
Software Design Le
ture NotesUni
ode and UTF-8 Prof. Stewart WeissUni
ode and UTF-81 About TextThe ProblemMost
omputer s
ien
e students are familiar with the ASCII
hara
ter en
oding s
heme, but no others. Thiswas the most prevalent en
oding for more than forty years. The ASCII en
oding maps
hara
ters to 7-bitintegers, using the range from 0 to 127 to represent 94 printing
hara
ters, 33
ontrol
hara
ters, and thespa
e. Sin
e a byte is usually used to store a
hara
ter, the eighth bit of the byte is �lled with a 0.The problem with the ASCII
ode is that it does not provide a way to en
ode
hara
ters from other s
ripts,su
h as Cyrilli
 or Greek. It does not even have en
odings of Roman
hara
ters with dia
riti
al marks, su
has �, ¡, ±, or ó. Over time, as
omputer usage extended world-wide, other en
odings for di�erent alphabetsand s
ripts were developed, usually with overlapping
odes. These en
oding systems
on�i
ted with oneanother. That is, two en
odings
ould use the same number for two di�erent
hara
ters, or use di�erentnumbers for the same
hara
ter. A program transferring text from one
omputer to another would run therisk that the text would be
orrupted in the transition.Unifying SolutionsIn 1989, to over
ome this problem, the International Standards Organization (ISO) started work on auniversal, all-en
ompassing
hara
ter
ode standard, and in 1990 they published a draft standard (ISO10646)
alled the Universal Chara
ter Set (UCS). UCS was designed as a superset of all other
hara
ter setstandards, providing round-trip
ompatibility to other
hara
ter sets. Round-trip
ompatibility means thatno information is lost if a text string is
onverted to UCS and then ba
k to its original en
oding.Simultaneously, the Uni
ode Proje
t, whi
h was a
onsortium of private industrial partners, was working onits own, independent universal
hara
ter en
oding. In 1991, the Uni
ode Proje
t and ISO de
ided to work
ooperatively to avoid
reating two di�erent
hara
ter en
odings. The result was that the
ode table
reatedby the Uni
ode Consortium (as they are now
alled) satis�ed the original ISO 10646 standard. Over time,the two groups
ontinued to modify the respe
tive standards, but they always remain
ompatible. Uni
odeadds new
hara
ters over time, but it always
ontains the
hara
ter set de�ned by ISO 10646-x. The most
urrent Uni
ode standard is Uni
ode 6.0.Uni
odeUni
ode
ontains the alphabets of almost all known languages, as diverse as Japanese, Chinese, Greek,Cyrilli
, Canadian Aboriginal, and Arabi
. It was originally a 16-bit
hara
ter set, but in 1995, with Uni
ode2.0, it be
ame 32 bits. The Uni
ode Standard en
odes
hara
ters in the range U+0000..U+10FFFF, whi
his roughly a 21-bit
ode spa
e. The
ode reserves the remaining values for future use.In Uni
ode, a
hara
ter is de�ned as the smallest
omponent of a written language that has semanti
 value.The number assigned to a
hara
ter is
alled a
ode point. A
ode point is denoted by �U+� following by ahexade
imal number from 4 to 8 digits long. Most of the
ode points in use are 4 digits long. For example,U+03C6 is the
ode point for the Greek
hara
ter φ.This work is li
ensed under the Creative Commons Attribution-NonCommer
ial-NoDerivatives 4.0 Int'l Li
ense. 1

http://creativecommons.org/licenses/by-nc-nd/4.0/

Software Design Le
ture NotesUni
ode and UTF-8 Prof. Stewart Weiss

Figure 1: Uni
ode layoutUTF-8Uni
ode
ode points are just numeri
 values assigned to
hara
ters. They are not representations of
hara
tersas sequen
es of bytes. For example, the
ode point U+0C36 is not a sequen
e of the bytes 0x0C and 0x36.In other words, it is not a
hara
ter en
oding s
heme. If we were to use it as an en
oding s
heme, therewould be no way to distinguish the sequen
e of two
hara
ters '\f' '$' (form feed followed by $) from theGreek
hara
ter φ.There are several en
oding s
hemes that
an represent Uni
ode, in
luding UCS-2, UCS-4, UTF-2, UTF-4,UTF-8, UTF-16, and UTF-32. UCS-2 and UCS-4 en
ode Uni
ode text as sequen
es of either 2 or 4 bytes,but these
annot work in a UNIX system be
ause strings with these en
odings
an
ontain bytes that mat
hASCII
hara
ters and in parti
ular, �\0� or �/�, whi
h have a spe
ial meaning in �lenames and other C libraryfun
tion parameters. UNIX �le systems and tools expe
t ASCII
hara
ters and would fail if they were given2-byte en
odings.The most prevalent en
oding of Uni
ode as sequen
es of bytes is UTF-8, invented by Ken Thompson in1992. In UTF-8
hara
ters are en
oded with anywhere from 1 to 6 bytes. In other words, the number ofbytes varies with the
hara
ter. In UTF-8, all ASCII
hara
ters are en
oded within the 7 least signi�
antbits of a byte whose most signi�
ant bit is 0.UTF-8 uses the following s
heme for en
oding Uni
ode
ode points:1. Chara
ters U+0000 to U+007F (i.e., the ASCII
hara
ters) are en
oded simply as bytes 0x00 to 0x7F.This implies that �les and strings that
ontain only 7-bit ASCII
hara
ters have the same en
odingunder both ASCII and UTF-8.2. All UCS
hara
ters larger than U+007F are en
oded as a sequen
e of two or more bytes, ea
h of whi
hhas the most signi�
ant bit set. This means that no ASCII byte
an appear as part of any other
hara
ter, be
ause ASCII
hara
ters are the only
hara
ters whose leading bit is 0.3. The �rst byte of a multibyte sequen
e that represents a non-ASCII
hara
ter is always in the range0xC0 to 0xFD and it indi
ates how many bytes follow for this
hara
ter. Spe
i�
ally it is one of110xxxxx, 1110xxxx, 11110xxx, 111110xx, and 1111110x, where the x's may be 0's or 1's. The numberof 1-bits following the �rst 1-bit up until the next 0-bit is the number of bytes in the rest of the sequen
e.All further bytes in a multibyte sequen
e start with the two bits 10 and are in the range 0x80 to 0xBF.This implies that UTF-8 sequen
es must be of the following forms in binary, where the x's representthe bits from the
ode point, with the leftmost x-bit being its most signi�
ant bit:This work is li
ensed under the Creative Commons Attribution-NonCommer
ial-NoDerivatives 4.0 Int'l Li
ense. 2

http://creativecommons.org/licenses/by-nc-nd/4.0/

Software Design Le
ture NotesUni
ode and UTF-8 Prof. Stewart Weiss0xxxxxxx110xxxxx 10xxxxxx1110xxxx 10xxxxxx 10xxxxxx11110xxx 10xxxxxx 10xxxxxx 10xxxxxx111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx4. The bytes 0xFE and 0xFF are never used in the UTF-8 en
oding.A few things
an be
on
luded from the above rules. First, the number of x's in a sequen
e is the maxiumumnumber of bits that a
ode point
an have to be to be representable in that many bytes. For example,there are 11 x-bits in a two-byte UTF-8 sequen
e, so all
ode points whose 16-bit binary value is at least0000000010000000 but at most 0000011111111111
an be en
oded using two bytes. In hex, these lie between0080 and 07FF. The table below shows the ranges of Uni
ode
ode points that map to the di�erent UTF-8sequen
e lengths. Number ofBytes Number ofbits in CodePoint Range1 7 00000000 - 0000007F2 11 00000080 - 000007FF3 16 00000800 - 0000FFFF4 21 00001000 - 001FFFFF5 26 00200000 - 03FFFFFF6 31 04000000 - FFFFFFFFYou
an see that, although UTF-8 en
oded
hara
ters may be up to six bytes long in theory,
ode pointsthrough U+FFFF, having at most 16 bits,
an be en
oded in sequen
es of no more than 3 bytes.Converting a Uni
ode
ode point to UTF-8 by hand is straightforward using the above table.1. From the range, determine how many bytes are needed.2. Starting with the least signi�
ant bit,
opy bits from the
ode point from right to left into the leastsigni�
ant byte.3. When the
urrent byte has rea
hed 8 bits,
ontinue �lling the next most signi�
ant byte with su

es-sively more signi�
ant bits from the
ode point.4. Repeat until all bits have been
opied into the byte sequen
e, �lling with leading zeros as required.Example 1. To
onvert U+05E7 to UTF-8, �rst determine that it is in the interval 0080 to 07FF, requiringtwo bytes. Write it in binary as0000 0101 1110 0111The rightmost 6 bits go into the right byte after 10:10 100111and the remaining 5 bits go into the left byte after 110:110 10111So the sequen
e is 11010111 10100111 = 0xD7 0xA7, whi
h in de
imal is 215 in byte1 and 167 in byte 2.This work is li
ensed under the Creative Commons Attribution-NonCommer
ial-NoDerivatives 4.0 Int'l Li
ense. 3

http://creativecommons.org/licenses/by-nc-nd/4.0/

Software Design Le
ture NotesUni
ode and UTF-8 Prof. Stewart WeissExample 2. To
onvert U+0ABC to UTF-8, sin
e it is greater than U+07FF, it is a three-byte
ode. Inbinary,0000 1010 1011 1100whi
h is distributed into the three bytes as1110 000010 10101010 111100This is the sequen
e 11100000 10101010 10111100 = 0xE0 0xAA 0xBC, whi
h in de
imal is 224 170 188, theGujarati sign Nukta.Exer
ise. Write an algorithm to do the
onversion in general.

This work is li
ensed under the Creative Commons Attribution-NonCommer
ial-NoDerivatives 4.0 Int'l Li
ense. 4

http://creativecommons.org/licenses/by-nc-nd/4.0/

	About Text

