
CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

Menus and Toolbars

1 Introduction

Most GUI applications have menus and toolbars. They are an important part of how the user interacts with
the application, sometimes the only ways by which the user interacts with it. Although menus and toolbars
look like di�erent things, and in some aspects are di�erent things, what they have in common is that they
are both containers for widgets that, when clicked, result in the performance of actions. Menus contain menu
items, and toolbars usually contain buttons. Although toolbars are actually more general than this in that
they can contain arbitrary widgets, they are usually used to provide quick access to frequently used menu
items.

We will examine menus �rst, and then toolbars. After covering the basics of each of these, we will look at a
more uni�ed way of creating both, using the GtkUIManager.

2 Menus

2.1 Principles

There are three widgets involved in menu creation:

menu items These are the widgets that the user clicks.

menus These are containers that contain menu items.

menubars These are containers that appear to contain menus.

You will �nd menu creation and menu handling confusing unless you remember the following principles:

• Menus (class GtkMenu) and menubars (class GtkMenuBar) are containers. They are derived from the
same abstract base class, GtkMenuShell.

• The only thing you can put into a menu or a menubar is a menu item.

• Menus can be �attached� to menu items so that when the item is activated, the menu drops down or
pops up.

� If a menu item is a child of a menubar, then the menu attached to it drops down.

� If it is a child of a menu, then the menu attached to it pops up.

• Menu items are the only things that you can activate, and these emit an activate signal, which must
be connected to a callback to handle the user's clicks on that item. Although they emit other signals,
this is the one you will normally use.

If you remember these principles going forward, things will be easy to understand. In essence, menus form a
recursively de�ned hierarchy. The root of this hierarchy is always a menubar. We usually think of menubars
as horizontal, rectangular regions at the top of a window, but they may be vertical as well, and can be placed
anywhere you choose. Those labels that you see in the menubar, such as �File�, �Edit� or �Help�, are menu

1

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

items1. Menu items can have menus attached to them, so that when they get clicked, the menu appears.
Each of the menus attached to a menu item may have menu items that have menus attached to them, and
these may have items that have menus attached to them, and so on.

We use the term submenu to refer to a menu that is attached to a menu item within another menu, but there
is no special class of submenus; a submenu is just a menu. Because a menu item always exists as a child of
either a menu or a menubar, the menu that is attached to a menu item is always a submenu of something
else. This should make it easy to remember the fact that there is but a single way to attach a menu to a
menu item:

void gtk_menu_item_set_submenu (GtkMenuItem *menu_item,

GtkWidget *submenu);

which we will discuss below. The point is that the attached menu is of necessity a submenu of something
else.

2.2 Creating Menus �By Hand�

I call this method �by hand� because the menu is constructed in the same way that a typical house is
constructed, by assembling the pieces and attaching them to each other, one by one. The alternative is more
like the way an integrated circuit is made, by creating a speci�cation of how everything �ts together and
using that speci�cation to etch the circuit onto a wafer.

The outline of the steps that must be taken is:

1. Create the menubar.

2. Create the menu items that will be packed into the menubar.

3. Pack the menu items into the menubar.

4. Create the menus that the menu items will activate.

5. Attach these �submenus� to the menu items.

6. For each submenu,

(a) create the menu items that it will contain, and

(b) pack these menu items into the submenu.

I have listed these steps in a top-down sequence, but it is conceivable to carry them out in many di�erent
permutations. The above sequence has a natural logic to it and that is the order in which I describe them
in detail below.

You create the menubar with the function

GtkWidget * gtk_menu_bar_new (void);

This creates an empty menubar. Menubars themselves have almost no methods. When menus and menubars
were uni�ed by creating a menushell class and deriving them from this parent class, their speci�c methods
were deprecated. The menubar itself should be added to its parent container with an appropriate packing
function. Typically you will put it at the top of the content area just below the top-level window's title bar,
and there will be other �stu�� underneath it, so the usual sequence is

1Technically they are the labels of the items, not the items themselves.

2

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

vbox = gtk_vbox_new (FALSE, 0);

gtk_container_add (GTK_CONTAINER (window), vbox);

menu_bar = gtk_menu_bar_new ();

gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 0);

For each menu that you want to put into the menubar, you will need a separate menu item. Regular menu
items can be created in three di�erent ways:

GtkWidget * gtk_menu_item_new (void);

GtkWidget * gtk_menu_item_new_with_label (const gchar *label);

GtkWidget * gtk_menu_item_new_with_mnemonic (const gchar *label);

The �rst of these creates a menu item with no label; you would later use

void gtk_menu_item_set_label (GtkMenuItem *menu_item,

const gchar *label);

to create a label for it. The second and third functions create menu items with either a plain label or with
a label and a mnemonic, just like is done with buttons. Later you will see that there are four subclasses of
menu items, among which are image menu items, which can contain an image instead of or in addition to a
label.

There are three di�erent ways to pack menu items into menubars and menus; they are all methods of the
GtkMenuShell base class.

void gtk_menu_shell_append (GtkMenuShell *menu_shell,

GtkWidget *child);

void gtk_menu_shell_prepend (GtkMenuShell *menu_shell,

GtkWidget *child);

void gtk_menu_shell_insert (GtkMenuShell *menu_shell,

GtkWidget *child,

gint position);

All three require the menu or menubar to be cast to the parent class. The second argument in all three is
the menu item to be put into the container. The di�erences are probably obvious. The append method adds
the menu item to the end of the list of those already in the menu shell, whereas the prepend method inserts
it before all of the items already in it. The insert method takes an integer position as the third argument,
which is the position in the item list where child is added. Positions are numbered from 0 to n-1. If an item
is put into position k, then all items currently in the list at positions k through n-1 are shifted downward in
the list to make room for the new item.

The following code fragment creates a few labeled menu items, and packs them into the menubar in left-to-
right order.

file_item = gtk_menu_item_new_with_label("File");

view_item = gtk_menu_item_new_with_label("View");

tools_item = gtk_menu_item_new_with_label("Tools");

help_item = gtk_menu_item_new_with_label("Help");

gtk_menu_shell_append(GTK_MENU_SHELL(menu_bar), file_item);

gtk_menu_shell_append(GTK_MENU_SHELL(menu_bar), view_item);

gtk_menu_shell_append(GTK_MENU_SHELL(menu_bar), tools_item);

gtk_menu_shell_append(GTK_MENU_SHELL(menu_bar), help_item);

3

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

The next step is to create the menus that will be dropped down when these menu items are activated. Menus
are created with the function

GtkWidget * gtk_menu_new (void);

For the above menu items, we would create four menus:

file_menu = gtk_menu_new();

view_menu = gtk_menu_new();

tools_menu = gtk_menu_new();

help_menu = gtk_menu_new();

Having created the menus, we have to attach them to the menu items using

void gtk_menu_item_set_submenu (GtkMenuItem *menu_item,

GtkWidget *submenu);

This takes the menu item (cast to a menu item, since it is declared as a widget), and the menu to be attached.
We attach the four menus as follows:

gtk_menu_item_set_submenu(GTK_MENU_ITEM(file_item), file_menu);

gtk_menu_item_set_submenu(GTK_MENU_ITEM(view_item), view_menu);

gtk_menu_item_set_submenu(GTK_MENU_ITEM(tools_item), tools_menu);

gtk_menu_item_set_submenu(GTK_MENU_ITEM(help_item), help_menu);

The next step is to create the menu items to populate each of the menus, and add them to these menus.
There are no new functions to learn for these steps. It is simply a matter of creating menu items and packing
them. In the example we are using, our File menu will have an Open item, a Close item, and an Exit item.
We will also use a separator between the Close item and the Exit item. Separators are members of the
class GtkSeparatorMenuItem and are created with

GtkWidget * gtk_separator_menu_item_new (void);

The File menu's items will be simple labeled items. The code to create them and pack them is:

open_item = gtk_menu_item_new_with_label("Open");

close_item = gtk_menu_item_new_with_label("Close");

separator1 = gtk_separator_menu_item_new();

exit_item = gtk_menu_item_new_with_label("Exit");

gtk_menu_shell_append(GTK_MENU_SHELL(file_menu), open_item);

gtk_menu_shell_append(GTK_MENU_SHELL(file_menu), close_item);

gtk_menu_shell_append(GTK_MENU_SHELL(file_menu), separator1);

gtk_menu_shell_append(GTK_MENU_SHELL(file_menu), exit_item);

To create a menu that contains submenus does not involve anything other than descending a level in the
menu hierarchy and repeating these steps. To illustrate, we will design the Help menu so that it has two
items, one of which is a menu item that, when activated, pops up a submenu. The �rst two steps are to
create the two menu items and pack them into the Help menu:

4

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

query_item = gtk_menu_item_new_with_label("What's This?");

separator2 = gtk_separator_menu_item_new();

about_help_item = gtk_menu_item_new_with_label("About this program");

gtk_menu_shell_append(GTK_MENU_SHELL(help_menu), query_item);

gtk_menu_shell_append(GTK_MENU_SHELL(help_menu), separator2);

gtk_menu_shell_append(GTK_MENU_SHELL(help_menu), about_help_item);

The next step is to create a submenu and attach it to the about_help_item:

about_help_menu = gtk_menu_new();

gtk_menu_item_set_submenu (GTK_MENU_ITEM(about_help_item), about_help_menu);

The last step is to create menu items for the about_help_menu and pack them into this menu:

about_tool_item = gtk_menu_item_new_with_label("About Tools");

about_stuff_item = gtk_menu_item_new_with_label("About Other Stuff");

gtk_menu_shell_append(GTK_MENU_SHELL(about_help_menu), about_tool_item);

gtk_menu_shell_append(GTK_MENU_SHELL(about_help_menu), about_stuff_item);

The preceding steps create the menu items, but they are not yet connected to the �activate� signal. Menu
items that have submenus do not need to be connected to the �activate� signal; GTK+ arranges for that
signal to open the submenu. But the others need to be connected. For example, we would connect the Exit
menu item to a callback to quit the application with

g_signal_connect (G_OBJECT (exit_item), "activate",

G_CALLBACK (gtk_main_quit),

(gpointer) NULL);

2.3 Pop-Up Menus for Widgets

The same techniques for creating menus rooted in a menubar applies to the creation of pop-up menus for
other widgets. For example, if you wanted to create a button, which, when the mouse button is pressed on
it, would pop up a menu instead of taking some other action, you would �rst create the menu using the
instructions above. Then you would connect a mouse button press event signal to a callback that popped
up the menu, using the g_signal_connect_swapped() function. To illustrate, we begin by creating a small
pop-up menu and packing two menu items into it.

popupmenu = gtk_menu_new();

makebig_item = gtk_menu_item_new_with_label("Larger");

makesmall_item = gtk_menu_item_new_with_label("Smaller");

gtk_menu_shell_append (GTK_MENU_SHELL (popupmenu), makebig_item);

gtk_menu_shell_append(GTK_MENU_SHELL (popupmenu), makesmall_item);

We can connect the activate signal to these items as we choose. That part is not important now. Next we
create a button and connect the generic �event� to a callback, swapping the button and the popup menu:

button = gtk_button_new_with_label ("Push me");

g_signal_connect_swapped (G_OBJECT (button), "event",

G_CALLBACK (on_button_press),

G_OBJECT (popupmenu));

5

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

The callback will be responsible for popping up the menu. To pop up a menu, we need a new function:

void gtk_menu_popup (GtkMenu *menu,

GtkWidget *parent_menu_shell,

GtkWidget *parent_menu_item,

GtkMenuPositionFunc func,

gpointer data,

guint button,

guint32 activate_time);

This function displays a menu and makes it available for selection. It is exists precisely for the purpose of
displaying context-sensitive menus. For normal use, you would supply NULL for the parent_menu_shell,
parent_menu_item, func and data parameters.

The button parameter should be the mouse button pressed to initiate the menu popup. If the menu popup
was initiated by something other than a mouse button press, such as a mouse button release or a key-press,
button should be 0.

The API documentation states that the activate_time parameter is used to con�ict-resolve initiation of
concurrent requests for mouse/keyboard grab requests. To function properly, this needs to be the time stamp
of the user event (such as a mouse click or key press) that caused the initiation of the popup.

Putting this together, the callback on_button_press() should be

static gboolean on_button_press (GtkWidget *widget,

GdkEvent *event)

{

if (event->type == GDK_BUTTON_PRESS) {

GdkEventButton *bevent = (GdkEventButton *) event;

gtk_menu_popup (GTK_MENU (widget), NULL, NULL, NULL, NULL,

bevent->button, bevent->time);

// Tell calling code that we have handled this event

return TRUE;

}

// Tell calling code that we have not handled this event; pass it on.

return FALSE;

}

This callback does not care which mouse button was pressed. It gets the event type and checks that it is a
button press. If so, it casts it to a button event and uses that event's button and time members in the call
to gtk_menu_popup().

The appendix contains a listing for a complete program, named menu_by_hand.c, that demonstrates all of
the above techniques. All of the menu items share a common callback function for the �activate� signal. This
callback pops up a dialog box that shows which item was pressed.

2.4 Specialized Menu Items

The preceding menu items were standard items. The GtkMenuItem class has two subclasses, GtkImageMenuItem
and GtkCheckMenuItem, which has a subclass GtkRadioMenuItem. We will see how to use these after we
cover the GtkUIManager.

6

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

3 Toolbars

Toolbars provide quick access to commonly used actions. They are containers that should be populated
with instances of the GtkToolItem class. Usually you will insert toolbar buttons into a toolbar. Tool-
bar buttons belong to the GtkToolButton class, which is a subclass of GtkToolItem. There are also two
subclasses of the toolbutton class: GtkMenuToolButton and GtkToggleToolButton, which has a subclass
GtkRadioToolButton.

A toolbar is created with only a single function:

GtkWidget * gtk_toolbar_new (void);

Once it is created, tool items can be inserted into it, using

void gtk_toolbar_insert (GtkToolbar *toolbar,

GtkToolItem *item,

gint pos);

Although the API documentation lists other methods of packing tool items into a toolbar, these have been
deprecated since version 2.4 and should be not be used. This inserts the tool item at position pos. If pos is
0 the item is prepended to the start of the toolbar. If pos is negative, the item is appended to the end of
the toolbar. Therefore, if items are inserted successively into a toolbar passing -1 as pos, they will appear
in the toolbar in left to right order.

There are few other things you should do when creating the toolbar itself. Many of the methods of the
GtkToolBar class should be avoided, either because they are deprecated, or because they violate the principle
of respecting the user's style preferences. For this reason, we will not discuss them here.

Although tool items can be created with

GtkToolItem * gtk_tool_item_new (void);

we will have little use for this function, as we will be putting only buttons and separators into our toolbars.
Each of these has its own specialized constructors. To create a toolbar button, you can use any of two
di�erent methods:

GtkToolItem * gtk_tool_button_new (GtkWidget *icon_widget,

const gchar *label);

GtkToolItem * gtk_tool_button_new_from_stock (const gchar *stock_id);

The �rst method requires that you supply a custom icon and label; the second lets you pick a stock id. You
can use any stock item from the documentation. As we have not yet covered how to create icons, we will
stay with the second method in the examples that follow. The following code fragment creates a toolbar and
a few toolbar buttons using stock items and puts them into a toolbar.

GtkWidget *toolbar = gtk_toolbar_new();

GtkToolItem *new_button = gtk_tool_button_new_from_stock(GTK_STOCK_NEW);

GtkToolItem *open_button = gtk_tool_button_new_from_stock(GTK_STOCK_OPEN);

GtkToolItem *save_button = gtk_tool_button_new_from_stock(GTK_STOCK_SAVE);

gtk_toolbar_insert(GTK_TOOLBAR(toolbar), new_button, -1);

gtk_toolbar_insert(GTK_TOOLBAR(toolbar), open_button, -1);

gtk_toolbar_insert(GTK_TOOLBAR(toolbar), save_button, -1);

7

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

You can create separator items using

GtkToolItem * gtk_separator_tool_item_new (void);

This creates a vertical separator in horizontal toolbar. If for some reason you want the buttons to the right
of the separator to be grouped at the far end of the toolbar, you can use the separator like a �spring� to
push them to that end by setting its �expand� property to TRUE and its �draw� property to FALSE, using the
sequence

separator = gtk_separator_tool_item_new();

gtk_tool_item_set_expand(GTK_TOOL_ITEM(separator), TRUE);

gtk_separator_tool_item_set_draw(GTK_SEPARATOR_TOOL_ITEM(separator), FALSE);

The �expand� property is inherited from GtkToolItem whereas the �draw� property is speci�c to the sepa-
rator. If we want to add a separator followed by an EXIT button, we would append the sequence below to
the preceding code (provided we declared the separator and button)

separator = gtk_separator_tool_item_new();

exit_button = gtk_tool_button_new_from_stock(GTK_STOCK_QUIT);

gtk_toolbar_insert(GTK_TOOLBAR(toolbar), exit_button, -1);

If we want the button to be pushed to the right, we would add the two function calls above to this.

Toolbar buttons are buttons, not items, and therefore they emit a �clicked� signal. To respond to button
clicks, connect a callback to the button as if it were an ordinary button, such as

g_signal_connect(G_OBJECT(exit_button), "clicked",

G_CALLBACK(gtk_main_quit), NULL);

A complete program showing how to create a simple toolbar using this manual method is in the Appendix.

4 The GtkUIManager

A GtkUIManager is an object that can dynamically construct a user interface consisting of menus and toolbars
from a UI description. A UI description is a speci�cation of what menu and toolbar widgets should be present
in an application and is described in an XML format. A GtkUIManager makes it possible to change menus
and toolbars dynamically using what is called UI merging.

4.1 Actions

The principal objects manipulated by a GtkUIManager are actions, which are instances of the GtkAction

class. Actions represent operations that the user can perform. Associated with an action are

• a callback function

• its name

• a label

• an accelerator

• a �ag indicating whether the label is a stock id

8

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

• a tooltip

• a toolbar label

• a �ag indicating whether it is sensitive

• a �ag indicating whether it is visible

The callback function is the function that is executed when the action is activated. The action name is
how it is referred to, not what appears in a menu item or toolbar button, which is its label. Actions can
have associated keyboard accelerators and tooltips. Their visibility and sensitivity can be controlled as well.
The idea is that you can create actions that the GtkUIManager can bind to proxies such as menu items and
toolbar buttons.

The GtkAction class has methods to create icons, menu items and toolbar items representing itself, as well
as get and set methods for accessing and changing its properties.

The GtkAction class also has two subclasses: GtkToggleAction and GtkRecentAction. The GtkToggleAction
class has a GtkRadioAction subclass. These correspond to toggle buttons and radio buttons respectively.

4.2 UI De�nitions

You can specify the set user interface action elements in your application with an XML description called a
UI de�nition. A UI de�nition is a textual description that represents the actions and the widgets that will
be associated with them. It must be bracketed by the pair of tags

<ui>

</ui>

Within these tags you describe your user interface in a hierarchical way, by de�ning menubars, which would
contain menus, which in turn contain menus and menu items, toolbars, which would contain tool items,
and popup menus, which can contain menus and menu items. The set of tags that can be used in these UI
de�nitions, with their descriptions and attributes, is

Tag Description Attributes Closing

Tag

<menubar> a GtkMenuBar name, action yes
<toolbar> a GtkToolbar name, action yes
<popup> a toplevel GtkMenu name, action, accelerators yes
<menu> a GtkMenu attached to a menuitem name, action, position yes
<menuitem> a GtkMenuItem subclass, the exact type

depends on the action
name, action, position,
always-show-image

no

<toolitem> a GtkToolItem subclass, the exact type
depends on the action.

name, action, position no

<separator> a GtkSeparatorMenuItem or
GtkSeparatorToolItem

name, action, expand no

<accelerator> a keyboard accelerator name, action no
<placeholder> a placeholder for dynamically adding an

item
name, action yes

9

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

Example

The following example shows a UI de�nition of a menubar and its submenus.

<ui>
<menubar name='MainMenu'>

<menu name='Fi l e ' a c t i on='FileMenu '>
<menuitem name='Open ' ac t i on='Open ' always−show−image=' true '/>
<menuitem name='Close ' a c t i on='Close ' always−show−image=' true '/>
<separa to r/>
<menuitem name='Exit ' a c t i on='Exit '/>

</menu>
<menu ac t i on='ViewMenu'>

<menuitem name='ZoomIn ' ac t i on='ZoomIn'/>
<menuitem name='ZoomOut ' ac t i on='ZoomOut'/>
<separa to r/>
<menuitem name='Ful lScreen ' ac t i on='Ful lScreen '/>
<separa to r/>
<menuitem name=' Ju s t i f yLe f t ' a c t i on=' Ju s t i f yLe f t '/>
<menuitem name=' Just i fyCenter ' a c t i on=' Just i fyCenter '/>
<menuitem name=' Just i fyRight ' a c t i on=' Jus t i fyRight '/>
<menu ac t i on='IndentMenu '>

<menuitem act i on=' Indent '/>
<menuitem act i on='Unindent '/>

</menu>
</menu>

</menubar>
</ui>

Notes

• Some tags must have a closing tag and some do not. Those with no closing tag are <menuitem>,
<toolitem>, <separator>, and <accelerator>. A tag that does not have a closing tag must have a
forward slash preceding its right bracket: �/>�. All other tags can have content.

• All attribute values are plain text strings.

• All UI elements have a name and action attribute. The name is optional; if a name is not speci�ed,
the action is used as its own name. If for some reason, neither the name nor the action attribute are
speci�ed, the name of the element is used when referring to it. The name and action attributes must
not contain '/' characters after parsing, nor double quotes.

• Menus, menu items, and toolitems have a position attribute with two possible values: �top� and
�bottom�. If this attribute is missing, its default value of �bottom� is used. This attribute determines
where the element is placed relative to its siblings. If position=�top� then when it is added to the
parent container, it will be placed before its siblings, meaning to the left in a horizontal container or
above the siblings in a vertical container. If it is �bottom� then it will be placed to the right of the
siblings or below them in horizontal and vertical containers respectively.

• The elements are added to the UI interface in the order in which they appear in the XML string. In
the above example, the JustifyLeft action precedes the JustifyCenter action, so the former will appear
above the latter. If however, the UI was de�ned as follows:

<menuitem name='JustifyLeft' action='JustifyLeft' position='top'/>

<menuitem name='JustifyCenter action='JustifyCenter' position='top'/>

<menuitem name='JustifyRight' action='JustifyRight' position='top'/>

10

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

then they would appear in the order

JustifyRight

JustifyCenter

JustifyLeft

because each time the element is inserted, the position='top' attribute forces it to be above its
siblings. The 'top� attribute converts the packing into a stack push operation in e�ect.

• Menu items have a �always-show-image� attribute with two possible values: �true� and �false�. If this
attribute is true, then menu item icons will always be visible, overriding any user settings in the desktop
environment.

• Separators can have an expand attribute, with the value �true� or �false�. If it is set to �true� then the
separator will expand to take up extra space in the parent container and become invisible. Otherwise
it is drawn as a thin line, depending on the user's theme..

• Submenus are created in a di�erent way using the XML than they are when constructing these pro-
grammatically. Remember that submenus are attached to menu items, which are contained in the
parent menu. Here, a <menu> element can be a direct child of a parent <menu> element. In the example
above, the menu whose action is 'IndentMenu' is a child of the 'ViewMenu'.

• Placeholders are merged into their parent containers invisibly. If a placeholder has child elements X,
Y, and Z, these will be at the same level of the tree as the placeholder itself. An example later will
illustrate the utility of this feature.

• Finally, observe the hierarchy implicit in the UI de�nition. As a matter of style, you should indent
these using standard rules of indentation, to make them easier to read.

We can create a toolbar de�nition in a similar way:

<ui>
<too lba r name = 'ToolBar ' a c t i on="ToolBarAction">

<p lac eho ld e r name="ExtraToolItems">
<separa to r/>
<too l i t em name="ZoomIn" ac t i on="ZoomIn"/>
<too l i t em name="ZoomOut" ac t i on="ZoomOut"/>
<separa to r/>
<too l i t em name='Ful lScreen ' ac t i on='Ful lScreen '/>
<separa to r/>
<too l i t em name=' Ju s t i f yLe f t ' a c t i on=' Ju s t i f yLe f t '/>
<too l i t em name=' Just i fyCenter ' a c t i on=' Just i fyCenter '/>
<too l i t em name=' Just i fyRight ' a c t i on=' Jus t i fyRight '/>

</placeho lder>
</too lbar>

</ui>

Notice that the tool items have the same action names as some of the menu items. This is how you can
create multiple proxies for the same action. When the GtkUIManager loads these descriptions, and you take
the appropriate steps in your program, they will be connected to the same callback functions.

Notice also that there is a placeholder in the toolbar de�ned above. We can use that placeholder to dynam-
ically add more tool items in that position. It does not occupy space in the toolbar widget; it just marks a
position to be accessed, so there is no downside to putting these placeholders into the UI de�nition.

11

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

4.3 Action Groups

Actions are organized into action groups. An action group is essentially a map from names to GtkAction

objects. Action groups are the easiest means for adding actions to a UI manager object.

In general, related actions should be placed into a single group. More precisely, since the UI manager can
add and remove actions as groups, if the interface is supposed to change dynamically, then all actions that
should be available in the same state of the application should be in the same group. It is typical that
multiple action groups are de�ned for a particular user interface. Most nontrivial applications will make use
of multiple groups. For example, in an application that can play media �les, when a media �le is open, the
playback actions (play, pause, rewind, etc) would be in a group that could be added and removed as needed.

4.4 Creating the UI

The basic steps in creating the UI are to

1. De�ne the UI in an XML format, either in a separate �le or in a constant string within the source
code.

2. Create the actions and action groups.

3. Create a UI manager.

4. Add the action groups to the UI manager.

5. Extract the accelerators from the UI manager and add them to the top-level window.

6. Add the UI de�nition to the UI manager from the �le or string.

7. Get the menubar and toolbar widgets from the UI manager and pack them into the window.

8. Create the callbacks referenced in the action objects created in step 2.

We will next describe how to program each of steps 2 through 7.

4.4.1 Creating Actions and Action Groups

The function to create an action group is

GtkActionGroup *gtk_action_group_new (const gchar *name);

The name argument can be used by various methods for accessing this particular action group. It should
re�ect what this particular group's purpose or common feature is.

Actions are added to an action group in one of two ways. You can add them one at a time, or as an array
of related actions:

void gtk_action_group_add_action (GtkActionGroup *action_group,

GtkAction *action);

void gtk_action_group_add_actions (GtkActionGroup *action_group,

const GtkActionEntry *entries,

guint n_entries,

gpointer user_data);

12

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

The problem with the �rst method is that it is tedious to add actions one by one, and that this method does
not provide a means to add the accelerators for the actions without additional steps. Even if there is just a sin-
gle action in the group, it is more convenient to use the second function. To use gtk_action_group_add_actions(),
you �rst have to create a constant array of GtkActionEntry structures. The function requires the name
of the array and its length as second and third arguments, and the user data to be passed to all callback
functions that can be called for the actions in this group.

A GtkActionEntry structure is de�ned by

typedef struct {

const gchar *name;

const gchar *stock_id;

const gchar *label;

const gchar *accelerator;

const gchar *tooltip;

GCallback callback;

} GtkActionEntry;

The members have the following meanings:

name The name of the action.
stock_id The stock id for the action, or the name of an icon from the icon theme.
label The label for the action. This �eld should typically be marked for

translation, see gtk_action_group_set_translation_domain(). If label
is NULL, the label of the stock item with id stock_id is used.

accelerator The accelerator for the action, in the format understood by
gtk_accelerator_parse().

tooltip The tooltip for the action. This �eld should typically be marked for
translation, see gtk_action_group_set_translation_domain().

callback The function to call when the action is activated.

The name must match the name of the action to which it corresponds in the UI de�nition. The stock_id can
be NULL, as can the label. The accelerator syntax is very �exible. You can specify control keys, function keys
and even ordinary characters, for example, using �<Control>a�, �Ctrl>a�, �<ctrl>a�, or �<Shift><Alt>F1�,
�<Release>z�, or �minus�, to name a few. If you use a stock item, it is not necessary to supply an accelerator,
unless you want to override the default one. The tooltip is a string that will appear when the cursor hovers
over the proxy for this action entry.

Below is an example of a declaration of a small array of GtkActionEntry structures.

s t a t i c const GtkActionEntry f i l e_ e n t r i e s [] = {
{ "FileMenu " , NULL, "_File " } ,

{ "Open" , GTK_STOCK_OPEN,
"_Open" , "<contro l>O" ,
"Open a f i l e " , G_CALLBACK (on_open_file) } ,

{ "Close " , GTK_STOCK_CLOSE,
"_Close " , "<contro l>W" ,
"Close a f i l e " , G_CALLBACK (on_c lo se_f i l e) } ,

{ "Exit " , GTK_STOCK_QUIT,
"E_xit " , "<contro l>Q" ,
"Exit the program" , G_CALLBACK (gtk_main_quit) } ,

} ;

13

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

Notice that the FileMenu action does not have a tooltip nor a callback. The Open, Close, and Exit actions
have both a mnemonic label and an accelerator.

Having de�ned this array, it can be added to a group as follows:

action_group = gtk_action_group_new ("Common_Actions");

gtk_action_group_add_actions (action_group, file_entries,

G_N_ELEMENTS (file_entries),

(gpointer) (&appState));

The G_N_ELEMENTS() macro returns the number of elements in its array argument. In the code snippet
above, the address of a variable named AppState would be passed as user data to the callback functions
of each of the actions added to the group. Because the same user data pointer will be passed to all of the
callbacks of the actions in this group, you need to design a structure that will contain the data that all of
these callbacks need, and pass a pointer to that common structure to this function. The alternative is to
attach data properties to the various objects and access these properties within the callbacks. That approach
results in code that is harder to maintain.

Multiple action entry arrays can be added to a single action group. In fact, you probably will need to do this,
because toggle actions and radio actions must be de�ned di�erently. A GtkToggleActionEntry contains all
of the members of a GtkActionEntry, as well as an additional boolean �ag:

typedef struct {

const gchar *name;

const gchar *stock_id;

const gchar *label;

const gchar *accelerator;

const gchar *tooltip;

GCallback callback;

gboolean is_active;

} GtkToggleActionEntry;

The is_active �ag indicates whether or not the action is active or inactive. To add toggle action entries to
an action group you need to use a separate function designed for that purpose:

void gtk_action_group_add_toggle_actions (GtkActionGroup *action_group,

const GtkToggleActionEntry *entries,

guint n_entries,

gpointer user_data);

As you can see, its prototype di�ers from gtk_action_group_add_actions() only in that it expects an array
of type GtkToggleActionEntry. To illustrate, we could de�ne an array with a single toggle action entry:

s t a t i c const GtkToggleActionEntry t ogg l e_en t r i e s [] = {
{ " Fu l lSc reen " ,

GTK_STOCK_FULLSCREEN,
"_Full Screen " , "F11" ,
"Switch between f u l l s c r e en and windowed mode" ,
G_CALLBACK (on_ful l_screen) , FALSE }

} ;

and add it to the same group as above with

gtk_action_group_add_toggle_actions (action_group, toggle_entries,

G_N_ELEMENTS (toggle_entries),

(gpointer) (&appState));

14

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

GTK+ de�nes radio action entries separately. Usually you use radio buttons when there are three or more
alternatives. If there are just two, a toggle is the cleaner interface element. Because radio actions can have
more than two values, the structure's last element is an integer instead of a boolean. It is de�ned by

struct GtkRadioActionEntry {

const gchar *name;

const gchar *stock_id;

const gchar *label;

const gchar *accelerator;

const gchar *tooltip;

gint value;

};

Unlike ordinary actions and toggle actions, which can have di�erent callbacks for each action, radio action
entries do not specify a callback function. Furthermore, the last member of this structure is the value that
that particular radio action has. If for example, there are three radio actions for how text is to be aligned,
left, right, or centered, then one would have the value 0, the next, 1, and the third, 2. An example of an
array of radio action entries is below.

s t a t i c const GtkRadioActionEntry rad i o_ent r i e s [] = {
{ " Ju s t i f yL e f t " , GTK_STOCK_JUSTIFY_LEFT,

"_Left " , NULL, " Le f t j u s t i f y t ex t " , 0 } ,

{ " Jus t i f yCente r " , GTK_STOCK_JUSTIFY_CENTER,
"_Center " , NULL, "Center the text " , 1 } ,

{ " Jus t i f yR igh t " , GTK_STOCK_JUSTIFY_RIGHT,
"_Right " , NULL, "Right j u s t i f y the text " , 2 }

} ;

Because radio action entries do not have a callback function as a member, the function to add radio actions
to an action group speci�es a single callback to be used for all of the actions in the array of radio actions
being added. This is the callback that will be called in response to the �changed� signal:

void gtk_action_group_add_radio_actions (GtkActionGroup *action_group,

const GtkRadioActionEntry *entries,

guint n_entries,

gint value,

GCallback on_change,

gpointer user_data);

Also, this function has another parameter that speci�es the value that should be active initially. It is either
one of the values in the individual radio action entries, or -1 to indicate that none should be active to start.
We could add the radio_entries action array to our group with

gtk_action_group_add_radio_actions (action_group,

radio_entries,

G_N_ELEMENTS (radio_entries),

0, G_CALLBACK (on_radio_changed),

NULL);

specifying that the JustifyLeft action is the initial value.

15

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

4.4.2 Creating the UIManager and Adding the Action Groups

A GtkUIManager is created with the function

GtkUIManager * gtk_ui_manager_new (void);

This creates a UI manager object that can then be used for creating and managing the application's user
interface. It is now ready to be populated with the action groups that you already de�ned. To insert an
action group into the UI manager, use

void gtk_ui_manager_insert_action_group (GtkUIManager *self,

GtkActionGroup *action_group,

gint pos);

The �rst argument is the pointer returned by the call to create the UI manager. The second is a pointer to
the group to be inserted. The pos argument speci�es the position in the list of action groups managed by this
UI manager. Action groups that are earlier in this list will be accessed before those that are later in this list.
A consequence of this is that, if an action with the same name, e.g. �Open�, is in two di�erent groups, the
entry in the group with smaller position will hide the one in the group with larger position. For example, if
an �Open� action is in groups named action_group1 and action_group2, and action_group1 is inserted at
position 1, and action_group2 is at position 2, then the entry for the �Open� action in action_group1 will
be used by the UI manager when its proxy is activated. If it has a di�erent callback or label or accelerator,
these will be associated with this action, not the one in action_group2. You can use this feature if you need
to change the semantics of a menu item or toolbar button, but not the menu item or button itself.

While we are on the subject of inserting actions, we might as well look at how you can remove an action
group, if you have need to do that dynamically. That function is

void gtk_ui_manager_remove_action_group (GtkUIManager *self,

GtkActionGroup *action_group);

This searches the list of action groups in the UI manager and deletes the one whose pointer is passed to it.

4.4.3 Extracting Accelerators and Adding Them to the Top-Level Window

Accelerators are key combinations that provide quick access to the actions in a window. They are usually
associated with the top-level window so that key-presses while that window has focus can be handled by the
top-level window's key_press_event handler, which can propagate it through the chain of widgets.

The problem is that the accelerators are stored within the UI manager, not the top-level window, when you
insert the action groups into it. The UI manager aggregates the accelerators into its private data as action
groups are added to it. However it provides a method of extracting them. The set of accelerators can be
extracted into a GtkAccelGroup object that can be added into a top-level window. The function that does
this is

GtkAccelGroup *gtk_ui_manager_get_accel_group (GtkUIManager *self);

The function that adds this group into a top-level window is

void gtk_window_add_accel_group (GtkWindow *window,

GtkAccelGroup *accel_group);

The following code-snippet will extract the accelerators and add them to the top-level window:

accel_group = gtk_ui_manager_get_accel_group (ui_manager);

gtk_window_add_accel_group (GTK_WINDOW (window), accel_group);

16

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

4.4.4 Loading the UI De�nition

If the UI de�nition is in a separate �le, it can be loaded using the function

guint gtk_ui_manager_add_ui_from_file (GtkUIManager *self,

const gchar *filename,

GError **error)

The �rst argument is the UI manager pointer, the second, a �lename passed as a UTF-8 string, and the last,
a pointer to the address of a GError object. You should always provide a non-NULL pointer here, because
�le I/O has great potential to fail for many reasons, and your program should handle those failures. If this
function is successful, it will return a positive integer called a merge-id. Merge-ids will be explained in the
next section. If the function fails, for one reason or another, the return value will be zero. It is possible for
the return value to be zero even though the error argument is NULL. Therefore it is a good idea to check the
return value of the function as well as the value of error. The following code fragment tests both conditions
and terminates the program with an error message if there is an error:

merge_id = gtk_ui_manager_add_ui_from_file(ui_manager, "menu_1.xml",

&error);

if (error != NULL) {

error_notification(GTK_WINDOW(window), error);

g_error_free(error);

error = NULL;

return 1;

}

else if (0 == merge_id) {

error_notification(GTK_WINDOW(window), NULL);

return 1;

}

The error_notification() function displays a message dialog with a suitable message.

An alternative to storing the UI de�nition in a �le in the source code tree is to store the UI de�nition as a C
string within a source code �le itself. For example, it could be in a header �le that is included in the main
program. If the UI de�nition is in a string, then it can be added with the function

guint gtk_ui_manager_add_ui_from_string (GtkUIManager *self,

const gchar *buffer,

gssize length,

GError **error);

The bu�er argument is the name of the string containing the UI de�nition, and the length argument is either
-1 or the length of the string in bytes. If the string is NULL-terminated, it can be -1, otherwise it must be
the actual length. The error argument serves the same purpose as above. The return value is also either a
positive integer on success, in which case it is a valid merge-id, or zero on failure.

The following listing shows how to de�ne a UI de�nition in a static string.

s t a t i c const gchar ∗ui_constant =
"<ui>"
" <menubar name='MainMenu'>"
" <menu ac t i on='FileMenu '>"
" <p lac eho lde r name='F i l eP lace '/>"
" <separa to r/>"

17

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

" <menuitem ac t i on='Exit '/>"
" </menu>"
" <menu ac t i on='ViewMenu'>"
" <menuitem ac t i on='ZoomIn'/>"
" <menuitem ac t i on='ZoomOut'/>"
" <separa to r/>"
" <menuitem ac t i on='Ful lScreen '/>"
" <separa to r/>"
" </menu>"
" </menubar>"
"</ui >";

This would then be added to the UI manager with the fragment

merge_id = gtk_ui_manager_add_ui_from_string(

ui_manager, ui_constant, -1, &error);

if (error != NULL) {

error_notification(GTK_WINDOW(window), error);

g_error_free(error);

error = NULL;

return 1;

}

else if (0 == merge_id) {

error_notification(GTK_WINDOW(window), NULL);

return 1;

}

4.4.5 Getting the Widgets

The last step is to retrieve the widgets that the UI manager created when the UI de�nition was loaded into
it, and pack those widgets into the window where you want them to be. This is where the names of the UI
de�nition elements come into play. The UI manager can �nd a widget for you when you give it the absolute
pathname of the element that you want to construct. The absolute pathname is a string starting with a
forward slash '/', much like a �le's absolute pathname, with a sequence of the ancestor elements in the XML
tree of that element.

Elements which don't have a name or action attribute in the XML (e.g. <popup>) can be addressed by their
XML element name (e.g. "popup"). The root element ("/ui") can be omitted in the path.

As an example, the absolute pathname of the FileMenu in the UI de�nition above is �/MainMenu/FileMenu�.

The function

GtkWidget * gtk_ui_manager_get_widget (GtkUIManager *self,

const gchar *path);

�nds the widget that the UI manager constructed, whose name matches the pathname that you give it. If
you give it the name of a menubar, you get a menubar widget with its entire subtree. If you give it the name
of a menu, you get the menu item to which the menu is attached, not the menu.

If our UI de�nition had a menubar and toolbar at the top level named �MainMenu� and �MainToolBar�
respectively, we could get them from the UI manager using

menubar = gtk_ui_manager_get_widget (ui_manager, "/MainMenu");

toolbar = gtk_ui_manager_get_widget (ui_manager, "/MainToolBar");

18

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

We could then pack these into a GtkVBox one below the other in our main window, and we would be �nished,
except of course for de�ning all of the required callback functions.

Note. The widgets that are constructed by a UI manager are not tied to the life-cycle of that UI manager. It
does acquire a reference to them, but when you add the widgets returned by this function to a container or
if you explicitly ref them, they will survive the destruction of the UI manager. (Read the notes on memory
management in GTK if you are unfamiliar with these concepts.)

Lastly, you can tell the UI manager to create tear-o� menus if you want, using

void gtk_ui_manager_set_add_tearoffs (GtkUIManager *self,

gboolean add_tearoffs);

By passing TRUE, all menus (except popup menus) will have the tear-o� property.

4.5 UI Merging

One of the most powerful features of the UI manager is its ability to dynamically change the menus and
toolbars by overlaying or inserting menu items or toolbar items over others and removing them later. This
feature is called UI merging. The ability to merge elements is based on the use of the pathnames to the UI
elements de�ned in the UI de�nition, and merge-ids.

A merge-id is an unsigned integer value that is associated with a particular UI de�nition inside the UI man-
ager. The functions that add UI de�nitions into the UI manager, such as gtk_ui_manager_add_ui_from_string()
and gtk_ui_manager_add_ui_from_file(), return a merge-id that can be used at a later time, for example,
to remove that particular UI de�nition. The function that removes a UI de�nition is

void gtk_ui_manager_remove_ui (GtkUIManager *self,

guint merge_id);

This is given the merge-id of the UI de�nition to be removed. For example, if I create a UI with the call

merge_id = gtk_ui_manager_add_ui_from_string(

ui_manager, ui_toolbar, -1, &error);

and I later want to remove the toolbar from the window, I would call

gtk_ui_manager_remove_ui(ui_manager, merge_id);

In order to add an element such as a toolbar in one part of the code, and later remove it in a callback
function, you would need to make the merge-id either a shared variable, or attach it as a property to a
widget that the callback is passed.

There is a third function for adding a new element to the user interface:

void gtk_ui_manager_add_ui (GtkUIManager *self,

guint merge_id,

const gchar *path,

const gchar *name,

const gchar *action,

GtkUIManagerItemType type,

gboolean top);

19

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

The parameters have the following meanings:

self a GtkUIManager

merge_id the merge-id for the merged UI

path a path

name the name for the added UI element

action the name of the action to be proxied, or NULL to add a separator. [allow-none]

type the type of UI element to add.

top if TRUE, the UI element is added before its siblings, otherwise it is added after its siblings.

This function can add a single element to the UI, such as a menu item, a toolbar item, a menu, or a menubar.
It cannot add an entire UI de�nition such as the ones contained in the strings de�ned above. Furthermore,
it cannot be used to insert an element in a place where such an element cannot be inserted. For example,
you cannot insert a toolbar inside a menu, or a menu inside a menu, but you can insert a menu item in a
menu, or a menu in a menubar.

In order to use this function, you need a merge-id to give to it. It will assign associate the new UI element
to this merge-id so that it can be removed at a later time. New merge-ids are created with

guint gtk_ui_manager_new_merge_id (GtkUIManager *self);

The third parameter is the absolute path name to the position at which you want to add the new UI
element. For example, if you want to insert a new menu item at the top of the File menu, the path would
be �/MainMenu/FileMenu�. The fourth parameter is a name that you want this item to have for future access
and the �fth is the name fo the action, which must exist already, that should be connected to this element.

The type must be a member of the GtkUIManagerItemType, which has the following values:

GTK_UI_MANAGER_AUTO

GTK_UI_MANAGER_MENUBAR

GTK_UI_MANAGER_MENU

GTK_UI_MANAGER_TOOLBAR

GTK_UI_MANAGER_PLACEHOLDER

GTK_UI_MANAGER_POPUP

GTK_UI_MANAGER_MENUITEM

GTK_UI_MANAGER_TOOLITEM

GTK_UI_MANAGER_SEPARATOR

GTK_UI_MANAGER_ACCELERATOR

Their meanings should be self-explanatory, except for the �rst. You can use GTK_UI_MANAGER_AUTO as the
type to let GTK decide the type of the element that can be inserted at the indicated path. Lastly, if you
want the element to be above the element that is currently in that position, you set top to TRUE, otherwise
FALSE.

As an example, suppose that I want to add a Print menu item in my File menu just below the Open menu
item. I could use the following code fragment, assuming that I have already de�ned an action named Print:

merge_id = gtk_ui_manager_new_merge_id (ui_manager);

gtk_ui_manager_add_ui (ui_manager, merge_id,

"/MainMenu/FileMenu/Open",

"Print", "Print",

GTK_UI_MANAGER_MENUITEM,

FALSE);

20

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

This will insert the Print menu item into the proper position.

Assuming that your menu is to be changed dynamically, these steps will not be enough to make the menu
elements appear dynamically. The UI manager does not handle the task of packing new toolbars or menubars
into their places in the window. However, it does emit the �add-widget� signal for each generated menubar
and toolbar. Your application can respond to this signal with a callback function that can pack the UI
element into the appropriate position. Therefore, two additional steps are needed by a program that adds
and removes menubars or toolbars:

• Create a callback function to pack these widgets into the parent container, and

• Connect the �add-widget� signal emitted by the UI manager to this callback.

The callback for this signal has the prototype

void user_function (GtkUIManager *merge,

GtkWidget *widget,

gpointer user_data);

The �rst parameter is the UI manager emitting the signal, the second is the widget that has been added,
and the third is optional user data. We can use the third parameter to pass the parent container to the
callback, so that it can pack the widget into it. For example:

void menu_add_widget (GtkUIManager *ui_manager,

GtkWidget *widget,

GtkContainer *container)

{

gtk_box_pack_start (GTK_BOX (container), widget, FALSE, FALSE, 0);

gtk_widget_show (widget);

}

This will pack the menubar or toolbar after any other widgets in the parent. It must show the widget to
realize it. This callback can be connected to the �add-widget� signal in the main program with the call

g_signal_connect (ui_manager, "add_widget",

G_CALLBACK (menu_add_widget),

menu_box);

assuming that menu_box is a GtkBox of some kind that the menu or toolbars should be packed into.

4.5.1 Example

An example is in order. Not all of the pieces will be presented, because the program can become quite large.
In fact at this point, the code should be decomposed into separate �les with well-de�ned tasks. Suppose
that we want to do two things dynamically in our application:

When the program starts up, there is an Open menu item in the File menu, but no Close item. The
Close item is present only when something has been opened. Conversely, there is no Open menu item when
something is open. Therefore, these two menu items will be swapped alternately as they are activated.

When nothing is open in the application, there is no toolbar. When the Open item is activated, a special
toolbar will be placed below the menubar. When the Close item is activated, the toolbar is removed.

In order to do this, we create a general UI de�nition that will always be present, with a placeholder for the
Open/Close menu items. Just before showing all of the widgets in the main program, we create an Open

menu item and insert it into the UI, saving its merge-id. The UI de�nition that never changes is:

21

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

const gchar ∗ui_constant =
"<ui>"
" <menubar name='MainMenu'>"
" <menu ac t i on='FileMenu '>"
" <p lac eho lde r name='OpenClose '/>"
" <separa to r/>"
" <menuitem ac t i on='Exit '/>"
" </menu>"
" <menu ac t i on='ViewMenu'>"
" <menuitem ac t i on='ZoomIn'/>"
" <menuitem ac t i on='ZoomOut'/>"
" <separa to r/>"
" <menuitem ac t i on='Ful lScreen '/>"
" <separa to r/>"
" <menuitem ac t i on=' Ju s t i f yLe f t '/>"
" <menuitem ac t i on=' Just i fyCenter '/>"
" <menuitem ac t i on=' Jus t i fyRight '/>"
" </menu>"
" </menubar>"
"</ui >";

Notice that there is a placeholder where the Open and Close menu items should be. This UI de�nition is
loaded in the main program and error-checked:

// Add the UI de f ined from the s t r i n g s in uim02_defs . h to the manager
// I f a 0 i s returned , something went wrong , so b a i l out . I f in add i t i on
// e r r o r i s set , then d i sp l ay the message d i a l o g to the user .
merge_no_openclose_id = gtk_ui_manager_add_ui_from_string (

ui_manager , ui_constant , −1, &e r r o r) ;
i f (0 == merge_no_openclose_id) {

i f (e r r o r != NULL)
{

e r r o r_no t i f i c a t i o n (GTK_WINDOW(window) , e r r o r) ;
g_error_free (e r r o r) ;
e r r o r = NULL;

}
return 1 ;

}

Then we create a new merge-id for the Open item, inserting it into the proper place:

// Get a merge id to use f o r the Open/Close menu item
appState . merge_id = gtk_ui_manager_new_merge_id (ui_manager) ;

// Add the Open menu item d i r e c t l y above the Exit menu item in the
// F i l e menu and make appState . merge_id r ep r e s en t t h i s s t a t e o f th ing s .
gtk_ui_manager_add_ui (ui_manager , appState . merge_id ,

"/MainMenu/FileMenu/OpenClose " ,
"Open" , "Open" ,
GTK_UI_MANAGER_MENUITEM,
TRUE) ;

Finally, we set up the callback for the �add-widget� signal, using the callback shown above:

g_signal_connect (ui_manager , "add_widget " ,
G_CALLBACK (menu_add_widget) ,
menu_box) ;

22

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

Of course prior to doing all of this we created the action groups and added these to the UI manager.

The next step is to de�ne the callbacks. In the callback for the Open action, we remove the UI for the Open
action, add a UI in the same position for the Close action, and add a UI for the toolbar from a string in the
program. This follows:

void on_open_file (GtkAction∗ act ion , gpo in t e r pdata)
{

s t a t e ∗ appstate = (s t a t e ∗) pdata ;
GError ∗ e r r o r ;

appstate−>isFi l eOpen = TRUE;
gtk_ui_manager_remove_ui (appstate−>uim ,

appstate−>merge_id) ;
gtk_ui_manager_add_ui (appstate−>uim ,

appstate−>merge_id ,
"/MainMenu/FileMenu/OpenClose " ,
"Close " , "Close " ,
GTK_UI_MANAGER_MENUITEM,
TRUE) ;

appstate−>toolbar_id = gtk_ui_manager_add_ui_from_string (
appstate−>uim ,
ui_toolbar ,
−1,
&e r r o r) ;

}

Notice that the application state keeps track of whether or not a �le is open with a �ag named isFileOpen.
This callback begins by removing the UI associated with the merge-id appstate->merge_id, which is the
one assigned when we added the Open menu item to the UI. It then adds a menu item for the Close action at
the placeholder where the Open item was, using the same merge-id that was used for the Open item. Finally,
it reads a UI de�nition for a toolbar (not shown here) from a UI de�nition string named ui_toolbar, and
assigns the returned merge-id to a member variable of the application state named toolbar_id. This can
be used in the callback for the Close action.

The callback for the Close action must do the reverse of these steps. It must remove the Close menu item
and the toolbar, and add the Open item where the Close item was. That code is:

void on_c lo se_f i l e (GtkAction∗ act ion , gpo in t e r pdata)
{

s t a t e ∗ appstate = (s t a t e ∗) pdata ;
appstate−>isFi l eOpen = FALSE;
gtk_ui_manager_remove_ui (appstate−>uim ,

appstate−>merge_id) ;
gtk_ui_manager_remove_ui (appstate−>uim ,

appstate−>toolbar_id) ;
gtk_ui_manager_add_ui (appstate−>uim ,

appstate−>merge_id ,
"/MainMenu/FileMenu/OpenClose " ,
"Open" , "Open" ,
GTK_UI_MANAGER_MENUITEM,
TRUE) ;

}

Neither of these functions error-checks the calls to read the UI de�nition, which they should. Neither does
any real work of course. They just show how to change the interface.

23

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

4.5.2 Example

We can add several elements at once or add a submenu using the same method as above. Suppose the
existing UI is de�ned by the following XML:

const gchar ∗ui_constant =
"<ui>"
" <menubar name='MainMenu'>"
" <menu ac t i on='ViewMenu'>"
" <menuitem ac t i on='ZoomIn'/>"
" <menuitem ac t i on='ZoomOut'/>"
" <separa to r/>"
" <menuitem ac t i on='Ful lScreen '/>"
" </menu>"
" </menubar>"
"</ui >";

and that we de�ne the following subtree:

const char ∗ u i_ ju s t i f y =
"<ui>"
" <menubar name='MainMenu'>"
" <menu ac t i on='ViewMenu'>"
" <p la c eho ld e r ac t i on=' Jus t i f y ' >"
" <menuitem act i on=' Ju s t i f yLe f t '/>"
" <menuitem act i on=' Just i fyCenter '/>"
" <menuitem act i on=' Jus t i fyRight '/>"
" </p laceho lder >"
" </menu>"
" </menubar>"
"</ui >";

If we merge this UI de�nition into our existing tree of UI elements using

appstate->justifymerge_id = gtk_ui_manager_add_ui_from_string (

appstate->uim,

ui_justify,

-1,

&error);

then the three items JustifyLeft, JustifyCenter, and JustifyRight, will be inserted into the View menu
below all other items that are currently there, saving the merge-id of those three items in the variable
appstate->justifymerge_id. If we change the placeholder tag to a menu tag, then a submenu will be
inserted instead.

4.6 Controlling Positions of Merged Elements

When you use the gtk_ui_manager_add_ui() function to add a UI element, you can specify the exact
position where you want that element to be placed in the UI through two parameters: the absolute pathname
to the position in the XML description of the UI, and the top parameter, which when TRUE, forces it to be
before the element currently there, and when FALSE, after it.

But when you use the either gtk_ui_manager_add_ui_from_string() or gtk_ui_manager_add_ui_from_file(),
you do not specify the position at which the inserted subtree should be placed, nor is there a parameter to

24

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

indicate whether it should precede or follow what is currently there. The way to control the exact placement
is by using the position attribute in the UI de�nition of the element to be merged. For example, if you
want to add a submenu to an existing menu, by default it will be appended to its siblings in the tree. If
you do not want it to be at the bottom of the menu to which it is added, then you have to use position
parameters to control this.

Suppose that we want to add a Justify menu to the top of the View menu. We can de�ne the Justify

submenu with the XML

"<ui>"
" <menubar name='MainMenu'>"
" <menu ac t i on='ViewMenu'>"
" <menu ac t i on=' Jus t i f y ' p o s i t i o n='top '>"
" <menuitem act i on=' Ju s t i f yLe f t '/>"
" <menuitem act i on=' Just i fyCenter '/>"
" <menuitem act i on=' Jus t i fyRight '/>"
" <menu ac t i on='IndentMenu '>"
" <menuitem act i on=' Indent '/>"
" <menuitem act i on='Unindent '/>"
" </menu>"
" </menu>"
" </menu>"
" </menubar>"

Note that the Justify menu element has position='top'. If the existing UI de�nition was loaded from
the string

"<ui>"
" <menubar name='MainMenu'>"
" <menu name='ViewMenu ' ac t i on='ViewMenu'>"
" <p la c eho ld e r name='JMPlace ' />"
" <menuitem act i on='ZoomIn ' always−show−image=' true '/>"
" <menuitem act i on='ZoomOut ' always−show−image=' true '/>"
" <separa to r/>"
" <menuitem act i on='Ful lScreen ' always−show−image=' true '/>"
" <separa to r/>"
" </menu>"
" </menubar>"

then if we call

justifymerge_id = gtk_ui_manager_add_ui_from_string (

appstate->uim,

ui_justify,

-1,

&error);

the Justify menu will be inserted above its siblings, the �rst of which is the ZoomIn menu item. The
placeholder has no use in this context. It just serves to remind us where it will be placed.

4.7 What Else?

The preceding example adds a toolbar and a single menu item dynamically. You can use these same ideas
for more complex changes, such as adding submenus, or adding a menu and toolbar simultaneously as the

25

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

application's state changes. The demo program uimanager03 in the demos/menus directory shows how to
do these things. It also shows how you can use the �connect-proxy� signal to monitor the changes in the UI.
The �connect-proxy� signal is emitted by the UI manager every time a proxy is connected to an action. The
callback for it must be of the form

void user_function (GtkUIManager *uimanager,

GtkAction *action,

GtkWidget *proxy,

gpointer user_data);

The action is the action to which the proxy was connected, and the proxy is the menu or tool item that was
connected. A callback that shows what the UI manager is doing �behind the scenes� follows:

void on_proxy_connect (GtkUIManager ∗ui ,
GtkAction ∗ act ion ,
GtkWidget ∗proxy ,
gpo in t e r ∗data)

{
const gchar ∗ action_name = gtk_action_get_name (ac t i on) ;
const gchar ∗ proxy_name = gtk_widget_get_name (proxy) ;
g_print ("%s connected to %s \n" , action_name , proxy_name) ;

}

This shows that you can retrieve the action name and the proxy name using the gtk_action_get_name()

method and the gtk_widget_get_name() method respectively. The function uses these strings to print a
message on the console.

26

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

A Appendix

A.1 Listing: menu_by_hand.c

L i s t i n g : menu_by_hand . c
#inc lude <s td i o . h>
#inc lude <gtk/gtk . h>

/∗∗
Function Prototypes

∗∗/

s t a t i c gboolean on_button_press (GtkWidget ∗widget ,
GdkEvent ∗ event) ;

s t a t i c void on_window_destroy (GtkWidget ∗widget ,
gpo in t e r data) ;

s t a t i c void on_menu_activate (GtkMenuItem∗ menu_item ,
GtkWindow ∗ parent) ;

/∗∗
Main Program

∗∗/

i n t main (i n t argc ,
char ∗argv [])

{
GtkWidget ∗window ;
/∗

The t ex tua l layout o f the d e c l a r a t i o n s below model the h i e r a r c h i c a l
r e l a t i o n s h i p o f the menus and menu items that w i l l be d i sp l ayed by
t h i s app l i c a t i o n .

∗/
GtkWidget ∗menu_bar ;
GtkWidget ∗ file_menu ,

∗ f i l e_i tem ,
∗open_item ,
∗ close_item ,
∗ separator1 ,
∗ exit_item ,

∗view_menu ,
∗view_item ,
∗tools_menu ,
∗ tools_item ,
∗help_menu ,
∗help_item ,

∗query_item ,
∗ separator2 ,
∗about_help_item ,
∗about_help_menu ,

∗about_tool_item ,
∗about_stuff_item

;
GtkWidget ∗popupmenu ,

∗makebig_item ,
∗makesmall_item

;
GtkWidget ∗vbox ;

27

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

GtkWidget ∗button ;

gtk_in i t (&argc , &argv) ;

// c r e a t e a new window
window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_widget_set_size_request (GTK_WIDGET (window) , 400 , 300) ;
gtk_window_set_title (GTK_WINDOW (window) , "GTK Menu Demonstration 1") ;
g_signal_connect (G_OBJECT (window) , " de lete_event " ,

G_CALLBACK (gtk_main_quit) , NULL) ;

// A vbox to put a menu and a button in :
vbox = gtk_vbox_new (FALSE, 0) ;
gtk_container_add (GTK_CONTAINER (window) , vbox) ;
gtk_widget_show (vbox) ;

// Create a menu−bar to hold the menus and add i t to our main window
menu_bar = gtk_menu_bar_new () ;

// Create the menu items to put in to the menubar f i r s t
f i l e_ i t em = gtk_menu_item_new_with_label (" F i l e ") ;
view_item = gtk_menu_item_new_with_label ("View") ;
tools_item = gtk_menu_item_new_with_label ("Tools ") ;
help_item = gtk_menu_item_new_with_label ("Help") ;

// Add the menu items to the menu_bar , l e f t to r i g h t order
gtk_menu_shell_append (GTK_MENU_SHELL(menu_bar) , f i l e_ i t em) ;
gtk_menu_shell_append (GTK_MENU_SHELL(menu_bar) , view_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(menu_bar) , tools_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(menu_bar) , help_item) ;

// Create the menus f o r the menu items in the menubar
fi le_menu = gtk_menu_new () ;
view_menu = gtk_menu_new () ;
tools_menu = gtk_menu_new () ;
help_menu = gtk_menu_new () ;

// Attach each submenu to the menu items j u s t added to the menu_bar
gtk_menu_item_set_submenu (GTK_MENU_ITEM(f i l e_ i t em) , fi le_menu) ;
gtk_menu_item_set_submenu (GTK_MENU_ITEM(view_item) , view_menu) ;
gtk_menu_item_set_submenu (GTK_MENU_ITEM(tools_item) , tools_menu) ;
gtk_menu_item_set_submenu (GTK_MENU_ITEM(help_item) , help_menu) ;

// For each menu , c r e a t e the items that w i l l go in to i t and pack them
// Create three items to put in to the F i l e menu
open_item = gtk_menu_item_new_with_label ("Open ") ;
c lose_item = gtk_menu_item_new_with_label ("Close ") ;
s epara to r1 = gtk_separator_menu_item_new () ;
exit_item = gtk_menu_item_new_with_label ("Exit ") ;

// Append the items to the F i l e menu
gtk_menu_shell_append (GTK_MENU_SHELL(file_menu) , open_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(file_menu) , c lose_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(file_menu) , s epara to r1) ;
gtk_menu_shell_append (GTK_MENU_SHELL(file_menu) , exit_item) ;

28

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

// The View and Tools menu w i l l be empty f o r now

// Create the items f o r the Help menu
query_item = gtk_menu_item_new_with_label ("What ' s This ? ") ;
s epara to r2 = gtk_separator_menu_item_new () ;
about_help_item = gtk_menu_item_new_with_label ("About t h i s program") ;

// and append them to the Help menu
gtk_menu_shell_append (GTK_MENU_SHELL(help_menu) , query_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(help_menu) , s epara to r2) ;
gtk_menu_shell_append (GTK_MENU_SHELL(help_menu) , about_help_item) ;

// c r ea t e the submenu and attach to the about_help_item
about_help_menu = gtk_menu_new () ;
gtk_menu_item_set_submenu (GTK_MENU_ITEM(about_help_item) ,

about_help_menu) ;

// f i n a l l y , c r e a t e two menu items f o r t h i s submenu and pack them in to i t
about_tool_item = gtk_menu_item_new_with_label ("About This ") ;
about_stuff_item = gtk_menu_item_new_with_label ("About That") ;
gtk_menu_shell_append (GTK_MENU_SHELL(about_help_menu) , about_tool_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL(about_help_menu) , about_stuff_item) ;

// Connect the a c t i v a t e s i g n a l to each menu item .
// This must be done us ing g_signal_connect_swapped
g_signal_connect (G_OBJECT (open_item) , " a c t i v a t e " ,

G_CALLBACK (on_menu_activate) ,
(GtkWindow∗) window) ;

g_signal_connect (G_OBJECT (close_item) , " a c t i v a t e " ,
G_CALLBACK (on_menu_activate) ,

(GtkWindow∗) window) ;

g_signal_connect_swapped (G_OBJECT (exit_item) , " a c t i v a t e " ,
G_CALLBACK (on_window_destroy) ,

(gpo in t e r) NULL) ;

g_signal_connect (G_OBJECT (query_item) , " a c t i v a t e " ,
G_CALLBACK (on_menu_activate) ,

(GtkWindow∗) window) ;

g_signal_connect (G_OBJECT (about_tool_item) , " a c t i v a t e " ,
G_CALLBACK (on_menu_activate) ,

(GtkWindow∗) window) ;

g_signal_connect (G_OBJECT (about_stuff_item) , " a c t i v a t e " ,
G_CALLBACK (on_menu_activate) ,

(GtkWindow∗) window) ;

gtk_widget_show (menu_bar) ;
gtk_box_pack_start (GTK_BOX (vbox) , menu_bar , FALSE, FALSE, 2) ;

// Create pop−up menu f o r button
popupmenu = gtk_menu_new () ;
makebig_item = gtk_menu_item_new_with_label ("Larger ") ;
makesmall_item = gtk_menu_item_new_with_label (" Smal ler ") ;
gtk_menu_shell_append (GTK_MENU_SHELL (popupmenu) , makebig_item) ;
gtk_menu_shell_append (GTK_MENU_SHELL (popupmenu) , makesmall_item) ;

29

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

g_signal_connect (G_OBJECT (makebig_item) , " a c t i v a t e " ,
G_CALLBACK (on_menu_activate) ,

(GtkWindow∗) window) ;
g_signal_connect (G_OBJECT (makesmall_item) , " a c t i v a t e " ,

G_CALLBACK (on_menu_activate) ,
(GtkWindow∗) window) ;

gtk_widget_show (makebig_item) ;
gtk_widget_show (makesmall_item) ;

/∗
Pr ior to Gtk+ 2.16 the only way to get the l a b e l from the menu item
i s to attach i t as a property . I t i s a property in 2 .16 and l a t e r
When the menu item i s c l i c k e d I want to d i sp l ay the l abe l , so I have
to do i t t h i s way .

∗/

#i f GTK_MINOR_VERSION < 16
g_object_set_data (G_OBJECT(open_item) , " l a b e l " , "open item ") ;
g_object_set_data (G_OBJECT(close_item) , " l a b e l " , " c l o s e item ") ;
g_object_set_data (G_OBJECT(about_tool_item) , " l a b e l " , " about_tool item ") ;
g_object_set_data (G_OBJECT(about_stuff_item) , " l a b e l " , " about_stuf f item ") ;
g_object_set_data (G_OBJECT(query_item) , " l a b e l " , "query_item ") ;
g_object_set_data (G_OBJECT(makebig_item) , " l a b e l " , " large_item ") ;
g_object_set_data (G_OBJECT(makesmall_item) , " l a b e l " , " small_item ") ;

#end i f

button = gtk_button_new_with_label ("Push me") ;
g_signal_connect_swapped (G_OBJECT (button) , " event " ,

G_CALLBACK (on_button_press) ,
G_OBJECT (popupmenu)) ;

gtk_box_pack_start (GTK_BOX (vbox) , button , FALSE, FALSE, 2) ;
gtk_widget_show (button) ;

gtk_widget_show_all (window) ;

gtk_main () ;

r e turn 0 ;
}

/∗∗∗
CALLBACK HANDLERS

∗∗∗/

/∗∗∗
on_window_destroy

∗∗∗/

s t a t i c void on_window_destroy (GtkWidget ∗widget ,
gpo in t e r data)

{
gtk_main_quit () ;

}

30

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

/∗∗∗
on_menu_activate

∗∗∗/

s t a t i c void on_menu_activate (GtkMenuItem ∗ menu_item ,
GtkWindow ∗ parent)

{

// Read the comment in the main program
#i f GTK_MINOR_VERSION < 16

const gchar ∗ l a b e l = g_object_get_data (G_OBJECT(menu_item) , " l a b e l ") ;
#e l s e

const gchar ∗ l a b e l = gtk_menu_item_get_label (menu_item) ;
#end i f

GtkWidget ∗ d i a l o g ;
d i a l o g = gtk_message_dialog_new (parent , GTK_DIALOG_MODAL,

GTK_MESSAGE_INFO, GTK_BUTTONS_OK,
"%s ac t i va t ed " , l a b e l) ;

gtk_window_set_title (GTK_WINDOW (d i a l o g) , "Menu S e l e c t i o n ") ;

gtk_dialog_run (GTK_DIALOG (d i a l o g)) ;
gtk_widget_destroy (d i a l o g) ;

/∗ Te l l c a l l i n g code that we have handled t h i s event ; the buck
∗ s tops here . ∗/
return ;

}

/∗∗∗
on_button_press

∗∗∗/

s t a t i c gboolean on_button_press (GtkWidget ∗widget ,
GdkEvent ∗ event)

{
i f (event−>type == GDK_BUTTON_PRESS) {

GdkEventButton ∗bevent = (GdkEventButton ∗) event ;
gtk_menu_popup (GTK_MENU (widget) , NULL, NULL, NULL, NULL,

bevent−>button , bevent−>time) ;
/∗ Te l l c a l l i n g code that we have handled t h i s event ; the buck
∗ s tops here . ∗/
return TRUE;

}

/∗ Te l l c a l l i n g code that we have not handled t h i s event ; pass i t on . ∗/
return FALSE;

}

A.2 Listing: toolbar_by_hand.c

#inc lude <gtk/gtk . h>
#inc lude <l i bg en . h>

#de f i n e WINWIDTH 400
#de f i n e WINHEIGHT 400

31

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗vbox ;

GtkWidget ∗ t oo lba r ;
GtkToolItem ∗new_button ;
GtkToolItem ∗open_button ;
GtkToolItem ∗ save_button ;
GtkToolItem ∗ s epa ra to r ;
GtkToolItem ∗ exit_button ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , basename (argv [0])) ;
gtk_widget_set_size_request (GTK_WIDGET (window) ,

WINWIDTH, WINHEIGHT) ;
gtk_window_set_position (GTK_WINDOW(window) , GTK_WIN_POS_CENTER) ;

g_signal_connect (window , " des t roy " ,
G_CALLBACK (gtk_main_quit) ,
NULL) ;

vbox = gtk_vbox_new(FALSE, 0) ;
gtk_container_add (GTK_CONTAINER(window) , vbox) ;

t oo lba r = gtk_toolbar_new () ;

gtk_container_set_border_width (GTK_CONTAINER(too lba r) , 2) ;

new_button = gtk_tool_button_new_from_stock (GTK_STOCK_NEW) ;
open_button = gtk_tool_button_new_from_stock (GTK_STOCK_OPEN) ;
save_button = gtk_tool_button_new_from_stock (GTK_STOCK_SAVE) ;

s epa ra to r = gtk_separator_tool_item_new () ;
gtk_tool_item_set_expand (GTK_TOOL_ITEM(separa to r) , TRUE) ;
gtk_separator_tool_item_set_draw (GTK_SEPARATOR_TOOL_ITEM(separa to r) , FALSE) ;

exit_button = gtk_tool_button_new_from_stock (GTK_STOCK_QUIT) ;

gtk_too lbar_insert (GTK_TOOLBAR(too lba r) , new_button , −1);
gtk_too lbar_insert (GTK_TOOLBAR(too lba r) , open_button , −1);
gtk_too lbar_insert (GTK_TOOLBAR(too lba r) , save_button , −1);
gtk_too lbar_insert (GTK_TOOLBAR(too lba r) , separator , −1);
gtk_too lbar_insert (GTK_TOOLBAR(too lba r) , exit_button , −1);

gtk_box_pack_start (GTK_BOX(vbox) , too lbar , FALSE, FALSE, 5) ;

g_signal_connect (G_OBJECT(exit_button) , " c l i c k e d " ,
G_CALLBACK(gtk_main_quit) , NULL) ;

32

CSci493.70 Graphical User Interface Programming

Menus and Toolbars

Prof. Stewart Weiss

gtk_widget_show_all (window) ;
gtk_main () ;

r e turn 0 ;
}

33

	Introduction
	Menus
	Principles
	Creating Menus ``By Hand''
	Pop-Up Menus for Widgets
	Specialized Menu Items

	Toolbars
	The GtkUIManager
	Actions
	UI Definitions
	Action Groups
	Creating the UI
	Creating Actions and Action Groups
	Creating the UIManager and Adding the Action Groups
	Extracting Accelerators and Adding Them to the Top-Level Window
	Loading the UI Definition
	Getting the Widgets

	UI Merging
	Example
	Example

	Controlling Positions of Merged Elements
	What Else?

	Appendix
	Listing: menu_by_hand.c
	Listing: toolbar_by_hand.c

