other header �les. In fact if you open this �le,
you will see exactly what other headers are included. To �nd the �le, you can use a command such as

find /usr/include -name gtk.h

which will search recursively through all directories in /usr/include for a �le named gtk.h. The output will
most likely be

/usr/include/gtk-2.0/gtk/gtk.h

1

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

If we look at the contents of the header �le, we will see that it contains the following lines, among many
others:

#include <gdk/gdk.h>

#include <gtk/gtkaboutdialog.h>

#include <gtk/gtkaccelgroup.h>

...

The remaining lines are all like the last two lines above, including various gtk headers. The �rst line is the
important one at the moment; it says that this program has dependencies in the <gdk.h> header �le and
thus will need to link to the GDK library. If we look in <gdk/gdk.h> we will see that it has dependencies
on the pango and cairo header �les and therefore we may need to link to those libraries also. How then, can
we possibly know what libraries we need?

The answer lies in a useful command named pkg-config. The pkg-config command is designed to output
the compiler options necessary to compile and link programs that use software libraries such as GTK+.
When a package like GTK+ is installed on the system, a �le with a .pc extension is installed, usually in the
directory /usr/lib/pkgconfig. The pkg-config command uses the information in that �le to display the
output needed to compile and link programs that use the library.

We can use pkg-config to display compiler �ags for GTK+2 with the command

pkg-config --cflags gtk+-2.0

which will output

-I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0

-I/usr/include/cairo -I/usr/include/pango-1.0 -I/usr/include/glib-2.0

-I/usr/lib/glib-2.0/include -I/usr/include/freetype2 -I/usr/include/libpng12

This shows that GTK+2 depends on many header �les, including those for ATK, Cairo, Pango, and GLib.
We can get the linker �ags using the command

pkg-config --libs gtk+-2.0

which will output

-L/lib -lgtk-x11-2.0 -lgdk-x11-2.0 -latk-1.0 -lgdk_pixbuf-2.0 -lm

-lpangocairo-1.0 -lpango-1.0 -lcairo -lgobject-2.0 -lgmodule-2.0

-ldl -lglib-2.0

This shows that the corresponding libraries are required, as well as some not mentioned above such as
GObject and Gdk-Pixbuf.

If you are not familiar with the options supplied to gcc, please read my brief tutorial on gcc, which may be
downloaded from http://www.compsci.hunter.cuny.edu/∼sweiss/resources/The GCC Compilers.pdf. The
compiler �ags tell the compiler which directories to look in for the various included header �les. The linker
�ags tell the linker which directories to look in to �nd the various required libraries (the �L� options) and
which libraries are required for linking (the �l� options). We can combine these �ags into a single call to
pkg-config with the single command

pkg-config --cflags --libs gtk+-2.0

2

http://www.compsci.hunter.cuny.edu/~sweiss/resources/The%20GCC%20Compilers.pdf

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

To compile and link the helloworld.c program, creating the executable hello_world, we can use the
command

gcc -Wall -g -o hello_world hello_world.c \

`pkg-config --cflags --libs gtk+-2.0`

Putting the pkg-config command in backquotes (`...`) causes the shell to replace the command itself by
its output, as if you typed

gcc -Wall -g -o hello_world hello_world.c \

-I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 \

-I/usr/include/cairo -I/usr/include/pango-1.0 -I/usr/include/glib-2.0 \

-I/usr/lib/glib-2.0/include -I/usr/include/freetype2 -I/usr/include/libpng12\

-L/lib -lgtk-x11-2.0 -lgdk-x11-2.0 -latk-1.0 -lgdk_pixbuf-2.0 -lm \

-lpangocairo-1.0 -lpango-1.0 -lcairo -lgobject-2.0 -lgmodule-2.0 \

-ldl -lglib-2.0

The backslash �\� at the end of the �rst line is there in order to continue the command to the next line;
it serves as an escape character for the newline character that follows. The -g option enables debugging
output. Although there is space in this document to write this command on a single line, you ought to know
how to break a command across multiple lines in the shell. Of course if it �ts on a line, you can type it on
a single line!

Because it is tedious to type this command over and over to build the executable, it is preferable to create a
Make�le that automatically executes the command. If there is a Make�le in the current working directory
and you type the command

make

then the Make�le will be executed, in much the same way that a shell script is executed by the shell. A
Make�le can be named Makefile or makefile; either will work. If you want to name it foo, then you could
also type

make -f foo

although you'd better have a good reason to do this! A simple Make�le for this program would look like

CC = gcc
FLAGS = −Wall −g ` pkg−c on f i g −−c f l a g s −− l i b s gtk+−2.0`

a l l :
<T>hel lo_world

hel lo_world : he l lo_world . c
<T>$ (CC) −o hel lo_world hel lo_world . c $ (FLAGS)

c l ean :
<T>rm −f he l lo_world

In the listing above, the string �<T>� represents a tab character. I put it there so that you do not think
there are space characters at the beginning of those lines. In a Make�le, the �recipes� must begin with a tab
character. A Make�le is basically a list of rules. Each rule consists of a line describing the targets and a line
describing the recipe. For example, the two lines

3

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

hello_world: hello_world.c

<T>$(CC) -o hello_world hello_world.c $(FLAGS)

are a rule that states that the target hello_world depends upon the �le hello_world.c, and that to create
the target hello_world, the gcc compiler will be invoked with the command line

gcc -o hello_world hello_world.c -Wall -g `pkg-config --cflags --libs gtk+-2.0`

Notice that I substituted the variables CC and FLAGS by their values. In general, the make program lets you
create variables and use them in rules. To use a variable named FOO, you write $(FOO). Things can get much
more complicated than this.

In general you should know how to create Make�les for your projects. If you are unfamiliar with them, now
is the time to learn the basics. A very good introduction to the basics of Make�les is found at the website
http://www.eng.hawaii.edu/Tutor/Make/.

Programming Convention Sprinkled throughout these notes you will �nd paragraphs labeled �Program-
ming Convention.� GTK+ programmers tend to follow a few conventions that make for good style in any
program, not just GTK+ programs. For the most part, I will follow those conventions in these notes, and
where appropriate, I will introduce a convention prior to using it. The �rst one you will discover is the
format of function declarations and de�nitions, particularly those with multiple parameters. Rather than
writing all of the parameters on a single line, even if space permits, the parameters are written one per line,
as follows:

GtkWidget* gtk_table_new (guint rows,

guint columns,

gboolean homogeneous);

Sometimes when there are just two parameters, they will be written on a single line. I will also follow the
style used by the authors of GTK when there are multiple declarations. For example:

GtkWidget * gtk_window_new (GtkWindowType type);

void gtk_window_set_title (GtkWindow *window,

const gchar *title);

void gtk_window_set_wmclass (GtkWindow *window,

const gchar *wmclass_name,

const gchar *wmclass_class);

Here the return types, function names, and parameter lists are aligned in columns. This makes it easier to
read. The above is a fragment of the documentation for the GtkWindow class.

2 Tasks in Creating GTK Programs

The program in Listing 1 demonstrates all but one of the key steps in creating a GTK+ application. There
are basically seven di�erent steps:

1. Initialize the GTK environment;

2. Create the widgets and set their attributes;

4

http://www.eng.hawaii.edu/Tutor/Make/

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

Create Instance Hierarchy Register Callbacks

Initialize the Environment

Create Widgets

Run Event Loop

Clean Up and Quit

Display Widgets

Figure 1: Flow graph for Listing 1

3. Register the callback functions;

4. Create the instance hierarchy;

5. Display the widgets;

6. Enter the main event loop;

7. Clean up and quit.

These steps are not linear in sequence. The �ow graph below shows what steps must precede others. In the
remainder of this document, I will summarize and give examples of each of these steps. Some of them are
trivial for you as programmer because they involve just a single function call, but they are all critical and
cannot be omitted.

In this �rst program, there are no callback functions, so step 3 is not required.

2.1 Initializing the Environment

The call to gtk_init() in line 9 initializes the environment:

void gtk_init (int &argc, char &argv);

Note that you pass it the addresses of argc and argv, not argc and argv themselves. This is because
gtk_init() strips any arguments that it recognizes from the list and passes the rest to your program. You
must call gtk_init() before any other functions in the GTK+ libraries.

2.2 The GTK Object Hierarchy

Although GTK is written in C and provides an interface in C, it is object-oriented. It uses clever techniques to
provide all of the important features of object-oriented programming, including private data, encapsulation,

5

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

and virtual function calls. The top of the object hierarchy for all libraries is the GObject. Everything is
derived from GObject. GObject provides the methods that allow objects to be created and destroyed, to be
referenced and unreferenced, and to emit signals. The GObject class has a set of properties inherited by all
derived classes. The GInitiallyUnowned class is derived from the GObject class. You will never have to
use it and for now we will ignore it.

The GtkObject is the top of the GTK+ object hierarchy and is derived from GInitiallyUnowned. This too
is a class that we will make little use of. It exists for backwards compatibility with GTK+1.0. It has been
eliminated completely from GTK+3.

2.2.1 Widgets

The single most important GtkObject is the GtkWidget1. The word �widget� comes from the word �gadget�;
in computer science, the word has come to mean something that responds to mouse clicks, key presses, or
other types of user actions. In short, widgets are things like windows, buttons, menus, and edit-boxes.

The GtkWidget derives from GtkObject and inherits all of its properties and methods. The GtkWindow is a
widget that derives from GtkWidget and the GtkDialog is a kind of window that derives from GtkWindow.

You may think that all widgets are either containers like windows and boxes of various kinds, or controls
like buttons and menus, but this is not the case. In fact, some widgets are neither, like a GtkRange, which
is a range of values. There are also objects that are not widgets, such as the GtkCellRenderer class.

Widgets can be grouped together into composite widgets. This is how menus and menu bars are constructed.
A menu is a collection of widgets that act together. Menu bars are collections of menus.

Widgets have properties, such as their state and visibility. Some properties are inherited from the ancestral
GtkWidget class because they are part of all widgets. Others are speci�c to particular kinds of widgets.
Windows, for example, have properties not shared by rulers or calendars. Widgets also have methods, which
are the functions that act upon them, and these too are inherited from ancestor classes or are speci�c to the
class itself.

2.2.2 Object Types and Casting

The GObject hierarchy provides a set of macros for type checking and type casting. It is a pretty intuitive
set of macros to use. For example, to cast a pointer to a GtkWidget into a GObject, the G_OBJECT() macro
is used, as in

G_OBJECT(Widget_ptr)

The result is a pointer to a GObject.

In most programs, all widgets are declared and created using GtkWidget* pointers. If a window or a button
is created, it will be through a GtkWidget*; therefore, when one wants to use properties of these things
that are not inherited from the GtkWidget class but are part of the derived class, the window or button
will have to be cast to its own type. In the example program, we see that the window object is declared as
a GtkWidget, but to set its title, we have to cast it using GTK_WINDOW() because windows have titles, not
widgets in general.

In the program, the program's main and only window is declared as a widget in line 6:

GtkWidget *window;

1In GTK+3, GtkWidget derives directly from GInitiallyUnowned.

6

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

2.3 Creating Widgets and Setting Their Attributes

The program creates a window in line 12 using the instruction

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

This creates a window of �xed size using the default width and height of 200 pixels. The area of the
window includes the title bar and window border. This created a top-level window. A top-level window
is not under the control of the programmer; the window manager (e.g., Gnome) has control over such
things as its placement and its decorations. Your program can make requests, but they do not have to be
honored by the window manager, which has the much larger responsibility to manage all currently running
graphical applications. If you want a non-top-level window that you can control completely, you use the
GTK_WINDOW_POPUP type, which we will discuss later.

For many widgets W there is a function of the form gtk_W _new that creates an instance of a W widget.
Each of these functions is of the form

GtkWidget* gtk_W _new (parameters);

returning a pointer to a GtkWidget (not a W.) For some, there are no parameters, whereas for others, there
are. Some examples include

GtkWidget* gtk_window_new (GtkWindowType type);

for creating a window. Usually it is a top level window, which is the type to supply.

GtkWidget* gtk_button_new (void);

for creating a button. It takes no arguments.

GtkWidget* gtk_calendar_new (void);

for creating a calendar, also with no arguments.

GtkWidget* gtk_table_new (guint rows,

guint columns,

gboolean homogeneous);

for creating a table. It is given the numbers of rows and columns and a boolean indicating whether to use
uniform spacing or not.

GtkPrinter* gtk_printer_new (const gchar *name,

GtkPrintBackend *backend,

gboolean virtual_);

for creating a printer connection.

An almost complete list of the widgets that can be created with the gtk_*_new call follows. I have omitted
some of the more specialized widgets, and I have not included those widgets that are derived from other
widgets included in the list. For example, only a single button is listed, not radio buttons or check boxes,
which derive from them.

7

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

Widget Type Name in Call Parameter Prototype

button button (void)

calendar calendar (void)

combo-box combobox (void)

entry entry (void)

event eventbox (void)

frame frame (const gchar*)

horizontal box hbox (gboolean, gint)

horizontal ruler hruler (void)

horizontal scale hscale (GtkAdjustment*)

horizontal scrollbar hscrollbar (GtkAdjustment*)

label label (const gchar*)

layout layout (GtkAdjustment*, GtkAdjustment*)

list list (void)

menu menu (void)

menu bar menubar (void)

menu item menuitem (void)

notebook notebook (void)

printer printer (const gchar*, GtkPrintBackend*, gboolean)

socket socket (void)

status bar statusbar (void)

table table (guint, guint, gboolean)

text widget text (GtkAdjustment*, GtkAdjustment*)

text bu�er textbuffer (GtkTextTagTable*)

tool bar toolbar (void)

tool item toolitem (void)

tree tree (void)

tree item treeitem (void)

tree path treepath (void)

vertical box vbox (gboolean, gint)

view port viewport (GtkAdjustment*, GtkAdjustment*)

vertical ruler vruler (void)

vertical scale vscale (GtkAdjustment*)

vertical scrollbar vscrollbar (GtkAdjustment*)

window window (GtkWindowType)

After creating a widget, you should set its attributes. For some widgets, the attributes can include the size,
position, border widths, text that appears inside (e.g., it's title), its name, which is used by GTK in looking
up styles in gtkrc �les, a topic to be covered later, and so on.

To determine what attributes can be set for a given widget, it is useful to look at their positions in the
widget hierarchy, remembering that any attribute de�ned by a widget's ancestor is inherited by the widget.
The hierarchy is depicted in the Appendix.

In the hello_world program, after creating a window with gtk_window_new, the title of the window is set
using

gtk_window_set_title (GTK_WINDOW (window), "Hello World");

We could also have set the resizable property with a call such as

gtk_window_set_resizable(GTK_WINDOW(window), FALSE);

8

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

which prevents the window from being resized.

Sometimes, the attributes to be set are not members of the widget class itself, but are inherited from a parent
or higher ancestor. An example is the border width of a window. Windows are not the only widgets that
have borders; in general, borders are a property of containers, an abstract base class from which windows
and buttons and other such things are derived. The border of a container is the empty space inside of the
container that surrounds its children. To set the border width of a window or a button, you have to call the
ancestor's method, casting as necessary:

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

Notice that the ancestor's method expects a pointer to an instance of the ancestor (gtk_container), so the
window widget pointer is cast using the macro GTK_CONTAINER to a gtk_container*. I will say more about
this in De�ning the Instance Hierarchy below.

2.3.1 About Sizes

Sizes are always given in logical pixels. For example, in the call to set the border width of a container, the
integer is the number of logical pixels. The size of a logical pixel is determined by two factors: the physical
dimensions of the screen and the current display resolution. For example, if the monitor's width is 14.75
inches and the resolution is set to 1152 by 864, then the number of logical pixels per inch is 1152/14.75 =
78 pixels per inch.

2.4 Registering Callback Functions

In this program, there are no callback functions and hence nothing to do with them right now. The next
program will demonstrate what to do, so for now, we skip this topic.

2.5 De�ning the Instance Hierarchy

When you de�ne the user interface for your program, you visually lay out the various windows and controls.
Your layout determines the hierarchical relationships that the various widgets will have. In general, there
is a transitive, non-re�exive, non-symmetric "contains" relationship among widgets. If widget A directly
contains widget B, then A is a parent of B. If A contains B and B contains C, then A contains C by
transitivity. This leads naturally to a tree of containments.

GTK manages the allocation of memory and resources required by the various widgets in your application.
It frees you from having to �gure out exactly how big everything needs to be, and it takes care of resizing
events as they take place. But this does not happen for free; in order for GTK to do this for you, you have
to do something for GTK in return. You have to tell GTK the parent-child relationships that exist in the
application by telling it what is contained in what, and in what relative positions. In e�ect, by adding a
widget into another widget viewed as a container, you are telling GTK that the former is a child of the
latter.

This �rst program has just a single widget, the main window, so you do not have to do anything to de�ne
the containment hierarchy within the program. The next program will demonstrate what is required.

2.6 Showing The Widgets

Showing a widget is easy in this case since there is only a single widget to display. The call is simply

void gtk_widget_show(GtkWidget *widget);

9

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

which sets the widget's visibility property to true. Line 14 uses this function:

gtk_widget_show(window);

Notice that the window does not need to be cast because it is a widget, not a window. The window may
not appear at once because requests are queued. Furthermore, a widget will not be displayed on the screen
unless its parent is visible as well.

You can hide a widget with the symmetric call

void gtk_widget_hide(GtkWidget *widget);

which hides a widget. If it has any children, then, because their parent is hidden, they will be hidden because
of the rule cited above, not because they are marked as invisible.

2.7 Starting the Main Event Loop

Every GTK+ application must have a gtk_main() call, which puts the program into an event driven state.
gtk_main() wrests control from the program and puts it in the hands of the behind-the-scenes event manager.
When gtk_main() is running, all events and signals are processed as they occur. The only way for the
program to terminate is via some outside event.

3 A Second GTK+ Application

The next application, from the Krause textbook, pages 23-24, introduces two features: containment and
signal handling. It is displayed in Listing 2. It can be compiled and linked in the same way as the �rst
program. Unlike the �rst program, this one will terminate itself when the user clicks the close-box in the
main window.

3.1 The GtkLabel Widget

This program puts a label inside the main window using the GtkLabel widget. A GtkLabel widget is a
widget that can contain non-editable, formatted text, wrapped or unwrapped. One obvious use for such
a widget is to display labels for other widgets. The GtkLabel widget supports dozens of methods, such
as setting the text, setting various text attributes (whether it is selectable, how it is aligned, wrapped or
unwrapped, and so on), adding mnemonics, and retrieving the text in the widget.

To create the label, the program declares a widget pointer named label in line 9:

GtkWidget *window, *label;

and in line 25, it creates the widget and sets its text simultaneously with the function

GTkWidget* gtk_label_new (const gchar *str);

in which, if str is not NULL, it becomes the text of the label. If it is NULL the widget has no text.

Notice that in general GTK+ uses GLib types instead of the standard C types, preferring gchar to char.
The call in line 25 is

10

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

label = gtk_label_new ("Hello World");

To illustrate the use of one GtkLabel method besides its constructor, the program makes the widget text
selectable, so that it can be copied into the clipboard for use outside of the application using Ctrl-C. The
function to make the text selectable is

void gtk_label_set_selectable (GtkLabel *label,

gboolean setting);

which is used in line 26:

gtk_label_set_selectable (GTK_LABEL (label), TRUE);

Notice that the function expects a GtkLabel* for its �rst argument, so the label variable, which is of type
Widget*, must be cast to a GtkLabel*. The macro GTK_LABEL performs the cast. The second argument is
set to TRUE to turn on the selectable property.

The label text can be changed at any time with the function

void gtk_label_set_text (GtkLabel *label,

const gchar *str);

The text can be retrieved with gtk_label_get_text():

const gchar* gtk_label_get_text (GtkLabel *label);

Consult the GTK+ Reference Manual for other methods related to labels. You will see functions to add
mnemonics (keyboard shortcuts), change the text properties and more.

Listing 2: Second GTK+ program: hello_world2.c

1: #include <gtk/gtk.h>

2:

3: void destroy (GtkWidget*, gpointer);

4: gboolean delete_event (GtkWidget*, GdkEvent*, gpointer);

5:

6: int main (int argc , char *argv [])

8: {

9: GtkWidget *window , *label;

10:

11: gtk_init (&argc , &argv);

12:

13: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

14: gtk_window_set_title (GTK_WINDOW (window), " Hello World ! ");

15: gtk_container_set_border_width (GTK_CONTAINER (window), 10);

16: gtk_widget_set_size_request (window , 200, 100);

17:

19: g_signal_connect (G_OBJECT (window), " destroy ",

20: G_CALLBACK (destroy), NULL);

21: g_signal_connect (G_OBJECT (window), " d e l e t e _ e v e n t ",

22: G_CALLBACK (delete_event), NULL);

23:

24: /* Create a new GtkLabel widget that is selectable. */

25: label = gtk_label_new (" Hello World ");

11

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

26: gtk_label_set_selectable (GTK_LABEL (label), TRUE);

27:

28: /* Add the label as a child widget of the window. */

29: gtk_container_add (GTK_CONTAINER (window), label);

30: gtk_widget_show_all (window);

31:

32: gtk_main ();

33: return 0;

34: }

35:

36: /* Stop the GTK+ main loop function. */

37: void destroy (GtkWidget *window , gpointer data)

40: {

41: gtk_main_quit ();

42: }

43:

44: /* Return FALSE to destroy the widget. Returning TRUE , cancels

45: a delete -event. This can be used to confirm quitting */

46: gboolean delete_event (GtkWidget *window ,

48: GdkEvent *event ,

49: gpointer data)

50: {

51: return FALSE;

52: }

3.2 About Container Widgets

In the �rst program, there was a single widget, and hence nothing was contained in anything else. In general,
a GTK+ user interface is constructed by nesting widgets inside widgets. There is a natural parent-child
relationship in containment: the contained object is the child of the containing object. This leads to a
tree of containments in which the internal nodes are container widgets. So, for example, you might have a
GtkWindow containing a GtkTable containing a GtkLabel. If you wanted an image instead of a textual label
inside the table, you might replace the GtkLabel widget with a GtkImage widget. In this program, we want
to put a label widget inside a window widget, and so the label would be the child of the main window.

In general, to put one widget inside another, we have to use the methods of the container class from
which the parent was derived. In particular, a GtkWindow is derived indirectly from a GtkContainer. The
GtkContainer class is an abstract base class with two major types of concrete subclasses, one that can have
a single child, and others that can have multiple children. The GtkContainer class encapsulates several
properties and methods that are characteristic of things that contain other things. For example, two of its
properties are its border width and whether it can be resized. Methods include setting border width, adding
and removing children, changing focus, and altering the inter-relationships among its children.

The GtkBin is the subclass that can only contain one child. Windows, buttons, frames, and combo-boxes
are subclasses of GtkBin. You may wonder why a button is a GtkBin, but a button is simply a container
that contains a label. Because a window is a type of GtkBin, it can only contain one widget.

The GtkBox is one of the subclasses that can contain multiple children. So is the GtkTable and the GtkTree
(and a long list of others as well). There are three kinds of boxes: horizontal boxes, vertical boxes, and button

boxes. Horizontal boxes and vertical boxes provide enough �exibility so that you can layout many windows
with them alone.

Because a window is a type of GtkBin, it can have only a single child. If you only want to add a single
widget to a window, you can use the gtk_container_add() method:

12

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

void gtk_container_add(GtkContainer *container,

GtkWidget *widget);

On line 29 of the listing, the call to add the label is

gtk_container_add (GTK_CONTAINER (window), label);

Notice that the window must be cast to a container to use this method.

Note. When you have several buttons, edit boxes, and other items to add, you will need to add a container
object to the window of the type that can have multiple children, such as the GtkBox subclasses, the GtkTable,
the GtkAlignment, the GtkFixed, or the GtkLayout. Also, if you have a window-less widget that needs to
respond to events, it can be placed into a special GtkEventBox, which is a GtkBin class that provides a home
for such widgets and allows them to appear to handle those events. Labels are a good example of this; labels
have no windows and cannot respond to events, so if you wanted to make them do things when they are
clicked, you would put them into event boxes. We will cover event boxes and the other types of containers
in subsequent lessons.

We use one other GtkContainer method in this example program to demonstrate how to set the border
width of the window. Remember that the border is the region inside the window near the edge, like a
margin. The border width is the number of pixels surrounding on the inside edge of the window that cannot
be used by any nested widgets. The border creates space around the child widget. The function is:

void gtk_container_set_border_width(GtkContainer *container,

guint border_width);

and it is used on line 15 to set a width of 10 pixels all around the window:

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

Size Requisition and Allocation

On line 16, the program sets the window size to 200 by 100 pixels with the call

gtk_widget_set_size_request (window, 200, 100);

which uses the widget method

void gtk_widget_set_size_request(GtkWidget *widget,

gint width,

gint height);

This sets the minimum size of the window. It is a request to the window manager to draw it at least this
large, possibly larger. The window will not be drawn this size if doing so makes it too small to be functional.
By passing -1 in either size parameter, you tell GTK+ to use the natural size of the window, which is the
size GTK+ would calculate it needs to draw all of the nested widgets within it. If one parameter is -1, the
window is sized using the other and scaled appropriately.

In order to understand how large widgets can or cannot be, you need to understand how GTK determines
the sizes of widgets. A container acts as a negotiator between its parent and its children; children make size
requests, usually implicitly, but parents may impose size limitations. The container �nds a happy medium.

13

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

A widget makes a size request by virtue of its properties. For example, a label contains text of a particular
size and so it needs a minimum height and width for its display. The same is true of an icon or an image.
The container must add up the size requests of all of its children and present a request to the parent. If the
request can be satis�ed, then all of the children receive an allocation that satis�es their needs. If the request
cannot be satis�ed, then the children are given less space than they requested.

Requests proceed from the top down. The highest level widget in the tree, usually a window, asks its child
container how much space it needs. The container in turn, asks each of its children, which in turn ask
their children , which in turn ask theirs, and so on, until the leaf nodes in this tree are reached. The leaf
nodes present their requests, and their parents compute their requests, and their parents, theirs, and so on,
until the request reaches the top level. If it can be satis�ed, the allocations take place, in a top-to-bottom
direction. The top-level widget tells its children how much space they get, and they in turn tell their children
how much they get, and so on, until all widgets have been given their allocations.

Each child widget must "live with" what it gets. Life is tough for a widget, and it does not always get what
it asked for. On the other hand, windows almost always expand to satisfy the requests of their children, so
under normal circumstances, the windows will be as large as necessary to grant the requests of the children.
Even if a window is set to be non-resizable, it will still expand to accommodate the sizes of its children; it
will not let the user resize it though.

3.3 Showing Widgets

Sometimes it is convenient to display each widget as it is created, and other times it is easier to wait until just
before the event loop to display them all. If you have placed many widgets inside a container, rather than
calling gtk_widget_show() for each widget, you �rst create them all, and then you can use the following
function:

void gtk_widget_show_all(GtkWidget *widget);

where widget is the top-level container itself. This function will recursively descend into the container,
showing each widget and any of its children. In our example program, the call is made on line 30:

gtk_widget_show_all(window);

One advantage of doing it this way is that the window appears all at once, already drawn, instead of appearing
in pieces, which can be disconcerting to the user.

3.4 Signals and Callback Functions

3.4.1 Signals and Events

All GUIs depend upon the propagation of events from the hardware and/or operating system to the appli-
cation, so that it can handle those events. Events usually represent inputs from a user, such as mouse clicks,
mouse drags, or key presses, but they can also represent changes of focus caused by an application becoming
active, or remapping of screen regions to di�erent applications.

To be concrete, when you press a mouse button to interact with a GUI, an event is generated by the window
manager (e.g., Gnome) and placed by the window manager in the event queue of the window within which
the button was pressed. The window manager keep tracks of the stacking order of the windows on the screen
and determines from the coordinates of the mouse pointer which window generated the event. The event is a
structure containing the information needed to speci�cally handle the mouse click. This includes the values
for the x and the y coordinates of the mouse pointer when the mouse button was pressed and the identity
of the button (e.g., left, right, or middle).

14

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

Technically, the widget that owns the window within which the event was generated, does not receive an
event packet; it receives a signal. GTK distinguishes between events and signals. Events are derived from the
underlying GDK event system, which in turn comes from X Windows (or whatever window manager exists
on the system). Signals, which were added to GTK because events were not robust and �exible enough, are
a repackaging of the information contained in the event. When a widget receives the signal, it is said to
�emit the signal.� The distinction between events and signals is summarized well by Havoc Pennington2:

"Events are a stream of messages received from the X server. They drive the Gtk main loop;
which more or less amounts to "wait for events, process them" (not exactly, it is really more
general than that and can wait on many di�erent input streams at once). Events are a Gdk/Xlib
concept.

"Signals are a feature of GtkObject and its subclasses. They have nothing to do with any input
stream; really a signal is just a way to keep a list of callbacks around and invoke them ("emit"
the signal). There are lots of details and extra features of course. Signals are emitted by object
instances, and are entirely unrelated to the Gtk main loop. Conventionally, signals are emitted
"when something changes" about the object emitting the signal.

"Signals and events only come together because GtkWidget happens to emit signals when it gets
events. This is purely a convenience, so you can connect callbacks to be invoked when a particular
widget receives a particular event. There is nothing about this that makes signals and events
inherently related concepts, any more than emitting a signal when you click a button makes
button clicking and signals related concepts."

To summarize, an event is a noti�cation that is generated by the X Window system, passed up to the
application through the GDK library. It corresponds to an actual action such as a mouse movement or a key
press. Signals are noti�cations emitted by widgets. Events can trigger signals. For example, when the mouse
button is pressed, a button-press-event is issued by the window manager on the button, and this causes a
�clicked� signal to be emitted by the button. Not every event triggers a signal; for example, there are various
drag and drop events that are not converted to signals. Conversely, not every signal is the result of a GDK
event; widgets can synthesize their own signals.

When GDK generates an event, it is placed in a queue that is processed by the GTK+ main event loop.
GTK+ monitors GDK's event queue; for each event received, it decides which widget (if any) should receive
the event. The GtkWidget base class de�nes signals for most event types (such as "button_press_event");
it also de�nes a generic "event" signal.

Signals and events are both noti�cations to the program that something happened requiring the program's
attention, and callback functions are the way that the program can respond to them. The functions are
called callbacks because the calling is backwards � the callback function is a function in your program's code
that is called by the run-time system (the operating system in a sense) when something happens.

You should remember that objects emit signals and that the set of signals that an object can emit consists of
all signals that it inherits from ancestor classes, as well as signals that are speci�c to the class of which it is
an instance. For example, a button, being a descendant of the widget class, can emit a �hide� signal because
all widgets can emit the hide signal, but buttons can also emit the �clicked� signal, which is a button signal
in particular.

There are two steps to creating callback functions. The �rst is to create the function de�nition. The second
is to connect the function to the signal or event that it is supposed to handle and register that connection.
We begin by looking at how callbacks are connected to signals and events.

3.4.2 Registering Callback Functions

To connect a callback function to a signal, the g_signal_connect() function is used:

2Havoc Pennington, �GTK+/Gnome Application Development, New Riders Publishing, ISBN 0-7357-0078-8

15

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

gulong g_signal_connect(gpointer *object_emitting_signal,

const gchar *name_of_signal,

GCallback function,

gpointer function_data);

The �rst argument is the widget that will be emitting the signal, cast to a GObject*, and the second is the
name of the signal to catch, as a string. The third is the callback function to be called when the signal is
caught. It must be cast to a GCallBack using the macro G_CALLBACK(). The fourth is a pointer to the data
to be passed to the callback function. In our program, there are two calls to g_signal_connect():

g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (destroy), NULL);

g_signal_connect (G_OBJECT (window), "delete_event",

G_CALLBACK (delete_event), NULL);

In both cases, the widget to be monitored is the main window, cast as a GObject. The GObject class de�nes
the destroy signal, and all widgets inherit it. When the window emits the destroy signal, the destroy()

callback function in this program will be run, with no data passed to it since the fourth parameter is NULL.

The second call connects the delete_event() function in the program to the �delete-event� signal emitted
by the window3. When the user clicks the close box in the main window, it generates a delete-event. Any
attempt to close the window, such as with the close menu item that appears when you right-click the title-
bar, will also generate the delete-event. As noted above, the delete-event generated by GDK is converted to
a delete-event signal for GTK.

In this simple program, the return value from the calls to g_signal_connect() was not used. The return
value is an unsigned integer that acts as an identi�er for the signal, like a signal id. If for some reason, you
wanted to temporarily block the signal, you could use g_signal_handler_block(), passing this id. There
are calls to unblock and even disconnect the signal as well, and all require this id.

Later we will see another means of connecting signals that allows us to make clicks on one widget cause a
di�erent widget to be closed.

3.4.3 Callback Functions

Callback functions can take several forms, but the simplest and most common is

void callback_func(GtkWidget *widget,

gpointer callback_data);

Here, the �rst argument is a pointer to the widget that emitted the signal and the second argument is a
pointer to the data to be used by the function. The actual form of a callback function depends upon the
widget and the event or signal; you have to consult the reference manual to determine the parameters.

Callbacks for events are di�erent from callbacks for signals. Event handling callbacks usually have three
parameters, one of which is the name of the event. Callbacks for signals may only have two parameters. The
easiest way to �nd the form of the function is to use the GTK+ (version#) Reference Manual: click on the
Index hyperlink, and use the browser's �nd function to look up the exact name of the signal. For example,
to �nd the �delete-event� signal, enter �delete-event�. Then click on the hyperlink and the section with the
prototype for that callback will open.

In our program, there is a callback for the delete-event and a callback for the destroy signal. The destroy()
function has two parameters:

3The delete-event signal can be written as �delete-event� or �delete_event� � either works.

16

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

void destroy (GtkWidget *window, gpointer data)

{

gtk_main_quit ();

}

The destroy() callback calls gtk_main_quit(). gtk_main_quit() does several things, such as causing
all resources used by the application to be returned to the system, eventually terminating the application.
Because no data was connected to the function when it was registered with g_signal_connect(), the data
parameter will have a NULL pointer. In this case, the callback had no need for any data.

The delete_event() function has three parameters:

gboolean delete_event (GtkWidget *window,

GdkEvent *event,

gpointer data)

{

return FALSE;

}

Because delete_event() handles an event, it is passed not only the widget pointer and user-data pointer,
but the GdkEvent type as its second parameter. In addition, because it handles events, it must return a
boolean value. This value indicates whether or not the handler handled the event. If TRUE is returned, it
is telling GTK+ that it handled the event and GTK+ will do nothing more. If FALSE is returned, it is
telling GTK+ that the event has not been handled. In this case, GTK+ runs the default handler for the
delete-event signal. The default handler will issue a destroy signal on the widget that emitted the event.
The destroy signal will be handled by the destroy() callback.

In general, your callbacks for events should return FALSE, unless you want to handle them yourself and stop
GTK+ from continuing to handle it. The default handler for an event always runs last, so returning FALSE

is a way to let the default handler do its job.

You should experiment with the second program by commenting out the g_signal_connect() calls one at
a time. You will see that it was not necessary to have a handler for the delete-event signal. Why do we have
it? Consider modifying the body of that function by including a bit of code that asks the user whether he
or she really wants to quit. If the user clicks an OK button, then it would return FALSE, otherwise it would
return TRUE. That is the real reason for having a delete-event handler.

3.4.4 Events and Event Types

It is easy to know when a signal is the result of an event � the signal name will always be of the form
"something-event." All signals with names of this form are caused by GDK events. All events are associated
with a GdkWindow. As mentioned above, they also come to be associated with a GtkWidget when the GTK+
main loop passes events from GDK to the GTK+ widget tree.

There are thirty or so di�erent events that GDK can generate. The Appendix contains a list of all of
them. For each GDK event type, there is a corresponding GTK signal name. The GDK events and the
corresponding signal names are also in the Appendix.

Sometimes you do not know what type of event took place when you receive a signal. For example, the
"button-press-event" is emitted by any of three di�erent GDK event types: GDK_BUTTON_PRESS, GDK_2BUTTON_PRESS,
and GDK_3BUTTON_PRESS, The callback has to inspect the event structure to determine which took place.
For example, for a button press, the callback may be something like this:

17

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

L i s t i n g 3 : A ca l l ba ck that i n s p e c t s the event s t r u c tu r e
stat ic gboolean button_press_event (GtkWidget ∗window ,

GdkEvent ∗ event ,
gpo in t e r data)

{
i f (event−>type == GDK_BUTTON_PRESS)

do_s ing le_c l i ck (window , data) ;
else i f (event−>type == GDK_2BUTTON_PRESS)

do_double_click (window , data) ;
else

do_tr ip l e_c l i ck (window , data) ;

return FALSE;
}

3.5 Processing Signals and Events

This is a relatively easy part for you as programmer because GTK takes control of signal and event handling
within the gtk_main() function. After everything else has been taken care of in your program, it must call
gtk_main(). This function enters a wait state in which it listens for events and signals directed at your
program. Each time an event or signal is transmitted to your program, gtk_main() determines its type and
which callback function must be invoked. When the callback �nishes, gtk_main() resumes.

3.6 Quitting

Usually, the signal handling functions will respond to the signal to close the program and issue a gtk_main_quit()
call, which terminates the program. It is also possible to make gtk_main_quit() the callback of the event
itself, when the only action is quitting, as in

g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

Regardless of how it is done, gtk_main_quit() is needed in order to clean up resources and notify the
operating system that the process has terminated.

4 A Third GTK+ Example

When a window's size, position, or stack order is changed, GDK generates a GDK_CONFIGURE event. A widget
can indicate its readiness to handle these events by calling the gtk_widget_add_events() function:

void gtk_widget_add_events (GtkWidget *widget,

gint events);

This function tells the GTK library that the given widget should be noti�ed if the given event occurs. The
GDK_CONFIGURE event is of type gint. The program can use a callback function to extract the x and y

coordinates of the upper-left corner of the window out of the event structure, using the two lines

x = event->configure.x;

y = event->configure.y;

18

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

The complete program follows. If you are not familiar with C, the sprintf() function prints to the C string
which is given as its �rst argument, so in this case, the values of integers x and y are written as strings into
the 10-character string named buf. The sprintf() function automatically adds the NULL character to the
end of buf, which is then used as the title of the window.

L i s t i n g 4 : Using event data to change t i t l e bar
void f rame_cal lback (GtkWindow ∗window ,

GdkEvent ∗ event ,
gpo in t e r data)

{
int x , y ;
char buf [1 0] ;
x = event−>con f i gu r e . x ;
y = event−>con f i gu r e . y ;
s p r i n t f (buf , "%d , %d" , x , y) ;
gtk_window_set_title (window , buf) ;

}

int main (int argc , char ∗argv [])
{

GtkWidget ∗window ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new(GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_position (GTK_WINDOW(window) , GTK_WIN_POS_CENTER) ;
gtk_window_set_default_size (GTK_WINDOW(window) , 230 , 150) ;
gtk_window_set_title (GTK_WINDOW(window) , " S imp l e ") ;
gtk_widget_add_events (GTK_WIDGET(window) , GDK_CONFIGURE) ;

g_signal_connect_swapped (G_OBJECT(window) , " d e s t r o y " ,
G_CALLBACK(gtk_main_quit) , G_OBJECT(window)) ;

g_signal_connect (G_OBJECT(window) , " c o n f i g u r e −e v en t " ,
G_CALLBACK(frame_cal lback) , NULL) ;

gtk_widget_show (window) ;
gtk_main () ;

return 0 ;
}

5 A Fourth Example

In many applications, clicking a button has an e�ect on a widget other than the button itself. For example,
a window may have a button that when clicked, causes the an action to be taken which also might include
closing the window itself. This is what happens when, in a dialog box, you click the "OK" or "CANCEL"
button. If a button's callback function is run when a button is clicked, how could it cause a window to close?
The answer is that with what you know so far, there is no way to accomplish this.

GTK+ solves this problem with a special function,

gulong g_signal_connect_swapped(gpointer *object_emitting_signal,

19

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

const gchar *name_of_signal,

GCallback function,

gpointer function_data);

Unlike g_signal_connect(), just prior to starting the callback function, the pointer to the object emitting
the signal is swapped with the data pointer, so that the callback receives, in its �rst argument, the data
pointer. By putting a pointer to the window in the data pointer, the callback will be invoked on the window
object. If we want to close the window, we can use this function as follows:

g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_widget_destroy),

(gpointer) window);

When the button emits a clicked signal, gtk_widget_destroy() will be called on the window passed to it
in the fourth parameter.

The third program will create a button widget and connect it to the clicked signal so that it closes the
top-level window and thereby terminates the application. To create a button widget with a mnemonic label,
we use the following method:

button = gtk_button_new_with_mnemonic ("_Close");

This puts the word "Close" in the button. The underscore preceding the "C" turns Alt-C into a keyboard
accelerator that activates the button. The user can type Alt-C to terminate the application. The program
is in Listing 3.

The other ways to create a button can be found in the GTK+ Reference Manuals. They include creating a
button with a label, or creating a stock button. We will cover stock items later.

L i s t i n g 5 : GTK+ Program , adding a button

1 : #inc lude <gtk/gtk . h>
2 :
3 : int main (int argc ,
4 : char ∗argv [])
5 : {
6 : GtkWidget ∗window , ∗button ;
7 :
8 : g tk_in i t (&argc , &argv) ;
9 :
10 : window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
11 : gtk_window_set_title (GTK_WINDOW (window) , " Buttons ") ;
12 : gtk_widget_set_size_request (window , 200 , 100) ;
13 :
14 : g_signal_connect (G_OBJECT (window) , " d e s t r o y " ,
15 : G_CALLBACK (gtk_main_quit) , NULL) ;
16 :
17 : button = gtk_button_new_with_mnemonic ("_Close ") ;
18 : gtk_button_set_re l i e f (GTK_BUTTON (button) , GTK_RELIEF_NONE) ;
19 :
20 : g_signal_connect_swapped (G_OBJECT (button) , " c l i c k e d " ,
21 : G_CALLBACK (gtk_widget_destroy) ,
22 : (gpo in t e r) window) ;
23 :

20

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

24 : gtk_container_add (GTK_CONTAINER (window) , button) ;
25 : gtk_widget_show_all (window) ;
26 :
27 : gtk_main () ;
28 : return 0 ;
29 : }

6 GObject Properties

The GObject base class has methods that allow you to set and retrieve the properties of an object. It
also lets you de�ne arbitrary key-value pairs that can be added to an object. Since all widgets inherit this
feature, it is a means of adding user-de�ned data to widgets. The four relevant methods are g_object_get(),
g_object_set(), g_object_get_data(), and g_object_set_data().

To illustrate, to retrieve the "relief" property of a button, you could use the call

GtkReliefStyle relief_value;

g_object_get(G_OBJECT(button), "relief", &relief_value, NULL);

To set the relief of the button, you would use

g_object_set(G_OBJECT(button),"relief",GTK_RELIEF_NORMAL, NULL);

In general, the functions take a pointer to a GObject followed by a NULL-terminated list of property names
as strings, and either a variable in which to store the value (for get), or a value (for set).

The ability to add key-value pairs is based on keys represented as strings, and pointers for their values. Each
object has a table of strings with associated pointers. The method setting is

void g_object_set_data (GObject *object,

const gchar *key,

gpointer value);

and for retrieving is

gpointer g_object_set_data (GObject *object,

const gchar *key);

If you need to pass data to a widget, you should use these methods. We will see examples of this in the
upcoming lessons. To give you some idea of the power of these methods, suppose that you want to store in
a drawing widget, a user's choice of default font or a pen color for drawing. You could create a key named
"user_font_choice" and use these methods to set its value and retrieve it.

A Appendix

A.1 Object Hierarchy

The level of indentation indicates the depth of the object in the hierarchy; if an object is indented relative
to the one immediately preceding it, it is a subclass of the preceding one. This is essentially a tree turned
sideways.

21

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

GObject

GInitiallyUnowned

GtkObject

GtkWidget

GtkContainer

GtkBin

GtkWindow

GtkDialog

GtkAboutDialog

GtkColorSelectionDialog

GtkFileChooserDialog

GtkFileSelection

GtkFontSelectionDialog

GtkInputDialog

GtkMessageDialog

GtkPageSetupUnixDialog

GtkPrintUnixDialog

GtkRecentChooserDialog

GtkAssistant

GtkPlug

GtkAlignment

GtkFrame

GtkAspectFrame

GtkButton

GtkToggleButton

GtkCheckButton

GtkRadioButton

GtkColorButton

GtkFontButton

GtkLinkButton

GtkOptionMenu

GtkScaleButton

GtkVolumeButton

GtkItem

GtkMenuItem

GtkCheckMenuItem

GtkRadioMenuItem

GtkImageMenuItem

GtkSeparatorMenuItem

GtkTearoffMenuItem

GtkListItem

GtkTreeItem

GtkComboBox

GtkComboBoxEntry

GtkEventBox

GtkExpander

GtkHandleBox

GtkToolItem

GtkToolButton

GtkMenuToolButton

GtkToggleToolButton

GtkRadioToolButton

GtkSeparatorToolItem

GtkScrolledWindow

22

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

GtkViewport

GtkBox

GtkButtonBox

GtkButtonBox

GtkHButtonBox

GtkVButtonBox

GtkVBox

GtkColorSelection

GtkFileChooserWidget

GtkFontSelection

GtkGammaCurve

GtkRecentChooserWidget

GtkHBox

GtkCombo

GtkFileChooserButton

GtkInfoBar

GtkStatusbar

GtkCList

GtkCTree

GtkFixed

GtkPaned

GtkHPaned

GtkVPaned

GtkIconView

GtkLayout

GtkList

GtkMenuShell

GtkMenuBar

GtkMenu

GtkRecentChooserMenu

GtkNotebook

GtkSocket

GtkTable

GtkTextView

GtkToolbar

GtkTree

GtkTreeView

GtkMisc

GtkLabel

GtkAccelLabel

GtkTipsQuery

GtkArrow

GtkImage

GtkPixmap

GtkCalendar

GtkCellView

GtkDrawingArea

GtkCurve

GtkEntry

GtkSpinButton

GtkRuler

GtkHRuler

GtkVRuler

GtkRange

23

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

GtkScale

GtkHScale

GtkVScale

GtkScrollbar

GtkHScrollbar

GtkVScrollbar

GtkSeparator

GtkHSeparator

GtkVSeparator

GtkHSV

GtkInvisible

GtkOldEditable

GtkText

GtkPreview

GtkProgress

GtkProgressBar

GtkAdjustment

GtkCellRenderer

GtkCellRendererText

GtkCellRendererAccel

GtkCellRendererCombo

GtkCellRendererSpin

GtkCellRendererPixbuf

GtkCellRendererProgress

GtkCellRendererToggle

GtkFileFilter

GtkItemFactory

GtkTooltips

GtkTreeViewColumn

GtkRecentFilter

GtkAccelGroup

GtkAccelMap

AtkObject

GtkAccessible

GtkAction

GtkToggleAction

GtkRadioAction

GtkRecentAction

GtkActionGroup

GtkBuilder

GtkClipboard

GtkEntryBuffer

GtkEntryCompletion

GtkIconFactory

GtkIconTheme

GtkIMContext

GtkIMContextSimple

GtkIMMulticontext

GtkListStore

GMountOperation

GtkMountOperation

GtkPageSetup

GtkPrinter

GtkPrintContext

24

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

GtkPrintJob

GtkPrintOperation

GtkPrintSettings

GtkRcStyle

GtkRecentManager

GtkSettings

GtkSizeGroup

GtkStatusIcon

GtkStyle

GtkTextBuffer

GtkTextChildAnchor

GtkTextMark

GtkTextTag

GtkTextTagTable

GtkTreeModelFilter

GtkTreeModelSort

GtkTreeSelection

GtkTreeStore

GtkUIManager

GtkWindowGroup

GtkTooltip

GtkPrintBackend

GInterface

GtkBuildable

GtkActivatable

GtkOrientable

GtkCellEditable

GtkCellLayout

GtkEditable

GtkFileChooser

GtkTreeModel

GtkTreeDragSource

GtkTreeDragDest

GtkTreeSortable

GtkPrintOperationPreview

GtkRecentChooser

GtkToolShell

A.2 Events in GDK

The following enumeration is de�ned in the GDK Reference Manual.

typedef enum

{

GDK_NOTHING = -1, /* a special code to indicate a null event. */

GDK_DELETE = 0, /* the window manager has requested that the toplevel

window be hidden or destroyed, usually when the

user clicks on a special icon in the title bar. */

GDK_DESTROY = 1, /* the window has been destroyed. */

GDK_EXPOSE = 2, /* all or part of the window has become visible and

needs to be redrawn. */

GDK_MOTION_NOTIFY = 3, /* the pointer (usually a mouse) has moved. */

GDK_BUTTON_PRESS = 4, /* a mouse button has been pressed. */

25

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

GDK_2BUTTON_PRESS = 5, /* a mouse button has been double-clicked (clicked

twice within a short period of time). Note that

each click also generates a GDK_BUTTON_PRESS event.

*/

GDK_3BUTTON_PRESS = 6, /* a mouse button has been clicked 3 times in a short

period of time. Note that each click also generates

a GDK_BUTTON_PRESS event. */

GDK_BUTTON_RELEASE = 7, /* a mouse button has been released. */

GDK_KEY_PRESS = 8, /* a key has been pressed. */

GDK_KEY_RELEASE = 9, /* a key has been released. */

GDK_ENTER_NOTIFY = 10, /* the pointer has entered the window. */

GDK_LEAVE_NOTIFY = 11, /* the pointer has left the window. */

GDK_FOCUS_CHANGE = 12, /* the keyboard focus has entered or left the window.

*/

GDK_CONFIGURE = 13, /* the size, position or stacking order of the window

has changed. Note that GTK+ discards these events

for GDK_WINDOW_CHILD windows. */

GDK_MAP = 14, /* the window has been mapped. */

GDK_UNMAP = 15, /* the window has been unmapped. */

GDK_PROPERTY_NOTIFY = 16, /* a property on the window has changed or was

deleted. */

GDK_SELECTION_CLEAR = 17, /* the application has lost ownership of a

selection. */

GDK_SELECTION_REQUEST = 18, /* another application has requested a selection. */

GDK_SELECTION_NOTIFY = 19, /* a selection has been received. */

GDK_PROXIMITY_IN = 20, /* an input device has moved into contact with a

sensing surface. */

GDK_PROXIMITY_OUT = 21, /* an input device has moved out of contact with a

sensing surface. */

GDK_DRAG_ENTER = 22, /* the mouse has entered the window while a drag is

in progress. */

GDK_DRAG_LEAVE = 23, /* the mouse has left the window while a drag is in

progress. */

GDK_DRAG_MOTION = 24, /* the mouse has moved in the window while a drag is

in progress. */

GDK_DRAG_STATUS = 25, /* the status of the drag operation initiated by the

window has changed. */

GDK_DROP_START = 26, /* a drop operation onto the window has started. */

GDK_DROP_FINISHED = 27, /* the drop operation initiated by the window has

completed. */

GDK_CLIENT_EVENT = 28, /* a message has been received from another

application. */

GDK_VISIBILITY_NOTIFY = 29, /* the window visibility status has changed. */

GDK_NO_EXPOSE = 30, /* indicates that the source region was completely

available when parts of a drawable were copied. */

GDK_SCROLL = 31, /* the scroll wheel was turned. */

GDK_WINDOW_STATE = 32, /* the state of a window has changed. See

GDKWindowState for the possible window states. */

GDK_SETTING = 33, /* a setting has been modified. */

GDK_OWNER_CHANGE = 34, /* the owner of a selection has changed. */

GDK_GRAB_BROKEN = 35, /* a pointer or keyboard grab was broken. Added 2.8 */

GDK_DAMAGE = 36, /* the content of the window has been changed.

This event type was added in 2.14. */

GDK_EVENT_LAST /* helper variable for decls */

26

CSci493.70 Graphical User Interface Programming

Lesson 2: GTK+ Basics

Prof. Stewart Weiss

} GDKEventType;

The following table shows which GDK events are converted to GTK+ signals. The column labeled �Propa-
gated?� indicates whether or not that event is propagated to the parent widget. Propagation is covered in a
later chapter. Roughly, if an event is propagated and the widget does not handle the event, then the event
is sent to the parent widget. If it is not propagated and not handled, then the event is ignored. The column
labeled �Grabbed?� will be explained later.

Event Type GtkWidget Signal Propagated? Grabbed?

GDK_DELETE delete_event No No
GDK_DESTROY destroy_event No No
GDK_EXPOSE expose_event No No
GDK_MOTION_NOTIFY motion_notify_event Yes Yes
GDK_BUTTON_PRESS button_press_event Yes Yes
GDK_2BUTTON_PRESS button_press_event Yes Yes
GDK_3BUTTON_PRESS button_press_event Yes Yes
GDK_BUTTON_RELEASE button_release_event Yes Yes
GDK_KEY_PRESS key_press_event Yes Yes
GDK_KEY_RELEASE key_release_event Yes Yes
GDK_ENTER_NOTIFY enter_notify_event No Yes
GDK_LEAVE_NOTIFY leave_notify_event No Yes
GDK_FOCUS_CHANGE focus_in_event, focus_out_event No Yes
GDK_CONFIGURE configure_event No No
GDK_MAP map_event No No
GDK_UNMAP unmap_event No No
GDK_PROPERTY_NOTIFY property_notify_event No No
GDK_SELECTION_CLEAR selection_clear_event No No
GDK_SELECTION_REQUEST selection_request_event No No
GDK_SELECTION_NOTIFY selection_notify_event No No
GDK_PROXIMITY_IN proximity_in_event Yes Yes
GDK_PROXIMITY_OUT proximity_out_event Yes Yes
GDK_CLIENT_EVENT client_event No No
GDK_VISIBILITY_NOTIFY visibility_notify_event No No
GDK_NO_EXPOSE no_expose_event No No

27

	A First GTK+ Program
	Tasks in Creating GTK Programs
	Initializing the Environment
	The GTK Object Hierarchy
	Widgets
	Object Types and Casting

	Creating Widgets and Setting Their Attributes
	About Sizes

	Registering Callback Functions
	Defining the Instance Hierarchy
	Showing The Widgets
	Starting the Main Event Loop

	A Second GTK+ Application
	The GtkLabel Widget
	About Container Widgets
	Showing Widgets
	Signals and Callback Functions
	Signals and Events
	Registering Callback Functions
	Callback Functions
	Events and Event Types

	Processing Signals and Events
	Quitting

	A Third GTK+ Example
	A Fourth Example
	GObject Properties
	Appendix
	Object Hierarchy
	Events in GDK

