
CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

Drawing in GTK+

Background

In order to understand how to draw in GTK, you �rst have to understand something about how GTK draws
widgets, because how GTK draws widgets has an important role in how you design your drawing application.
An understanding of how GTK draws widgets is also required if you ever plan to build your own custom
widgets.

Windows and Clipping

Most windowing systems are designed around the idea that an application's visual display lies within a
rectangular region on the screen called its window. The windowing system, e.g. Gnome or KDE or Explorer,
does not automatically save the graphical content of an application's windows; instead it asks the application
itself to repaint1 its windows whenever it is needed. For example, if a window that is stacked below other
windows gets raised to the top, then a client program has to repaint the area that was previously obscured.
When the windowing system asks a client program to redraw part of a window, it sends an exposure event

to the program that contains that window. An exposure event is simply an event sent from the underlying
windowing system to a widget to notify it that it must redraw itself.

In this context, a "window" means "a rectangular region with automatic clipping", not a top-level application
window. Clipping is the act of removing portions of a window that do not need to be redrawn, or looked at
the other way, it is determining which are the only regions of a window that must be redrawn. In Figure
1, window A is below window B, which is below window C. If the user does something that �brings A
forward� on the screen, then the only region of window A that must be redrawn is the portion of A in the
set A ∩ (B ∪ C), which is shaded in the �gure.

Figure 1: Window clipping.

Most windowing systems support nested windows, which are called child windows. A top-level window may
contain many child windows, which may contain child windows in turn, and so on. For example, a top-level
window will typically contain a window for the menu bar, one for the document area, one for each scrollbar,

1We will use the terms �draw� and �paint� interchangeably. Technically, the operation we are describing is painting, because

it is the application of colors and brush strokes to a canvas. Drawing is just a special kind of painting. All GUI APIs refer

to the process of visually rendering their windows as painting, or repainting, even if they describe the process occasionally as

drawing. We will keep with this tradition of equating the two terms.

1

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

and one for the status bar. In addition, controls that receive user input, such as clickable buttons, typically
have their own subwindows. It is possible for GTK+ to run on a windowing system with no notion of nested
windows. This is not a problem, because GDK presents the illusion of being under such a system, and
therefore, in GTK+, nested windows are always available.

The Drawing Cycle

Generally, the drawing cycle begins when GTK+ receives an exposure event from the underlying windowing
system, such as when the user drags a window over another one. In this case the windowing system will
tell the underlying window that it needs to repaint itself. The drawing cycle can also be initiated when a
widget itself decides that it needs to update its display. For example, when the user types a character in
a GtkEntry widget, the entry asks GTK+ to queue a redraw operation for itself. In other words, a widget
can call a function that requests that the windowing system itself send it an event to redraw itself! This
simpli�es the program, as you will soon see.

A GdkWindow represents a window from the underlying windowing system on which GTK+ is running. On
X11 it corresponds to a (X) Window; on Win32, it corresponds to a HANDLE. It is the windowing system that
generates events for these windows. These events are passed to the GDK interface, which translates these
native events into GdkEvent structures and sends them on to the GTK layer. In turn, the GTK widget layer
�nds the widget that corresponds to a particular GdkWindow and emits the corresponding event signals on
that widget.

Widgets With and Without GdkWindows

If every single widget had its own GdkWindow, the drawing cycle would be trivial: the underlying windowing
system would notify GDK about a window that needed redrawing, GDK would pass that exposure event for
the speci�c GdkWindow to the GTK layer, and the GTK layer would emit the expose-event signal for that
widget. The widget's expose event handler would then repaint the widget. Nothing else would have to be
done; the windowing system would generate exposure events for each window that needed it, and then each
corresponding widget would draw itself in turn.

However, in practice, there are reasons for which it is more convenient and e�cient to allow widgets not to
have a GdkWindow of their own, but to instead share the one from their parent widget. Every widget has
a GTK_NO_WINDOW �ag that indicates whether or not the widget has its own window. If a widget does not
have its own window, it must inform GTK that it does not, when it is created, by setting this �ag to true.
(In GTK+-2.18 and later, the widget should call gtk_widget_set_has_window(), passing a false value in
its second argument.) This is not something you would have to do as a programmer. It is the job of the
widget's implementer to do this in the widget's constructor (its init method.) You, as a programmer, can
test whether a particular widget has a GdkWindow of its own by inspecting the value of the GTK_NO_WINDOW
�ag or by calling the gtk_widget_get_has_window() method in GTK+-2.18 or later, which will return true

if it has its own window2. Widgets that do not have their own GDK windows are called no-window widgets

or GTK_NO_WINDOW widgets.

Why would you want a widget to be window-less? There are two primary reasons.

• Some widgets may want the parent's background to show through, even when they draw on parts of
it. Such is the case, for instance, when a label is placed on a button with a themed texture. If each
widget had its own window, and therefore its own background, labels would look bad because there
would be a visible break with respect to their surroundings.

• Reducing the total number of GDK windows reduces the volume of tra�c between GDK and GTK, so
if a widget can be implemented without a window, it improves performance.

2You cannot just test whether the window member variable of the GdkWindow structure is NULL, because it may be sharing

its parent's GdkWindow.

2

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

Hierarchical Drawing

With this understanding, we can direct our attention to describing the sequence of steps that take place
when GTK receives the exposure event. The very �rst step is that GTK �nds the widget that corresponds
to the window that received the event. This widget cannot be a no-window widget, otherwise the widget
wouldn't own the window that received the event. This widget begins by painting its background. Then, if
it is a container widget, it tells each of its no-window children to paint themselves. This process is applied
recursively for all the no-window descendants of the original widget.

This process does not get propagated to widgets that have windows of their own (those for which GTK_NO_WINDOW
is true). This is because if any of those widgets require redrawing, the windowing system will have already
sent exposure events to their corresponding GDK windows. Thus, there is no need to propagate the exposure
to them on the GTK+ side.

An Example (from the GTK+ API Documentation)

The following example is from the online Gnome/GTK+ documentation, �The GTK+ Drawing Model,�
at http://library.gnome.org/devel/gtk/unstable/chap-drawing-model.html. It demonstrates how a top-level
window would repaint itself when it has only no-window widget children.

Figure 2: Hierarchical redrawing of a window

1. The outermost, thick rectangle is a top-level GtkWindow, which is not a GTK_NO_WINDOW widget �
therefore, it does receive its exposure event as it comes from GDK. First the GtkWindow would paint
its own background. Then, it would ask its only child to paint itself, which is the dotted-rectangle
numbered 2.

2. The dotted rectangle represents a GtkVBox, which has been made the sole child of the GtkWindow.
GtkBoxes, which are no-window widgets, are just layout containers that do not paint anything by
themselves, so this GtkVBox would draw nothing, but rather ask its children to draw themselves. The
children are numbered 3 and 6.

3. The thin rectangle is a GtkFrame, also a no-window widget, which has two children: a label for the
frame, numbered 4, and another label inside, numbered 5. First the frame would draw its own beveled
box, then ask the frame label and its internal child to draw themselves.

4. The frame label has no children, so it just draws its text: "Frame Label".

5. The internal label has no children, so it just draws its text: "This is some text inside the frame!".

6. The dotted rectangle represents a GtkHBox. Again, this does not draw anything by itself, but rather
asks its children to draw themselves. The children are numbered 7 and 9.

3

http://library.gnome.org/devel/gtk/unstable/chap-drawing-model.html

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

7. The thin rectangle is a GtkButton with a single child, numbered 8. First the button would draw its
beveled box, and then it would ask its child to draw itself.

8. This is a text label which has no children, so it just draws its own text: "Cancel".

9. Similar to number 7, this is a GtkButton with a single child, numbered 10. First the button would
draw its beveled box, and then it would ask its child to draw itself.

10. Similar to number 8, this is a GtkLabel which has no children, so it just draws its own text: "OK".

The above steps illustrate how a widget is redrawn. If all of this drawing were to take place directly on the
screen, there would be �ickering as the various parts were redrawn. This is partly because many areas get
redrawn repeatedly, such as backgrounds and decorative elements. Therefore, GTK implements a double

bu�ering scheme at the GDK level.

Double bu�ering

In double bu�ering, there are two canvases: an o�-screen canvas and an on-screen canvas. Drawing takes
place on the o�-screen canvas, which is then painted to the screen. The canvas that was on the screen then
becomes the o�-screen canvas for the next drawing. In GTK, this double bu�ering is opaque to the widgets;
they normally don't know that they are drawing on an o�-screen bu�er; they just issue their normal drawing
commands, and the bu�er gets sent to the windowing system when all drawing operations are done.

Two basic functions in GDK form the core of the double-bu�ering mechanism:

• gdk_window_begin_paint_region()

• gdk_window_end_paint().

The �rst function tells a GdkWindow to create a temporary o�-screen bu�er for drawing. All subsequent
drawing operations to this window get automatically redirected to that bu�er. The second function actually
paints the bu�er onto the on-screen window, and frees the bu�er.

Automatic double bu�ering

It would be inconvenient for all widgets to have to call gdk_window_begin_paint_region() at the beginning
of their expose handlers and gdk_window_end_paint() at the end. To make this easier, most GTK+ widgets
have the GTK_DOUBLE_BUFFERED widget �ag turned on by default. When GTK encounters such a widget,
it automatically calls gdk_window_begin_paint_region() before emitting the expose-event signal for the
widget, and then it calls gdk_window_end_paint() after the signal has been emitted. The terminology
needs explanation here. The signal emission process ends when all handlers for the signal have been invoked.
Remember that, in general there is a sequence of signal handler invocations when a signal is emitted. The
callback that you supply is just one of them. Thus, after the expose event signal has been handled, the bu�er
is painted to the screen, whether or not your application did anything to it.

This is convenient for most widgets, so that they do not need to worry about creating their own temporary
drawing bu�ers or about calling those functions. However, some widgets may prefer to disable this kind of
automatic double bu�ering and do things on their own. To do this, the GTK_DOUBLE_BUFFERED �ag must
be turned o� in the widget's constructor. Certain widgets, such as image viewers, would bene�t from this,
whereas widgets such as text viewers, which have their backgrounds drawn and redrawn repeatedly, would
not.

4

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

Painting on Widgets

Usually, you will not want to modify the appearance of a widget by painting on top of it. The exception,
of course is the GtkDrawingArea widget, whose intended purpose is to be drawn upon. However, if you do
decide to modify the appearance of an event box or a top-level window, you will need to tell GTK that you
intend to do so, because otherwise, GTK will overwrite your drawing when it responds to an exposure event.
This is because the expose-event handlers for these widgets are run after any drawing that you might do.
To circumvent this, you must turn on the GTK_APP_PAINTABLE �ag in the widget. Itis helpful to understand
the sequence of handler invocations, which is as follows:

1. Your own expose-event handler gets run. It paints something on the window or the event box.

2. The widget's default expose-event signal handler gets run. If GTK_APP_PAINTABLE is turned o� (this
is the default), your drawing will be overwritten. If that �ag is turned on, the widget will not draw its
default contents and preserve your drawing instead.

3. The expose-event handler for the parent class gets run. Since both GtkWindow and GtkEventBox are
descendants of GtkContainer, their no-window children will be asked to draw themselves recursively,
as described above.

In short, if you intend to draw on either the GtkWindow or the GtkEventBox, turn on the GTK_APP_PAINTABLE
�ag for them. You do not need to do anything to use the GtkDrawingArea widget, because it ignores this
�ag; its contents are never overwritten.

More About Events in GTK+

The preceding discussion about paintable widgets mentioned that your expose-event signal handler runs
before the widget's default handler for this signal, and that after that, yet another handler, that of the
parent class, would run. Until now, we did not give much thought to the idea that multiple signal handlers
would run in response to an event, not did we care much about the order in which they ran. However, to
get a grip on the drawing process, it is important to understand event propagation and the chain of signal
handlers that run.

Remember that in a GTK+ program, all GDK events are passed to a GtkWidget, which emits a corresponding
signal. You handle these events by connecting handlers to GtkWidget signals. The X server sends each X
client a stream of events, and these events are sent and received in the order of their occurrence. GDK converts
each XEvent it receives into a GdkEvent, then places events in a queue. GTK+ monitors GDK's event queue;
for each event received, it decides which widget (if any) should receive the event. The GtkWidget base class
de�nes signals for most event types (such as "button_press_event"); it also de�nes a generic "event" signal.
The GTK+ main loop calls gtk_widget_event() to deliver an event to a widget; this function �rst emits
the "event" signal, then emits a signal for the speci�c event type (if appropriate). Some events are handled
in special ways.

In general, events go to the widget owning the GdkWindow in which the event occurred. There are exceptions,
such as when widgets are made insensitive: events representing user interactions are not forwarded to
insensitive widgets. Also, widgets with no associated GdkWindow do not originate events; X only sends
events to widgets that have GDK windows. There is one exception: containers synthesize expose events for
their windowless children.

The GTK+ main loop propagates certain events from child widgets to their parent containers. That is,
for each event, a signal is emitted �rst from a child widget, then from its immediate parent, then from the
parent's parent, up the tree of containment. Some events are not propagated.

Event propagation ends once a widget "handles" the event. This ensures that only one user-visible change
results from any user action. Handlers for GtkWidget's event signals must return a gint value. The last signal
handler to run determines the return value of a signal emission. All GDK event signals are GTK_RUN_LAST

5

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

signals, meaning that the default handler always runs after the user-de�ned handlers, except for those
connected with g_signal_connect_after(). Therefore, the return value of the event handling sequence
comes from

• The last handler connected with gtk_signal_connect_after(), if any,

• Otherwise, the widget's default signal handler, if any,

• Otherwise, the last handler connected with gtk_signal_connect(), if any,

• Otherwise, the default return value is FALSE.

If the emission of an event signal returns TRUE, the GTK+ main loop will stop propagating the current event.
If it returns FALSE, the main loop will propagate the event to the widget's parent. As noted above, each event
results in two signal emissions: a generic "event" signal and a speci�c signal (such as "button_press_event"
or "key_press_event"). If either emission returns TRUE, event propagation ends. The return value from the
generic "event" signal has one additional e�ect: if TRUE, the second, more speci�c signal will not be emitted.

Drawables

All drawing must be done in a GDK drawable, represented by the GDK object known as a GdkDrawable.
A drawable is a thing that supports drawing onto itself, and is one of either a GdkWindow, a GdkPixmap,
or a GdkBitmap object. A GdkDrawable is a direct subclass of GOBject, and inherits all of its methods.
The drawing operations supported by drawables are extensive: you can draw points, line segments, arcs,
shapes such as rectangles, polygons, and trapezoids, Pango layouts (of text), simple text strings, images,
and glyphs. You can copy portions of one drawable into another, and copy GdkPixbufs into drawables., or
export a region of a drawable into a GdkPixbuf or a GdkImage. All of this makes them very powerful objects.

All drawing operations act on a GdkDrawable and have a pointer to that GdkDrawable as their �rst parameter.
Since drawing often involves deciding upon properties such as the color of the foreground (e.g., the line color),
the background, the width of the line or brush, whether or not a closed object such as a rectangle should
be �lled, whether the drawing should have a transparent quality, and so on, GDK de�nes a structure called
a graphics context, known as a GdkGC object. A GdkGC contains a number of drawing attributes such as
foreground color, background color and line width, and is used to reduce the number of arguments needed
for each drawing operation. Instead of passing all of these attributes as parameters to the drawing methods,
a GdkGC can be con�gured and passed to the method instead. For example,

GdkGC *temp_gc;

/* create a new graphics context based on the GDK window on which we will draw */

temp_gc = gdk_gc_new(my_gdk_drawable);

/* set foreground color to �color� in the GC assuming color is defined already */

gdk_gc_set_foreground(temp_gc, color);

/* draw an arc of 360 degrees at given position */

gdk_draw_arc(my_gdk_drawable, temp_gc, TRUE, upper_left_x,

upper_left_y, diameter, diameter,0, 360*64);

sets the foreground color to be used in drawing a circle within a square whose upper-left corner is at position
(upper_left_x, upper_left_y) in the speci�ed drawable. The last two arguments specify the angle in 1/64ths
of a degree of the start and end of the arc, thus (0, 360 ∗ 64) de�nes a circle.

6

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

Widgets

Although every widget other than no-window widgets has a GDK window, you cannot draw on any widget's
GDK window without doing a lot of extra work. There are certain widgets that are designed speci�cally to
be drawn upon, namely, the GtkDrawingArea and the GtkLayout. It is also possible to draw indirectly onto
a GtkImage widget. Of these, the GtkDrawingArea is the one you will �nd most useful for general purpose
drawing, and so we will focus on an overview of this widget.

The GtkDrawingArea widget is essentially an X window and nothing more. It is a blank canvas upon which
you can draw whatever you like. Because it is intended for user drawing, GTK does not repaint it on expose-
events; it is your complete responsibility to redraw the contents of the window when it has been obscured and
then uncovered and emits an expose-event signal. In other words, if you draw some complicated scene in a
GtkDrawingArea's window, and it is hidden and then uncovered, your job is to redraw that same complicated
scene all over again.

Since GTK is not redrawing your drawing, and an expose event is an indication that all or part of it must be
redrawn, your application must be able to redraw everything that was drawn in the window before the window
was obscured. This implies that your application has to remember what has been drawn. If all you are doing
is drawing a �xed collection of shapes, this is easy enough. You can create a collection of data structures
for storing all of the information needed to redraw exactly what was in the window before it was obscured.
When the application draws in functions other than the expose handler, it records what it is drawing. When
the expose handler runs, it draws everything that has been recorded. In this type of approach, which we
will call the direct drawing method, the application draws directly into the GtkDrawingArea's GDK window,
which is automatically displayed on the screen when you are �nished drawing.

Direct Drawing Method

The basic paradigm is illustrated by the following example. Suppose that draw_star(widget, point)

draws a 5-pointed star of �xed size centered on the given point in the given drawable widget, and that a
PointArray is de�ned by

typedef struct _point_array {

GdkPoint point[MAX_STARS];

guint length;

} PointArray;

Suppose also that the program should draw a star centered on the cursor when the user clicks the mouse
button. The two functions in Listing 1 illustrate the idea. The button_press handler draws directly on the
window and also records enough information so that the expose_event handler can redraw what was drawn
in the button press handler.

Listing 1: Direct Drawing Method

stat ic gboolean on_expose (GtkWidget ∗area ,
GdkEventExpose ∗ event ,
PointArray ∗ c en t e r s)

{
gu int i ;
for (i = 0 ; i < cente r s−>length ; i++) {

draw_star (GTK_WIDGET(area) , cente r s−>point [i]) ;
}
return TRUE;

}

stat ic gboolean on_button_press (GtkWidget ∗area ,
GdkEventButton ∗ event ,

7

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

PointArray ∗ s ta r_cente r s)
{

GdkPoint cent e r = {event−>x , event−>y } ;

i f (event−>button == 1) {
//draw a s t a r whose cen te r i s a t the cursor
draw_star (GTK_WIDGET(area) , c en t e r) ;

// s t o r e the coord ina t e s o f the cen te r f o r the expose hand ler
s tar_centers−>point [s tar_centers−>length] = cente r ;
s tar_centers−>length++;

}
return TRUE;

}

O�-Screen Pixmap Method

The direct drawing method is suitable for simple drawing applications. Having to remember everything that
was drawn on the screen in order to redraw it can be a nuisance. In addition, it can be visually distracting
if portions of the window are cleared, then redrawn step by step. Furthermore, it will not work if drawing is
dynamic. For example, what if you want the application to implement �rubber-banding.� In rubber-banding,
a shape such as a line or rectangle is drawn and erased repeatedly while the mouse button is down and the
mouse is being dragged until the user releases the mouse button, when the shape is added permanently to
the window. The direct drawing method should not be used to implement rubber-banding because it would
require an enormous amount of redrawing of the existing shapes and careful erasing of the rubber-banded
shape as the mouse moved.

The solution to this problem is to use an o�screen backing pixmap. Instead of drawing directly to the screen,
we draw to an image stored in server memory but not displayed, then when the image changes or new
portions of the image are displayed, we copy the relevant portions onto the screen. The image that we draw
to is called a pixmap, short for pixel map. A pixmap is implemented in GDK by the GdkPixmap object. A
GdkPixmap is a server-side resource. This means that it resides on the X-server's hosting machine. If the
X-client application is running on a di�erent machine, then there will be communication overhead in drawing
to the pixmap. If there is extensive manipulation of the pixmap, the application may not behave well when
used across a network.

A pixmap is created with gdk_pixmap_new():

GdkPixmap* gdk_pixmap_new (GdkDrawable *drawable, // to determine depth of pixmap

gint width, // width of pixmap in pixels

gint height, // height of pixmap in pixels

gint depth); // bits per pixel

To create a pixmap, you have to specify its depth. The depth of a pixmap is the number of bits per pixel.
The safest way to create a pixmap is to let GDK decide on the depth, since the depth of the pixmap has to
match the depth of the drawable in which it will be displayed eventually. Setting the depth parameter to -1
achieves this.

When you create the pixmap it is not initialized. Before drawing on it, you should paint a background color
into it using the gdk_draw_rectangle() method, with �ll set to TRUE, as in:

gdk_draw_rectangle (pixmap,

white_gc,

TRUE,

8

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

0, 0,

pixmap_width, pixmap_height);

where white_gc is a GdkGC in which the foregound color is white, and pixmap_width and pixmap_height

are the width and height of the pixmap respectively. You can use all of the drawing primitives to draw on
a pixmap, and it is not necessary to cast the pixmap to a di�erent type, because the primitives all expect a
GdkDrawable as their �rst argument, and a GdkPixmap is just a C typedef for a drawable.

When you are ready to copy the contents of a pixmap onto the on-screen drawable, for example, the
GtkDrawingArea's GdkWindow (e.g., drawing_area->window), you use the gdk_draw_drawable() method,
which copies a source drawable into a target drawable:

void gdk_draw_drawable (GdkDrawable *target_drawable,

GdkGC *gc,

GdkDrawable *src,

gint xsrc,

gint ysrc,

gint xdest,

gint ydest,

gint width,

gint height);

This is probably self-explanatory. It copies the rectangle with upper-left corner at (xsrc,ysrc) in the
drawable src, of width and height width and height respectively, into target_drawable, using the given
graphics context for the drawing properties.

The o�-screen pixmap method works as follows. In every function in which you would have drawn to
the screen, you draw instead to the backing pixmap. Each time that you are �nished drawing to the
backing pixmap, you invalidate the rectangular region of the on-screen drawable's window that should
contain the drawing you just did on the pixmap. Invalidating a window region causes an event to be placed
in the event queue to redraw that region. In other words, it forces an expose event. Once the main loop
becomes idle (after the current batch of events has been processed, roughly), the window will receive expose
events for the union of all regions that have been invalidated. The function that invalidates the region is
gtk_widget_queue_draw_area():

void gtk_widget_queue_draw_area (GtkWidget *widget,

gint x,

gint y,

gint width,

gint height);

which invalidates the rectangular area of widget de�ned by x, y, width and height. In the expose handler
for the application, you copy the backing pixmap to the on-screen window. Note that it is possible to just
copy the backing pixmap to the on-screen window directly in all functions that draw into the pixmap, and
not invalidate the drawn-upon region of the window. However, by invalidating the region and putting the
copying in the expose handler, all copying occurs in one place, and time will be saved by avoiding multiple
copying, because GDK consolidates the expose events into larger regions for a single expose event signal to
be emitted by the widget, which will result one copy for multiple draws.

There is one other way in which this approach is di�erent from the direct drawing method. If the user can
resize the drawing area, then the backing pixmap will not match the drawing area in size after the resize
operation. This is not a problem if the drawing area becomes smaller, but if it grows, then the pixmap will
not be able to capture the drawing in the extended region of the drawing area. The solution is that the
drawing area has to handle con�gure-events, which are generated when the user resizes the window. In the

9

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

handler for the con�gure-event, the application must check if the drawing area grew, and if so, create a new
pixmap of the larger size, copy the old one into it, and then make the new one the backing pixmap. (It must
also free the resources held by the old one, lest your program have a very large memory leak!)

In summary, there are three changes:

• you draw to a backing pixmap instead of the on-screen window and invalidate the drawn upon regions
whenever you draw,

• your expose-event handler copies the pixmap to the on-screen window, and

• your con�gure-event handler resizes the pixmap and copies the old one to the new one.

The code in Listing 2 shows the various pieces of code that would replace the code in Listing 1.

Listing 2: O�-Screen Pixmap Method

gboolean on_configure_event (GtkWidget ∗widget ,
GdkEventConfigure ∗ event ,
App l i ca t i onSta te ∗ appState)

{
g in t current_width ;
g in t current_height ;
GdkPixmap ∗temp_pixmap ;
g in t w = widget−>a l l o c a t i o n . width ;
g in t h = widget−>a l l o c a t i o n . he ight ;

i f (backing_pixmap == NULL) {
backing_pixmap = gdk_pixmap_new(widget−>window , w, h , −1);
gdk_draw_rectangle (backing_pixmap ,

widget−>sty l e−>white_gc ,
TRUE,
0 , 0 ,
w, h) ;

}
else {

gdk_drawable_get_size (GDK_DRAWABLE(backing_pixmap) ,
¤t_width , ¤t_height) ;

i f (current_width < w | | current_height < h) {
temp_pixmap = gdk_pixmap_new(widget−>window , w, h , −1);

// F i l l i t wi th whi te p i x e l s
gdk_draw_rectangle (temp_pixmap ,

widget−>sty l e−>white_gc ,
TRUE,
0 , 0 , w, h) ;

// Copy the o ld pixmap onto the new one us ing current foreground
gdk_draw_drawable (temp_pixmap ,

widget−>sty l e−>fg_gc [GTK_WIDGET_STATE (widget)] ,
appState−>backing_pixmap ,
0 , 0 , 0 , 0 , −1, −1);

// Release the r e f e r ence to the o ld pixmap
g_object_unref (appState−>backing_pixmap) ;

// and r ep l a c e i t wi th the new , proper ly−s i z e d one
appState−>backing_pixmap = temp_pixmap ;

}
}
return TRUE;

10

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

}

stat ic gboolean on_expose (GtkWidget ∗area ,
GdkEventExpose ∗ event ,
App l i ca t i onSta te ∗ appState)

{
gdk_draw_drawable (area−>window ,

area−>sty l e−>fg_gc [GTK_WIDGET_STATE(area)] ,
appState−>backing_pixmap ,
event−>area . x , event−>area . y ,
event−>area . x , event−>area . y ,
event−>area . width , event−>area . he ight) ;

return TRUE;
}

stat ic gboolean on_button_press (GtkWidget ∗area ,
GdkEventButton ∗ event ,
App l i ca t i onSta te ∗ appState)

{
gu int l e f t , top , width , he ight ;
GdkPoint cent e r = {event−>x , event−>y } ;

i f (event−>button == 1) {
// Draw a s t a r whose cen te r i s a t the cursor
// This f i l l s l e f t , top , width , and h e i g h t wi th the r e c t angu l a r
// i n v a l i d a t e reg ion
draw_star (appState , center , &l e f t , &top , &width , &he ight) ;

// put an event in the event queue to f o r c e an expose event f o r the reg ion
gtk_widget_queue_draw_area (area , l e f t , top , width , he ight) ;

}
return TRUE;

}

Rubber-Banding

Suppose that you want to extend the capabilities of your drawing applications to allow dynamically sized
shapes. In particular, you want the user to be able to draw a star by specifying the bounding rectangle
within which it should be displayed, so that the application can make a star as large as possible that �ts
the rectangle. Thus, as the user drags the mouse with the mouse button down, a dashed rectangle will be
displayed, and when the use releases the mouse button, a star will appear within the rectangle. This is how
many drawing tools let their users specify ellipses, circles, and other shapes. To simplify the drawing of the
star, we would like to constrain the proportions of the rectangle so that it is always the same proportion.
Since this task is incidental to the more important lesson, we will ignore this issue for now. The actual
demo program does this, and you can look at its code. We will start with the simpler problem, namely,
allowing the user to draw a rubber-banding rectangle and then drawing a star within it. Once we understand
rubber-banding, we can return to the problem of constraining the rectangle.

The problem of rubber-banding is making the old rectangle disappear each time we move the mouse, and
drawing a new one at the new mouse position. We will need to store the starting position of the mouse, i.e.,
the point at which the mouse button was pressed (but not released). Let us name this point, start. As the
mouse moves, it de�nes a rectangle. Suppose the mouse is at position (x,y). Then it de�nes the rectangle
whose diagonally opposite corners are (start.x, start.y) and (x,y). (If start.x = x or start.y = y,
then it is a line segment.) Each mouse movement while the button is held down de�nes a new rectangle.

11

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

Because every new position requires drwing a new rectangle, the drawing of the rectangle must take place
in the motion-notify-event handler; this is the only handler that is invoked when the mouse moves.

Each time the mouse moves, it generates a motion-notify-event. The problem is that there will be way too
many of these events to handle if we handle all of them, especially since we only want to know about those
motion-notify-events that take place when the mouse button is down. We need a way to limit the number
of messages that the application receives, to only those that take place when the button is held down. The
solution is to use an event mask. We want to tell GTK to send us only those motion-notify-events that take
place while the mouse button is down. More generally, we can tell GTK exactly which events we want by
setting masks on the widget, using the gtk_widget_set_events() function:

gtk_widget_set_events (appState.drawing_area, GDK_EXPOSURE_MASK

| GDK_BUTTON_PRESS_MASK

| GDK_BUTTON_RELEASE_MASK

| GDK_BUTTON_MOTION_MASK);

This function must be called before the widget is realized. It sets which events the widget will receive. The
exposure mask is needed to receive expose events, the button_motion mask, to receive motion-notify-events
while any mouse button is down. The button press and release masks are needed so that we know when the
mouse button is �rst pressed and when it is released.

To recap, we are going to draw the rectangle in the motion-event handler using the stored start position and
the current event location as the rectangle's de�ning corners. This is not enough though, because we need to
draw the star when the button is released, which is handled by the button-event handler. These will be two
di�erent callbacks. The button-event handler will also have to compute the bounding rectangle's coordinates
and draw the star within it. Since there are at least two functions needing the start position, we put this
information in the ApplicationState structure that we can pass to the handlers in the third parameter.

1. The problem of rubber-banding is solved by using a second, temporary pixmap. In the motion-notify-
event handler, we do the following:

2. Get the current size of the drawing area widget.

3. Create a new temporary pixmap, say temp_pixmap, of the same size as the drawing area, and the
same depth.

4. Copy the current contents of the backing pixmap into the temp_pixmap.

5. Draw a dashed rectangle into the temp_pixmap, one of whose corners is at (event->x, event->y)
and the other, at (start.x, start.y). We cannot assume that the start point is the upper-left; it
might be the upper-right, the lower-left, or the lower-right, depending where the mouse was moved.

6. Copy the temp_pixmap onto the on-screen drawable. To be e�cient, we could restrict the copy to just
the rectangular region containing the newly drawn rectangle. For simplicity, we just copy the whole
temp_pixmap.

7. Free the temp_pixmap by calling g_object_unref() on it.

This completes the steps in the motion-notify-event handler. It leaves out the details of drawing the rectangle.
You have to decide where the upper-left corner is by comparing the values of the start and end coordinates.

The button-event handler does a di�erent task. It has to �rst check whether it was a button-press or a
button release. If it is a button press event, it simply stores the position of the mouse in the application
state3. If it is a button release event, then the star must be drawn into the backing pixmap. To determine
the position of the star, the bounding rectangle is calculated the same way as in the motion-event handler,

3I use a separate MouseState structure usually, which contains the start and end positions, and whether the mouse button

is up or down.

12

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

and the star is drawn within that rectangle. The star-drawing function must be modi�ed to draw a star
based on the position of the upper-left corner of the rectangle, and the width and height of the rectangle,
i.e., its prototype would be

void draw_star (ApplicationState *appState, // contains the backing pixmap

gint left, // x-coordinate of upper-left corner

gint top, // y-coordinate of upper-left corner

gint width, // width of bounding rectangle

gint height); // height of bounding rectangle

Once the star is drawn, a drawing event is put on the queue using gtk_widget_queue_draw_area(). The
boundaries of the drawing event should match those of the bounding rectangle of the star.

This is the set of all changes. The various pieces of the program are contained in 3, 4, 5, and 6. The
comments have been removed from these listings. The remainder of the program is in the demos directory
on our host system.

Listing 3: Types and global constants for rubber-banding version

#define WIN_WIDTH 809
#define WIN_HEIGHT 500
#define LINE_WIDTH 1
#define STAR_PROPORTION 0.95105651629515

typedef struct _mouseState
{

g in t start_x ;
g in t start_y ;
g in t end_x ;
g in t end_y ;
gboolean isMouseDown ;

} MouseState ;

typedef struct _Appl icat ionState
{

GtkWidget ∗ area ;
MouseState mouseState ;
g in t l ine_width ;
GdkGC ∗ gcSo l i d ;
GdkGC ∗gcDash ;
GdkPixmap ∗backing_pixmap ;

} App l i ca t i onSta te ;

The main application state is slim for this program. More serious applications would store more state. The
motion-notify-event handler listing and the button-event handler listing include the logic to constraint the
rectangle's proportions to match those of a bounding rectangle for a regular pentagonal star. It is worth
studying carefully how this is accomplished. They also handle the cases when the mouse is above and/or to
the left of the starting point.

Listing 4: Motion-notify-event handler for rubberbanding version

stat ic gboolean on_motion_notify_event (GtkWidget ∗widget ,
GdkEventMotion ∗ event ,
App l i ca t i onSta te ∗ appState)

{
int x , y ;
GdkModifierType s t a t e ;
g in t w ;
g in t h ;

13

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

g in t width , he ight ;
GdkPixmap ∗temp_pixmap ;

s t a t e = event−>s ta t e ;
x = event−>x ;
y = event−>y ;

i f (s t a t e & GDK_BUTTON1_MASK && appState−>mouseState . isMouseDown) {
gdk_drawable_get_size (appState−>backing_pixmap , &w, &h) ;

temp_pixmap = gdk_pixmap_new(widget−>window , w, h , −1);
gdk_draw_drawable (temp_pixmap ,

widget−>sty l e−>fg_gc [GTK_STATE_NORMAL] ,
appState−>backing_pixmap , 0 , 0 , 0 , 0 , −1, −1);

width = abs (x − appState−>mouseState . start_x) ;
he ight = abs (y − appState−>mouseState . start_y) ;

i f (width > STAR_PROPORTION ∗ he ight)
{ //wider than t a l l

appState−>mouseState . end_x = x ;
i f (y > appState−>mouseState . start_y)

appState−>mouseState . end_y = appState−>mouseState . start_y +
width ∗ STAR_PROPORTION;

else

appState−>mouseState . end_y = appState−>mouseState . start_y −
width ∗ STAR_PROPORTION;

}
else

{
appState−>mouseState . end_y = y ;
i f (x > appState−>mouseState . start_x)

appState−>mouseState . end_x = appState−>mouseState . start_x +
he ight / STAR_PROPORTION;

else

appState−>mouseState . end_x = appState−>mouseState . start_x −
he ight / STAR_PROPORTION;

}

draw_box(temp_pixmap , appState−>gcDash , &(appState−>mouseState)) ;
gdk_draw_drawable (widget−>window , widget−>sty l e−>fg_gc [GTK_STATE_NORMAL] ,

temp_pixmap , 0 , 0 , 0 , 0 , −1, −1);

g_object_unref (temp_pixmap) ;
}
return TRUE;

}

Listing 5: Button-event handler for rubberbanding version

gboolean on_button_event (GtkWidget ∗widget ,
GdkEventButton ∗ event ,
App l i ca t i onSta te ∗ appState)

{
g in t start_x , start_y ;
g in t end_x , end_y ;
g in t width , he ight ;
g in t x , y ;

14

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

i f (event−>type == GDK_BUTTON_PRESS) {
appState−>mouseState . start_x = event−>x ;
appState−>mouseState . start_y = event−>y ;
appState−>mouseState . isMouseDown = TRUE;

}
else i f (event−>type == GDK_BUTTON_RELEASE) {

appState−>mouseState . end_x = event−>x ;
appState−>mouseState . end_y = event−>y ;
appState−>mouseState . isMouseDown = FALSE;

x = event−>x ;
y = event−>y ;
width = abs (x − appState−>mouseState . start_x) ;
he ight = abs (y − appState−>mouseState . start_y) ;

i f (width > STAR_PROPORTION ∗ he ight)
{

// The mouse has moved so t ha t the box i s too wide . We s h i f t the
// y−coord ina te o f endpoint to form the c o r r e c t l y shaped box
appState−>mouseState . end_x = x ;
i f (y > appState−>mouseState . start_y)

appState−>mouseState . end_y = appState−>mouseState . start_y +
width ∗ STAR_PROPORTION;

else

appState−>mouseState . end_y = appState−>mouseState . start_y −
width ∗ STAR_PROPORTION;

}
else

{
// The mouse has moved so t ha t i t i s e i t h e r j u s t r i g h t , or the
// box i s too t a l l . We s h i f t the x−coord ina te o f the endpoint
// so t ha t i t i s in the r i g h t propor t ion .
appState−>mouseState . end_y = y ;
i f (x > appState−>mouseState . start_x)

appState−>mouseState . end_x = appState−>mouseState . start_x +
he ight / STAR_PROPORTION;

else

appState−>mouseState . end_x = appState−>mouseState . start_x −
he ight / STAR_PROPORTION;

}
/∗

Now we have to make sure t ha t we account f o r when the mouse moves
to the l e f t and/or upwards . We s t o r e the s t a r t and end po in t
coord ina t e s in l o c a l v a r i a b l e s f o r convenience .

∗/
start_x = appState−>mouseState . start_x ;
end_x = appState−>mouseState . end_x ;
start_y = appState−>mouseState . start_y ;
end_y = appState−>mouseState . end_y ;
/∗

I f the s t a r t po in t and end po in t are the exac t same point , we b a i l
out , s ince we do not want to draw a s i n g l e po in t !
Assuming they are not the same point , we t e s t whether the s t a r t i s
to the l e f t o f the end and above i t . I f e i t h e r t e s t i s f a l s e , we
swap the p o s i t i o n s o f s t a r t and end .

∗/
i f ((start_x != end_x) | | (start_y != end_y))
{

15

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

i f (start_x > end_x) {
appState−>mouseState . start_x = end_x ;
appState−>mouseState . end_x = start_x ;

}
i f (start_y > end_y) {

appState−>mouseState . start_y = end_y ;
appState−>mouseState . end_y = start_y ;

}

// Reca l cu l a t e the width and h e i g h t based on any changes
width = abs (appState−>mouseState . end_x −

appState−>mouseState . start_x) ;
he ight = abs (appState−>mouseState . end_y −

appState−>mouseState . start_y) ;
// Ca l l the draw_star func t i on to draw the s t a r wi th upper− l e f t
// corner at the new s t a r t po in t wi th g iven width and h e i g h t
draw_star (appState ,

appState−>mouseState . start_x ,
appState−>mouseState . start_y ,
width , he ight) ;

}
// Force an expose event f o r j u s t the por t i on o f the window conta in ing
// the newly drawn star , so t ha t i t g e t s cop ied from the back ing pixmap
// to the on−screen drawable . I t has to inc l ude the a c t ua l box , so
// the width and h e i g h t are each g r ea t e r by the l i n e width .
gtk_widget_queue_draw_area (widget , appState−>mouseState . start_x ,

appState−>mouseState . start_y ,
width+appState−>line_width ,
he ight+appState−>line_width) ;

}
else {

// We ignore a l l o ther bu t ton events , such as 2 but ton and 3 but ton even t s
}
return TRUE;

}

The star drawing code is included here as well. Now that the center is not supplied as an argument, the center
must be found. Geometric facts about pentagons are used to compute the side, radius, and apothem, needed
to construct the star. Regular pentagons are amazing �gures, bestowed with many interesting properties,
and related to the golden ratio, φ, as well. This version does not use φ, although it could.

Listing 6: Star-drawing function for rubberbanding version

#define DOUBLE_SIN_36 1.17557050458495
#define APOTHEM 0.68819096023559
#define COS_72 0.309016994374947424102
#define COS_36 0.8090169943749474241
#define SIDE_TO_HEIGHT 0.64983939246581265231 // 2∗ s in (36) / (1 + cos (36))

stat ic void draw_star (App l i ca t i onSta te ∗appState ,
g in t l e f t , g i n t top ,
g in t width , g in t he ight)

{
GdkPoint ver tex [5] ;
GdkPoint cen te r ;
GdkGC ∗drawing_gc ;

double s i d e = he ight ∗ SIDE_TO_HEIGHT; // l en g t h o f s i d e o f pentagon
double rad iu s = s i d e / DOUBLE_SIN_36; // d i s t from cente r to any v e r t e x
double apothem = s id e ∗ APOTHEM; // d i s t from cente r to midpoint o f s i d e

16

CSci493.70 Graphical User Interface Programming

Drawing in GTK+

Prof. Stewart Weiss

double r i s e = rad iu s ∗ COS_72 ; // d i s t from cente r to any d iagona l
cente r . x = l e f t + width /2 ; // po s i t i o n o f cen te r
cente r . y = top + rad iu s ;

ve r tex [0] . x = cente r . x ;
ve r tex [0] . y = cente r . y − rad iu s ;
ve r tex [1] . x = cente r . x − s i d e /2 ;
ver tex [1] . y = cente r . y + apothem ;
ver tex [2] . x = cente r . x + width /2 ;
ver tex [2] . y = cente r . y − r i s e ;
ve r tex [3] . x = cente r . x − width /2 ;
ver tex [3] . y = cente r . y − r i s e ;
ve r tex [4] . x = cente r . x + s i d e /2 ;
ver tex [4] . y = cente r . y + apothem ;

drawing_gc = appState−>area−>sty l e−>fg_gc [GTK_WIDGET_STATE(appState−>area)] ;
gdk_draw_polygon (appState−>backing_pixmap , drawing_gc , TRUE, vertex , 5) ;

}

17

