UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Chapter 1 Introduction to System Programming

“UNIX is basically a simple operating system, but you have to be a genius to understand
the simplicity.” - Dennis Ritchie, 1941 - 2011.

Concepts Covered

The kernel and kernel API, Device special files,

System calls and libraries, UNIX standards, POSIX,

Processes, logins and shells, System programming,

FEnvironments, man pages, Terminals and ANSI escape sequences,
Users, the root, and groups, History of UNIX,

Authentication, syscall, getpid, toctl

File system, file hierarchy,
Files and directories,

1.1 Introduction

A modern software application typically needs to manage both private and system resources. Private
resources are its own data, such as the values of its internal data structures. System resources are
things such as files, screen displays, and network connections. An application may also be written
as a collection of cooperating threads or sub-processes that coordinate their actions with respect to
shared data. These threads and sub-processes are also system resources.

Modern operating systems prevent application software from managing system resources directly,
instead providing interfaces that these applications can use for managing such resources. For exam-
ple, when running on modern operating systems, applications cannot draw to the screen directly or
read or write files directly. To perform screen operations or file I/O they must use the interface that
the operating system defines. Although it may seem that functions from the C standard library
such as getc() or fprintf () access files directly, they do not; they make calls to system routines
that do the work on their behalf.

The interface provided by an operating system for applications to use when accessing system re-
sources is called the operating system’s application programming interface (API). An API typically
consists of a collection of function, type, and constant definitions, and sometimes variable definitions
as well. The API of an operating system in effect defines the means by which an application can
utilize the services provided by that operating system.

It follows that developing a software application for any platformE] requires mastery of that plat-
form’s API. Therefore, aside from designing the application itself, the most important task for the
application developer is to master the system level services defined in the operating system’s API.
A program that uses these system level services directly is called a system program, and the type
of programming that uses these services is called system programming. System programs make re-
quests for resources and services directly from the operating system and may even access the system

"We use the term platform to mean a specific operating system running on a specific machine architecture.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 1
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

#include <stdio.h>
/* copy from stdin to stdout */

int main()

L
int c;
while ((c = getchar()) != EOF
putchar(c);
return 0;

Figure 1.1: Simple I/O model used by beginning programmer.

resources directly. System programs can sometimes be written to extend the functionality of the
operating system itself and provide functions that higher level applications can use.

These lecture notes specifically concern system programming using the APT of the UNIX operating
system. They do not require any prior programming experience with UNIX. They also include
tutorial information for those readers who have little experience with UNIX as a user, but this
material can be skipped by the experienced UNIX users.

In the remainder of these notes, a distinction will be made between the user’s view of UNIX and
the programmer’s view of UNIX. The user’s view of UNIX is limited to a subset of commands that
can be entered at the command-line and parts of the file system. Some commands and files are not
available to all users, as will be explained later. The programmer’s view includes the programming
language features of the kernel API, the functions, types, and constants in all of the libraries, the
various header files, and the various files used by the system. Familiarity with basic C programming
is assumed.

1.2 A Programming Illusion

A beginning programmer typically writes programs that follow the simple I/O model depicted in
Figure the program gets its input from the keyboard or a disk file, and writes its output to
the display screen or to a file on disk. Such programs are called console applications. because the
keyboard and display screen are part of the console device. Listings [I.1] and contain examples
of such a program, one using the C Standard I1/O Library, and the other, the C+-+ stream library.
Both get input from the keyboard and send output to the display device, which is some sort of a
console window on a monitor.

The comment in Listin states that the program copies from stdin to stdout. In UNIXE], every
process has access to abstractions called the standard input device and the standard output device.
When a process is created and loaded into memory, UNIX automatically creates the standard
input and standard output devices for it, opens them, and makes them ready for reading and
writing respectively’} In C (and C++), stdin and stdout are variables defined in the <stdio.h>

2In fact, every POSIX-compliant operating system must provide both a standard input and standard output
stream.
31t also creates a standard error device that defaults to the same device as standard output.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 9
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

header file, that refer to the standard input and standard output deviceE] respectively. By default,
the keyboard and display of the associated terminal are the standard input and output devices
respectively.

Listing 1.1: C program using simple /O model.

#include <stdio.h>
/* copy from stdin to stdout =/
int main ()
{

int c;

while ((¢ = getchar()) != EOF)

putchar(c);
return 0;

Listing 1.2: Simple C++ program using simple I/O model.

#include <iostream >
using namespace std;
/* copy from stdin to stdout using Ci+ x/
int main ()
{
char c;
while ((¢ = cin.get()) && !cin.eof())
cout .put(c);
return 0;

t

These programs give us the illusion that they are directly connected to the keyboard and the display
device via C library functions getchar() and putchar() and the C+-+ iostream member functions
get () and put (). Either of them can be run on a single-user desktop computer or on a multi-user,
time-shared workstation in a terminal window, and the results will be the same. If you build and
run them as console applications in Windows, they will have the same behavior as if you built and
ran them from the command-line in a UNIX system.

On a personal computer running in single-user mode, this illusion is not far from reality in the sense
that the keyboard is indirectly connected to the input stream of the program, and the monitor is
indirectly connected to the output stream. This is not the case in a multi-user system.

In a multi-user operating system, several users may be logged in simultaneously, and programs
belonging to different users might be running at the same time, each receiving input from a different
keyboard and sending output to a different display. For example, on a UNIX computer on a network
into which you can login, many people may be connected to a single computer via a network program
such as SSH, and several of them will be able to run the above program on the same computer at
the same time, sending their output to different terminal windows on physically different computers,
and each will see the same output as if they had run the program on a single-user machine.

As depicted in Figure UNIX ensures, in a remarkably elegant manner, that each user’s processes
have a logical connection to their keyboard and their display. (The process concept will be explained

“In C and C++, stderr is the variable associated with the standard error device.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 3
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

kerngl

pseudo
terminal
device

kerne! termingl pseudo

device drivers terminal
device

pseudo
terminal
device

Figure 1.2: Connecting multiple users to a UNIX system.

shortly.) Programs that use the model of I/O described above do not have to be concerned with
the complexities of connecting to monitors and keyboards, because the operating system hides that
complexity, presenting a simplified interface for dealing with I/O. To understand how the operating
system achieves this, one must first understand several cornerstone concepts of the UNIX operating
system: files, processes, users and groups, privileges and protections, and environments.

1.3 Cornerstones of UNIX

From its beginning, UNIX was designed around a small set of clever ideas, as Ritchie and Thompson
[2] put it:

“The success of UNIX lies not so much in new inventions but rather in the full exploita-
tion of a carefully selected set of fertile ideas, and especially in showing that they can
be keys to the implementation of a small yet powerful operating system.”

Those “fertile ideas” included the design of its file system, its process concept, the concept of
privileged and unprivileged programs, the concepts of user and groups, a programmable shell,
environments, and device independent input and output. In this section we describe each of these
briefly.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 4
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.3.1 Files and the File Hierarchy

Most people who have used computers know what a file is, but as an exercise, try explaining what
a file is to your oldest living relative. You may know what it is, but knowing how to define it
is another matter. In UNIX, the traditional definition of a file was that “it is the smallest unit
of external storage.” "External storage” has always meant non-volatile storage, not in primary
memory, but on media such as magnetic, optical, and electronic disks, tapes and so on. (Internal
storage is on memory chips.) The contemporary definition of a file in UNIX is that it is an object
that can be written to, or read from, or both. There is no requirement that it must reside on
external storage. We will use this definition of a file in the remainder of these notes.

UNIX organizes files into a tree-like hierarchy that most people erroneously call the file system.
It is more accurately called the file hierarchy, because a file system is something slightly different.
The internal nodes of the hierarchy are called directories. Directories are special types of files that,
from the user perspective, appear to contain other files, although they do not contain files any more
than a table of contents in a book contains the chapters of the book themselves. To be precise, a
directory is a file that contains directory entries. A directory entry is an object that associates a
filename to a ﬁleﬂ Filenames are not the same things as files. The root of the UNIX file system
is a directory known in the UNIX world as the root directory, however it is not named "root" in
the file system; it is named "/". When you need to refer to this directory, you call it "root", not
"slash". More will be said about files, filenames, and the file hierarchy in Section

1.3.2 Processes

A program is an executable file, and a process is an instance of a running program. When a program
is run on a computer, it is given various resources such as a primary memory space, both physical
and logical, secondary storage space, mappings of various kindsﬂ and privileges, such as the right
to read or write certain files or devices. As a result, at any instant of time, associated to a process
is the collection of all resources allocated to the running program, as well as any other properties
and settings that characterize that process, such as the values of the processor’s registers. Thus,
although the idea of a process sounds like an abstract idea, it is, in fact, a very concrete thing.

UNIX assigns to each process a unique number called its process-id or pid. For example, at a
given instant of time, several people might all be running the Gnu C compiler, gcc. Each separate
execution instance of gcc is a process with its own unique pid. The ps command can be used to
display which processes are running, and various options to it control what it outputs.

At the programming level, the function getpid () returns the process-id of the process that invokes
it. The program in Listing does nothing other than printing its own process-id, but it illustrates
how to use it. Shortly we will see that getpid() is an example of a system call.

Listing 1.3: A program using getpid().
#include <stdio .h>

#include <unistd .h>
int main ()

5In practice a directory entry is an object with two components: the name of a file and a pointer to a structure
that contains the attributes of that file.

5For example, a map of how its logical addresses map to physical addresses, and a map of where the pieces of its
logical address space reside on secondary storage.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 5
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

printf ("I am the process with process—id %d\n",
getpid ());

return 0;

1.3.3 Users and Groups

Part of the security of UNIX rests on the principle that every user of the system must be authen-
ticated. Authentication is a form of security clearance, like passing through a metal detector at an
airport.

In UNIX, a user is a person[] who is authorized to use the system. The only way to use a UNIX
system is to log into itﬂ UNIX maintains a list of names of users who are allowed to loginﬁ. These
names are called user-names. Associated with each user-name is a unique non-negative number
called the user-id, or uid for short. Each user also has an associated password. UNIX uses the
user-name/password pair to authenticate a user attempting to login. If that pair is not in its list,
the user is rejected. Passwords are stored in an encrypted form in the system’s files.

A group is a set of users. Just as each user has a user-id, each group has unique integer group-id, or
gid for short. UNIX uses groups to provide a form of resource sharing. For example, a file can be
associated with a group, and all users in that group would have the same access rights to that file.
Since a programn is just an executable file, the same is true of programs; an executable program can
be associated with a group so that all members of that group will have the same right to run that
program. Every user belongs to at least one group, called the primary group of that user. The id
command can be used to print the user’s user-id and user-name, and the group-id and group-name
of all groups to which the user belongs. The groups command prints the list of groups to which the
user belongs.

In UNIX, there is a distinguished user called the superuser, whose user-name is root, one of a
few predefined user-names in all UNIX systems. The superuser has the ability to do things that
ordinary users cannot do, such as changing a person’s user-name or modifying the operating system’s
configuration. Being able to login as root in UNIX confers absolute power to a person over that
system. For this reason, all UNIX systems record every attempt to login as root, so that the system
administrator can monitor and catch break-in attempts.

Every process has an associated (real) user-id and, as we will see later, an effective user-id that
might be different from the real user-id. In simplest case, when a user starts up a program, the
resulting process has that user’s uid as both its real and effective uid. The privileges of the process
are the same as those of the useIEU]. When the superuser (root) runs a process, that process runs

TA user may not be an actual person. It can also be an abstraction of a person. For example, mail, 1p, and ftp
are each users in a UNIX system, but they are actually programs.

8To "login" to a system is to "log into" it. Remember that logging means recording something in a logbook, as
a sea captain does. The term "login" conveys the idea that the act is being recorded in a logbook. In UNIX, logins
are recorded in a special file that acts like a logbook.

9We take this word for granted. We use "login" as a single word only because it has become a single word on
millions of "login screens" around the world. To login, as a verb, really means "to log into" something; it requires
an indirect object.

10To be precise, the privileges are those of user with the process’s effective user-id.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 6
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

with the superuser’s privileges. Processes running with user privileges are called user processes. At
the programming level, the function getuid() returns the real user-id of the process that calls it,
and the getgid() function returns the real group-id of the process that calls it.

1.3.4 Privileged and Non-Privileged Instructions

In order to prevent ordinary user processes from accessing hardware and performing other operations
that may corrupt the state of the computer system, UNIX requires that the processor support two
modes of operation, known as privileged and unprivileged modeE]. Privileged instructions are those
that can alter system resources, directly or indirectly. Examples of privileged instructions include:

e acquiring more memory;

e changing the system time;

e raising the priority of the running process;
e reading from or writing to the disk;

e entering privileged mode.

Only the operating system is allowed to execute privileged instructions. User processes can execute
only the unprivileged instructions. The security and reliability of the operating system depend upon
this separation of powers.

1.3.5 Environments

When a program is run in UNIX, one of the steps that the operating system takes prior to running the
program is to make available to that program an array of name-value pairs called the environment.
Each name-value pair is a string of the form

name=value

where value is a NULL-terminated C string. The name is called an environment variable and the pair
name=value is called an enwvironment string. The variables by convention contain only uppercase
letters, digits, and underscores, but this is not required@ The only requirement is that the name
does not contain the “=" character. For example, LOGNAME is an environment variable that stores
the user-name of the current user, and COLUMNS is a variable that stores the number of columns in
the current console window[T_gl Even though it is a number, it is stored as a string.

When a user logs into a UNIX system, the operating system creates the environment for the user,
based on various files in the system. From that point forward, whenever a new program runs, it is
given a copy of that environment. This will be explained in greater depth later.

"' These modes are also known as supervisor mode and user mode.

L2Environment variable names used by the utilities in the Shell and Utilities volume of POSIX.1-2008 consist solely
of uppercase letters, digits, and the underscore (’_’) and do not begin with a digit.

131f the user defines a value for COLUMNS in a start-up script, then terminal windows will have that many columns.
If the user does not define it, or sets it to the NULL string, the size of terminal windows is determined by the operating
system software.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 7
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

The printenv command displays the values of all environment variables as does the env command.
Within a program the getenv() function can be used to retrieve a particular environment string,
as in

char* username = getenv("LOGNAME");
printf ("The user’s user-name is %s\n, username);

The operating system also makes available to every running program an external global variable
extern char **environ;

which is a pointer to the start of the array of the name-value pairs in the running program’s
environment. Programs can read and modify these variables if they choose. For example, a program
that needs to know how many columns are in the current terminal window will query the COLUMNS
variable, whereas other programs may just ignore it.

1.3.6 Shells

The kernel provides services to processes, not to users; users interact with UNIX through a command-
line interface called a shell. The word "shell" is the UNIX term for a particular type of command-
line-interpreter. Command-line interpreters have been in operating systems since they were first
created. DOS uses a command-line-interpreter, as is the Command window of Microsoft Windows,
which is simply a DOS emulator. The way that DOS and the Command window are used is similar
to the way that UNIX is used@ you type a command and press the Enter key, and the com-
mand is executed, after which the prompt reappears. The program that displays the prompt, reads
the input you type, runs the appropriate programs in response and re-displays the prompt is the
command-line-interpreter, which in UNIX is called a shell.

In UNIX, a shell is much more than a command-line-interpreter. It can do more than just read
simple commands and execute them. A shell is also programming language interpreter; it allows
the user to define variables, evaluate expressions, use conditional control-of-flow statements such as
while- and if-statements, and make calls to other programs. A sequence of shell commands can
be saved into a file and executed as a program by typing the name of the file. Such a sequence of
shell commands is called a shell script. When a shell script is run, the operating system starts up
a shell process to read the instructions and execute them.

1.3.7 Online Documentation: The Man Pages

Shortly after Ritchie and Thompson wrote the first version of UNIX, at the insistence of their
manager, Doug Mcllroy, in 1971, they wrote the UNIX Programmer’s Manual. This manual was
initially a single volume, but in short course it was extended into a set of seven volumes, organized
by topic. It existed in both printed form and as formatted files for display on an ordinary character
display device. Over time it grew in size. Every UNIX distribution comes with this set of manual
pages, called “manpages” for short. Appendix [B.4] contains a brief description of the structure of
the manpages, and Chapter 2 provides more detail about how to use them.

Y This is not a coincidence. Long before Microsoft wrote MS-DOS, they wrote a version of UNIX for the PC called
Xeniz, whose rights they sold to Santa Cruz Operations in 1987

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-]
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.4 The UNIX Kernel API

A multi-user operating system such as UNIX must manage and protect all of the system’s resources
and provide an operating environment that allows all users to work efficiently, safely, and happily.
It must prevent users and the processes that they invoke from accessing any hardware resources
directly. In other words, if a user’s process wants to read from or write to a disk, it must ask the
operating system to do this on its behalf, rather than doing it on its own. The operating system will
perform the task and transfer any data to or from the user’s process. To see why this is necessary,
consider what would happen if a user’s process could access the hard disk directly. A user could
write a program that tried to acquire all disk space, or even worse, tried to erase the disk.

A program such as the ones in Listings and may look like it does not ask the operating
system to read or write any data, but that is not true. Both getchar () and putchar(), are library
functions in the C Standard I/O Library (whose header file is <stdio.h>), and they do, in fact,
"ask" the operating system to do the work for the calling program. The details will be explained
later, but take it on faith that one way or another, the operating system has intervened in this task.

The operating system must protect users from each other and protect itself from users. However,
while providing an operating environment for all users, a multi-user operating system gives each
user the impression that he or she has the computer entirely to him or herself. This is precisely the
illusion underlying the execution of the program in Figure [I.I] Somehow everyone is able to write
programs that look like they have the computer all to themselves, and run them as if no one else is
using the machine. The operating system creates this illusion by creating data paths between user
processes and devices and files. The data paths connect user processes and devices in the part of
memory reserved for the operating system itself. And that is the first clue — physical memory is
divided into two regions, one in which ordinary user programs are loaded, called user space, and
one where the operating system itself is stored, called system space.

How does UNIX create this illusion? We begin with a superficial answer, and gradually add details
in later chapters.

The UNIX operating system is called the kernel. The kernel defines the application programming
interface and provides all of UNIX’s services, whether directly or indirectly. The kernel is a program,
or a collection of interacting programs, depending on the particular implementation of UNIX, with
many entry poz’ntsE]. Each of these entry points provides a service that the kernel performs. If you
are used to thinking of programs as always starting at their first line, this may be disconcerting.
The UNIX kernel, like many other programs, can be entered at other points. You can think of these
entry points as functions that can be called by other programs. These functions do things such as
opening, reading, and writing files, creating new processes, allocating memory, and so on. Each of
these functions expects a certain number of arguments of certain types, and produces well-defined
results. The collection of kernel entry points makes up a large part of UNIX’s API. You can think
of the kernel as a collection of separate functions, bundled together into a large package, and its
API as the collection of signatures or prototypes of these functions.

When UNIX boots, the kernel is loaded into the portion of memory called system space and stays
there until the machine is shut down. User processes are not allowed to access system space. If they
do, they are terminated by the kernel.

'5An entry point is an instruction in a program at which execution can begin. In the programs that you have
probably written, there has been a single entry point — main() —, but in other programs, you can specify that the
code can be entered at any of several entry points. Software libraries are code modules with multiple entries points.
In the Windows world, dynamically linked libraries (DLLs) are examples of code modules with multiple entry points.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 9
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

The kernel has full access to all of the hardware attached to the computer. User programs do not;
they interact with the hardware indirectly through the kernel. The kernel maintains various system
resources in order to provide these services to user programs. These system resources include many
different data structures that keep track of I/O, memory, and device usage for example. In Section
this is explained in more detail.

Summarizing, if a user process needs data from the disk for example, it has to "ask" the kernel to
get it. If a user process needs to write to the display, it has to "ask" the kernel to do this too. All
processes gain access to devices and resources through the kernel. The kernel uses its resources to
provide these services to user processes.

1.4.1 System Resources

The kernel provides many services to user programs, including

e process scheduling and management,

e 1/0 handling,

e physical and virtual memory management,
e device management,

e file management,

e signaling and inter-process communication,
e multi-threading,

e multi-tasking,

e real-time signaling and scheduling, and

e networking services.

Network services include protocols such as HTTP, NIS, NFS, X.25, SSH, SFTP, TCP/IP, and Java.
Exactly which protocols are supported is not important; what is important is for you to understand
that the kernel provides the means by which a user program can make requests for these services.

There are two different methods by which a program can make requests for services from the kernel:

e by making a system call to a function (i.e., entry point) built directly into the kernel, or

e by calling a higher-level library routine that makes use of this call.

Do not confuse either of these with a system program. The term "system program' refers to a
separate program that is bundled with the kernel, that interfaces to it to achieve its functionality,
and that provides higher level services to users. We can browse through the /bin or /usr/bin
directories of a UNIX installation to find many different system programs. Many UNIX commands
are implemented by system programs.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 10
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.4.2 System Calls

An ordinary function call is a jump to and return from a subroutine that is part of the code linked
into the program making the call, regardless of whether the subroutine is statically or dynamaically
linked into the code. A system call is like a conventional function call in that it causes a jump to a
subroutine followed by a return to the caller. But it is significantly different because it is a call to
a function that is a part of the UNIX kernel.

The code that is executed during the call is actually kernel code. Since the kernel code accesses
hardware and contains privileged instructions, kernel code must be run in privileged mode. Because
the kernel alone runs in privileged mode, it is also commonly called kernel mode or superuser mode.
Therefore, during a system call, the process that made the call is run in kernel mode. Unlike an
ordinary function call, a system call requires a change in the execution mode of the processor; this
is usually implemented by a trap instruction. The trap is typically invoked with special parameters
that specify which system call to run. The method of implementing this is system dependent. In
all cases, the point at which a user process begins to execute kernel code is a perilous point, and
great care must be taken by operating system designers and the programmers who code the system
call interfaces to make sure that it cannot be booby-trapped by malicious programmers trying to
get their programs to run in kernel mode.

Programs do not usually invoke system calls directly. The C library provides wrappers for almost all
system calls, and these usually have the same name as the call itself. A wrapper for a function f is a
function that does little more than invoking f, usually rearranging or pre-processing its arguments,
checking error conditions, and collecting its return value and possibly supplying it in a different
form to the caller. Wrappers for system calls also have to trap into kernel mode before the call
and restore user mode after the call. A wrapper is thin if it does almost nothing but pass through
the arguments and the return values. Often, for example, the GNU C library wrapper function is
very thin, doing little work other than copying arguments to the right registers before invoking the
system call, and then setting the value of a global error variabl@ appropriately after the system
call has returned.

Sometimes a wrapper is not so thin, as when the library function has to decide which of several
alternative functions to invoke, depending upon what is available in the kernel. For example. there
is a system call named truncate(), which can “crop” a file to a specified length, discarding the
data after that length. The original truncate() function could only handle lengths that could fit
into a 32-bit integer, and when file systems were able to support very large files, a newer version
named truncate64() was developed. The latter function can handle lengths representable in 64
bits in size. The wrapper for truncate() decides which one is provided by the kernel and calls it
appropriately.

There may be system calls that do not have wrappers in the library, and for these, the programmer
has no other choice but to invoke the system call with a special function named syscall(), passing
the system call’s identification number and arguments. Every system call has a unique number
associated to it. Generally speaking, for a system call named foo, its number is defined by a macro
named either __NR_foo or SYS_foo. The macro definitions are included by including the header file
<sys/syscall.h> in the code. They may not be in that file itself; they may be another file, such
as <asm/unistd_32.h> or <asm/unistd_64.h>. An example of a system call without a wrapper is

16T be precise, the variable is named errno and it has thread local storage, which means each thread has its own
unique copy and the lifetime of this variable is the entire lifetime of the thread.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 11
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Executatile
Program

Systemn Libary
Functions

Systern Call
Interface

b
kernel

Figure 1.3: System calls versus system libraries.

gettid (), which returns the calling thread’s thread id. It is the same as getpid() for a process
with a single thread. The following program calls gettid () and prints the returned id on the screen:

#define GNU_ SOURCE
#include <unistd .h>
#include <sys/syscall .h>
#include <sys/types.h>
#include <stdio .h>

int main(int argc, char xargv|[])

{
printf (" Thread id %ld\n", syscall (SYS gettid));
/* could also pass _ NR_gettid */
return 0;

b

Because the function has no arguments, it is not necessary to pass anything other than the system
call number to syscall().

The complete set of system calls is usually available in the syscalls manpage in Section 2.

1.4.3 System Libraries

Many system calls are very low-level primitives; they do very simple tasks. This is because the UNIX
operating system was designed to keep the kernel as small as possible. Also for this reason, the
kernel typically does not provide many different kinds of routines to do similar things. For example,
there is only a single kernel function to perform a read operation, and it reads large blocks of data
from a specified device to specified system buffers. There is no system call to read a character at
a time, which is a useful function to have. In short, there is a single kernel function that performs
input operations!

To compensate for the austerity of the kernel, UNIX designers augmented the programming interface
with an extensive set of higher-level routines that are kept in system libraries. These routines provide
a much richer set of primitives for programming the kernel. Of course, they ultimately make calls to

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 12
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

the kernel, as depicted in Figure UNIX also contains libraries for various specialized tasks, such
as asynchronous input and output, shared memory, terminal control, login and logout management,
and so on. Using any of these libraries requires that the library’s header file be included in the code
with the appropriate #include directive (e.g. #include <termios.h>), and sometimes, that the
library be linked explicitly because it is not in a standard place. Manpages for functions that are
part of system libraries are contained in Volume 3 of the UNIX Manual Pages.

1.5 UNIX and Related Standards

1.5.1 The Problem

The very first version of UNIX was written by Ken Thompson and Dennis Ritchie in 1969 while
they were working for AT&T Bell Labs. Their fledgling operating system turned out to be full of
very novel ideas, and they presented these ideas in a seminal paper at the ACM Symposium on
Operating Systems at IBM Yorktown Heights in 1973. In January 1974, the University of California
at Berkeley (UCB) acquired Version 4 from Bell Labs and embarked on a mission to add modern
features to UNIX. Later that year, AT&T began licensing UNIX to universities. From 1974 to 1979,
UCB and AT&T worked on independent copies of UNIX. By 1978, the various versions of UNIX
had most of the features that are found in it today, but not all in one system. But in 1979, AT&T
did something that changed the playing field; they staked proprietary rights to their own brand of
UNIX, selling it commercially. In essence, they trademarked UNIX and made it expensive to own
it.

BSD code was released under a much more generous license than AT&T’s source and did not require
a license fee or a requirement to be distributed with source unlike the GPL that the GNU Project
and Linux use today. The result was that much BSD source code was incorporated into various
commercial UNIX variants. By the time that 4.3BSD was written, almost none of the original
AT&T source code was left in it. FreeBSD/NetBSD/OpenBSD were all forks of 4.3BSD having
none of the original AT&T source code, and no right to the UNIX trademark, but much of their
code found its way into commercial UNIX operating systems. In short, two major versions of UNIX
came into existence — those based on BSD and those based on the AT&T version.

In 1991, the picture was further complicated by the creation of Linux. Linux was developed from
scratch unlike BSD and it used the existing GNU Project which was a clean-room implementation
of much of the UNIX user-space. It is a lot less like the AT&T UNIX than BSD is. In 1993, AT&T
divested itself of UNIX, selling it to Novell, which one year later sold the trademark to an industry
consortium known as X/Open.

There are now dozens of different UNIX distributions, each with its own different behavior. There
are systems such as Solaris and UnixWare that are based on SVRA4, the AT&T version released in
1989, and FreeBSD and OpenBSD based on the UC Berkeley distributions. Systems such as Linux
are hybrids, as are AIX, IRIX, and HP-UX. It is natural to ask what makes a system UNIX. The
answer is that over the course of the past thirty years or so, standards have been developed in order
to define UNIX. Operating systems can be branded as conforming to one standard or another.

1.5.2 The Solution: Standards

One widely accepted UNIX standard is the POSIX standard. Technically, POSIX does not define
UNIX in particular; it is more general than that. POSIX, which stands for Portable Operating

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 13
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

System Interface, is a family of standards known formally as IEEFE 1003. 1t is also published by the
International Standards Organization (ISO) as ISO/IEC 9945:2003; these are one and the same doc-
ument. The most recent version of POSIX is IEEE Std 1005.1-2008, also known as POSIX.1-2008.
The POSIX.1-2008 standard consolidates the major standards preceding it, including POSIX.1, and
the Single UNIX Specification (SUS). The spirit of POSIX is to define a UNIX system, as is stated
in the Introduction to the specification (http://pubs.opengroup.org/onlinepubs/9699919799/):

The intended audience for POSIX.1-2008 is all persons concerned with an industry-wide
standard operating system based on the UNIX system. This includes at least four groups
of people:

Persons buying hardware and software systems

Persons managing companies that are deciding on future corporate computing
directions

Persons implementing operating systems, and especially

Persons developing applications where portability is an objective

The Single UNIX Specification was derived from an earlier standard written in 1994 known as the
X/Open System Interface which itself was developed around a UNIX portability guide called the
Spec 1170 Initiative, so called because it contained a description of exactly 1,170 distinct system
calls, headers, commands, and utilities covered in the spec. The number of standardized elements
has grown since then, as UNIX has grown.

The Single UNIX Specification was revised in 1997, 2001, and 2003 by The Open Group, which was
formed in 1996 as a merger of X/Open and the Open Software Foundation (OSF), both industry
consortia. The Open Group owns the UNIX trademark. It uses the Single UNIX Specification to
define the interfaces an implementation must support to call itself a UNIX system.

What, then, does this standard standardize? It standardizes a number of things, including the
collection of all system calls, the system libraries, and those utility programs such as grep, awk,
and sed that make UNIX feel like UNIX. The collection of system calls is what defines the UNIX
kernel. The system calls and system libraries together constitute the UNIX application programming
interface. They are the programmer’s view of the kernel. The utility programs are the part of the
interface that the UNIX user sees.

From the Introduction again:

POSIX.1-2008 is simultaneously IEEE Std 1003.1™-2008 and The Open Group Technical
Standard Base Specifications, Issue 7.

POSIX.1-2008 defines a standard operating system interface and environment, including
a command interpreter (or “shell”), and common utility programs to support applications
portability at the source code level. POSIX.1-2008 is intended to be used by both appli-
cation developers and system implementers [sic| and comprises four major components
(each in an associated volume):

e General terms, concepts, and interfaces common to all volumes of this standard,
including utility conventions and C-language header definitions, are included in the
Base Definitions volume.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 14
ShareAlike 4.0 International License.

http://pubs.opengroup.org/onlinepubs/9699919799/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

e Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability,
error handling, and error recovery, are included in the System Interfaces volume.

e Definitions for a standard source code-level interface to command interpretation
services (a “shell”) and common utility programs for application programs are in-
cluded in the Shell and Utilities volume.

e Extended rationale that did not fit well into the rest of the document structure,
which contains historical information concerning the contents of POSIX.1-2008 and
why features were included or discarded by the standard developers, is included in
the Rationale (Informative) volume.

POSIX.1-2008 specifically defines certain areas as being outside of its scope:

Graphics interfaces

Database management system interfaces

Record I/O considerations

Object or binary code portability

System configuration and resource availability

In summary, the Single UNIX Specification, Version 4, known as SUSv4, also known as The Open
Group Specification Issue 7, consists of four parts: a base definition, detailed system interfaces, shell
and utilities, and rationale, which describes reasons for everything else.

The fact that there are standards does not imply that all UNIX implementations adhere to them.
Although there are systems such as AIX, Solaris, and Mac OS X that are fully POSIX-compliant,
most are "mostly" compliant. Systems such as FreeBSD and various versions of Linux fall into this
category.

Any single UNIX system may have features and interfaces that do not comply with a standard.
The challenge in system programming is being able to write programs that will run across a broad
range of systems in spite of this. Later we will see how the use of feature test macros in programs
provides a means to compile a single program on a variety of different UNIX systems.

1.6 The C Library and C Standards

The interfaces described in the POSIX standard are written in CE], mostly because C is the major
language in which most systems programs are written, and because much of UNIX was originally
developed in C. Because of this, POSIX depends upon a standard definition of C, and it uses the ISO
standard, the most recent version of which is officially known as ISO/IEC 9899:2011, and informally
known as C11. C11 incorporated the earlier ANSI C and augmented it. This version of C is known
as ISO C, but people also continue to call it ANSI C, even though it is not the same thing. You
can download the last free draft of this standard from |C11 Standard (pdf)

In short, POSIX specifies not just what UNIX must do, but what the various parts of the C Standard
Library must do as well. It specifies, in effect, a superset of the C language, including additional

""There are language bindings of the kernel API in Fortran, Java, Python, Pascal, C++, and other languages.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 15
ShareAlike 4.0 International License.

http://www.compsci.hunter.cuny.edu/~sweiss/resources/c11standard.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

functions to those introduced in standard C. Therefore, a UNIX system that is POSIX compliant
contains all of the library functions of the ISO C language. For example, every UNIX distribution
includes libraries such as the C Standard I/O Library, the C math library, and the C string library.

The C Standard Library provided for Linux as well as several other UNIX distributions is the GNU
C library, called GNU 1ibc, or glibc. GNU often extends the C library, and not everything in it
conforms to the ISO standard, nor to POSIX. What all of this amounts to is that the version of the
C library on one system is not necessarily the same as that found on another system.

This is one reason why it is important to know the standard and know what it defines and what
it does not define. In general, the C standard describes what is required, what is prohibited, and
what is allowed within certain limits. Specifically, it describes

e the representation of C programs

the syntax and constraints of the C language

the semantic rules for interpreting C programs

the representation of input data to be processed by C programs
e the representation of output data produced by C programs

e the restrictions and limits imposed by a conforming implementation of C
Not all compilers and C runtime libraries comply with the standard, and this complicates program-
ming in C. The GNU compiler has command line options that let you compile according to various

standards. For example, if you want your program to be compiled against the ANSI standard, you
would use the command

$ gcc -ansi
or
$ gcc -std=c90
To use the current ISO C11 standard, either of these works:

$ gcc -std=cil
$ gcc -std=1is09899:2011

Understanding how to write programs for UNIX requires knowing which features are part of C and
which are there because they are part of UNIX. In other words, you will need to understand what
the C libraries do and what the underlying UNIX system defines. Having a good grasp of the C
standard will make this easier.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 16
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.7 Learning System Programming by Example

The number of system calls and library functions is so large that mere mortals cannot remember
them all. Trying to learn all of the intricacies and details of the UNIX API by reading through
reference manuals and user documentation would be a painstaking task. Fortunately, people often
learn well by example. Rather than studying the reference manuals and documentation, we can
learn the API little by little by writing programs that use it. One starts out simple, and over time
adds complexity.

Bruce Molay [I] uses an excellent strategy for learning how to write system programs and discover
the UNIX API:

1. Pick an existing program that uses the API, such as a shell command,;

2. Using the system man pages and other information available online, investigate the system calls
and kernel data structures that this program most likely uses in its implementation; and

3. Write a new version of the program, iteratively improving it until it behaves just like the actual
command.

By repeating this procedure over and over, one can familiarize oneself with the relevant portions of
the API as well as the resources needed to learn about it. When it is time to write a full-fledged
application, the portions of it that must communicate with the kernel should be relatively easy to
write. We will partly follow this same paradigm in this sequence of notes on UNIX.

1.8 The UNIX File Hierarchy

The typical UNIX file hierarchy has several directories just under the root. Figure shows part
of a typical, but hypothetical, file hierarchy. The following directories should be present in most
UNIX systems, but they are not all required. The only required directories are /dev and /tmp.

Directory Purpose

bin The repository for all essential binary executables including those shell
commands that must be available when the computer is running in
"single-user mode" (something like safe mode in Windows.)

boot Static files of the boot loader

dev The directory containing essential device files, which will be explained later.

etc Where almost all host configuration files are stored. It is something like the
registry file of Windows.

home The directory where all user home directories are located, but not always.

1lib Essential shared libraries and kernel modules

media Mount point for removable media

mnt Mount point for mounting a file system temporarily

opt Add-on application software packages

sbin Essential system binaries

srv Data for services provided by this system

tmp Temporary files

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 17

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

£
= bin dew usr !

g war 1lik mrt home

local bin spool tp fac

et

sweiss

Figure 1.4: The top of a typical UNIX directory hierarchy.

Directory Purpose

usr Originally, /usr was the top of the hierarchy of user "data" files, but now it
serves as the top of a hierarchy in which non-essential binaries, libraries,
and sources are stored. Below /usr are directories such as /usr/bin and
/usr/sbin, containing binaries, /usr/1ib, containing library files, and
/usr/local, the top of a third level of "local" programs and data.

var Variable files (files containing data that can change)

Files have two independent binary properties: shareable vs. unshareable and variable vs. static. In
general, modern UNIX systems are encouraged to put files that differ in either of these respects into
different directories. This makes it easy to store files with different usage characteristics on different
file systems.

Shareable files are those that can be stored on one host and used on others. Unshareable files are
those that are not shareable. For example, the files in user home directories are shareable whereas
boot loader files are not.

Static files include binaries, libraries, documentation files and other files that do not change without
system administrator intervention. "Variable" files are files that are not static. The /etc directory
should be unshareable and static. The /var directory is variable but parts of it, such as /var/mail
may be shareable while others such as /var/log may be unshareable. /usr is shareable and static.

1.8.1 About Pathnames and Directories

A pathname is a character string that is used to identify a file. POSIX.1-2008, puts a system-
dependent limit on the number of bytes in a pathname, including the terminating null byteEg].

There are two types of pathnames: absolute and relative. An absolute pathname is a pathname
that starts at the root. It begins with a "/" and is followed by zero or more filenames sepa-
rated by "/" characters. All filenames except the last must be directory namesr;g]. For exam-

18The variable PATH_MAX contains the maximum length of a string representing a pathname. The library function
pathconf () can be used to obtain its value. On many Linux systems it is 4096 bytes.
9This is not exactly true. Filenames that are not the last in the pathname may be symbolic links to directories.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 18
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

ple, /home/fac/sweiss is the absolute pathname to the directory sweiss in Figure [1.4] as is
/home//fac///sweiss. The extra slashes are ignored. Observe that UNIX (actually POSIX) uses
slashes, not backslashes, in pathnames: /usr/local, not \usr\local.

If a pathname does not begin with "/" it is called a relative pathname. When a process must resolve
a relative pathname so that it can access the file, the pathname is assumed to start in the current
working directory. In fact, the definition of the current working directory, also called the present
working directory, is that it is the directory that a process uses to resolve pathnames that do not
begin with a "/". For example, if the current working directory is /home/fac, then the pathname
sweiss/testdata refers to a file whose absolute pathname is /home/fac/sweiss/testdata. The
convention is to use pwd as a shorthand for the current working directory.

The environment variable PWD contains the absolute pathname of the current working directory.
The command pwd prints the value of the PWD.

1.8.1.1 Working with Directories

This section may be skipped if you have experience working with directories at the user level. You
do not need to know many commands in order to do most directory-related tasks in UNIX. This is
a list of the basic commands. The principal tasks are navigation and displaying and altering their
contents. The tables that follow give the command name and the simplest usage of it. They do not
describe the various options or details of the command’s usage.

Command Explanation
pwd print the path of the current working directory (pwd)
1s [<dir1>] [<dir2>] ... list the contents of the pwd, or <dirl>, <dir2> ... if supplied
cd [<dir>] change pwd to HOME directory, or <dir> if it is supplied
mkdir <dir> [<dir2>] ... create new directories <dir> (and <dir2> ...) in the pwd,
rmdir <dir> [<dir2>] ... remove the EMPTY directory <dir> (and <dir2> ...)
rm -r <dir> remove all contents of <dir> and <dir> itself. Dangerous!!
mv see the explanation in Section m
Notes

1. The "p" in "pwd" stands for print, but it does not print on a printer. In UNIX, "printing"
means displaying on the screen?’]

2. mkdir is the only way to create a directory
3. You cannot use rmdir to delete a directory if it is not empty.

4. You can delete multiple directories and their contents with rm -r, but this is not reversible,
8o be careful.

5. Commands that create and delete files are technically modifying directories, but these will be
covered separately.

20That is why the C instruction printf sends output to the display device, not the printer. In FORTRAN, by
contrast, the print instruction sent output to the printer.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 19
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

"Changing directories" and "being in a directory" are imprecise phrases. When you cd to a directory
named dir, you may think of yourself as being “in dir”, but this is not true. What is true is that the
dir directory is now your current working directory and that every process that you run from the
shell process in which you changed directory, including the shell process, will use this dir directory
by default when it is trying to resolve relative pathnames.

There are two special entries that are defined in every directory

The directory itself

The parent directory of the directory, or itself if it is /
Thus, "cd .." changes the pwd to the parent of the current pwd, "cd ../.." changes it to the

grandparent and "cd ." has no effect. Before reading further, you should experiment with these
commands and make sure that you understand how they work.

1.8.2 Files and Filenames

Unlike other operating systems, UNIX distinguishes between only five types of non-directory files:

e regular files

device files (character or block)

FIFOs

sockets

symbolic links

Device files and FIFOs will be described in depth in Chapter 4, sockets in Chapter 9, and symbolic
links below. That leaves regular files, which are defined quite simply: a regular file is a sequence of
bytes with no particular structure.

1.8.2.1 Filenames

Files and filenames, as noted earlier, are different things. A filename, which is technically called
a file link, or just a link, is just a string that names a ﬁleF_r]. A file may have many filenames.
Filenames are practically unlimited in size, unless you think 255 characters is not big enough. The
maximum number of bytes in a filename is contained in the system-dependent constant NAME_MAX.
Filenames can contain any characters except "/" and the null character. They can have spaces
and new lines, but if they do, you will usually need to put quotes around the name to use it as an
argument to commands. UNIX is case-sensitive, so "References" and "references" are two different
filenames.

Unlike DOS, Windows, and Apple operating systems, filename extensions are not used by the op-
erating system for any purpose, although application-level software such as compilers and word

21 A filename is sometimes referred to as a "pathname component".

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 20
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

processors use them as guides, and desktop environments such as Gnome and KDE create associa-
tions based on filename extensions in much the same way that Windows and Apple do. But again,
UNIX itself does not have a notion of file type based on content, and it provides the same set of
operations for all files, regardless of their type.

Remember that a directory entry comnsists of two parts. One part is a filename and the other part
is a means by which a file is associated with this name. You may think of this second part as an
index into a table of pointers to the actual file§’]

One file can have many links, like a spy traveling with several forged passports. In one directory,
the file may be known by one link, and in a different directory, it may have another link. It is still
the same file though. In Figure the file is known by three names, each a link in a different
directory. There is two restrictions concerning multiple links. One is that directories cannot have
multiple names. Another is that two names for the same file cannot exist on different file systems.
The simplest way to understand this last point, without going into a discussion of mounting and
mount points, is that different parts of the file hierarchy can reside on different physical devices,
e.g., different partitions of a disk or different disks, and that a file on one physical device cannot
have a name on a different physical device. This will be clarified in a later chapter.

1.8.2.2 What is a File?

All files, regardless of their type, have aftributes. Almost all have data, or content.

e Attributes include properties such as the time the file was created, the time it was last modified,
the file size expressed as a number of bytes, the number of disk blocks allocated to the file,
and so on. The attributes that describe restrictions on access to the file are called the file
mode. The attributes of a file collectively are called the file status in UNIX. The word "status"
may sound misleading, but it is the word that was used by the original designers of UNIX.

e The data are the actual file contents. In fact, UNIX uses the term content to identify this
part of a file. Some files do not have any content because they are merely interfaces that the
operating system uses. That will be discussed further in Chapter 4.

These two items, the status and the content, are not stored together?}

1.8.2.3 Working with Files

This section may be skipped if you have user level experience in UNIX. Commands for working
with files can be classified as those that view file contents but do not modify them, those that view
file attributes, and editors — those that modify the files in one way or another. Listed below are
the basic commands for viewing the contents of files, not editing or modifying them. Editors are
a separate topic. In all cases, if the file arguments are omitted, the command reads from standard
input. There is also a separate class of programs called filters that provide sophisticated filtering of
ordinary text files.

22Traditional UNIX system used an index number, called an inumber, to associate the file to the filename. This
number was used to access a pointer to a structure called an inode, to be discussed later. The inode contains members
that point to the file contents. Conceptually, the inode is like a proxy for the file.

23The status is stored in the inode.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 21
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Dir1

Dir2 Dir3

cscid93 notes Stew's notes

csroster

my lecture

nameless
file
o]

Figure 1.5: Example of multiple links to a file.

Viewing File Contents

Command Explanation

cat [<files>] display file contents

more [<files>] display file contents a screen at a time

less [<files>] display file contents a screen at a time with more options
pg [<files>] display file contents a screen at a time.

head [-<n>] [<file>] display the first <n> lines of a file, default n = 10
tail [-<n>] [<file>] display the last <n> lines of a file, default n = 10

Note that the pg command is not POSIX and may not be available on all UNIX systems.

A note about more and less: the more command existed long before there was a less com-
mand. more was created to allow you to read a page at a time, and also to jump ahead in the file
with regular expression searches, using the same "/" operator from vi. However, it was not easy
to go backwards in the file with more. You could use the single quote operator (’) to go back to
the beginning of the file, but that was about it. less was created to do more than more, naturally,
which is why it is called less. Maybe the person who wrote it knew the famous quotation from
Ludwig Mies Van der Rohe, the German-born architect, whose famous adage, "Less is more," is
immortalized. Maybe not. But for whatever reason that they named less, "less", less does
more than more. And this is not an Abbott and Costello skit. The less command is the most
versatile means of viewing files, and my recommendation is that you learn how to use it first.

Creating, Removing, and Copying Files and Links Remember that a link is just a name
pointing to a file.

Command Explanation
In <f1> <f2> create a new link for file <f1> named <£2>
rm <files> delete a link or name for a file
mv <filel> <file2> rename <filel> with the new name <file2>
mv <files> <dir> move all files into the destination directory <dir>
cp <filel> <file2> copy <filel> to the new name <file2>
cp <files> <dir> copy all files into the destination directory <dir>
This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 929

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Notes.

e The 1n command can only be used on files, not directories. There is a simplified version of
this command named link.

e The rm command is irreversible; once a link is removed, it cannot be recovered.

e The mv command has two forms. If there are more than two arguments, the last must be
an existing directory name, and all files named before the last are moved into that directory.
Conversely, if the last argument is an existing directory name, then all arguments preceding it
will be moved into it. The preceding arguments can be existing directories, as long as it does
not create a circularity, such as trying to make a child into a parent. If the last argument is
not an existing directory, the meaning of mv is simply to rename the first file with the new
name. If the new name is an existing file, mv will silently overwrite it. For this reason, you
should use "mv -i", which prompts you before overwriting files.

e The way you use the cp command is almost the same as how you use the mv command except
that it replicates files instead of moving them. The main difference is that cp does not accept
directories as arguments, except as the last argument, unless you give it the option "-r", i.e.,
cp -r, in which case it recursively copies the directories. Note that cp makes copies of files,
not just their names, so changes to one file are not reflected in the other.

Examples
$ 1s
hwkl_6.c
$ mv hwkl_6.c hwkl_finalversion.c
$ 1s

hwkl_finalversion.c

This command changed the link hwk1_6.c to hwkl_finalversion.c.
$ rm hwkl.o hwkl.old.o main.o

This removes these three file links from the current working directory. If these files have no other
links in other directories, the attributes and contents are also removed from the disk. I will explain
more about this in a later chapter.

$ 1n hwkl.l.c ../mysourcefiles/projl.c

creates a new link proji.c in the directory ../mysourcefiles for the file whose name is hwkl.1.c
in the current working directory.

$ cp -r main.c utils.c utils.h images ../version2

copies the three files main.c, utils.c, and utils.h, and the directory images, into the directory
../version2.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 23
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.8.2.4 File Attributes

In this section, the word "file" refers to all file types, including directories. UNIX has a very simple,
but useful, file protection method. To provide a way for users to control access to their files, the
inventors of UNIX devised a rather elegant and simple access control system. Every file has an
owner, called its user. The file is also associated with one of the groups to which the owner belongs,
called its group. The owner of a file can make the file’s group any of the groups to which the owner
belongs. Lastly, everyone who is neither the user nor a member of the file’s group is in the class
known as others. Thus, the set of all users is partitioned into three disjoint subsets: user, group,
others, which you can remember with the acronym ugo.

There are three modes of access to any file: read, write, and execute. Read access is the ability to
view file contents. For directories, this is the ability to view the contents using the Is command.
Write access is the ability to change file contents or certain file attributes. For directories, this
implies the ability to create new links in the directory, to rename files in the directory, or remove
links in the directory. This will be counterintuitive — the ability to delete a file from a directory does
not depend on whether one has write privileges for the file, but on whether one has write privileges
for the directory. FEzecute access is the ability to run the file. For a directory, execute access is
the ability to cd into the directory and as a result, the ability to run programs contained in the
the directory and run programs that need to access the attributes or contents of files within that
directory. In short, without execute access on a directory, there is little you can do with it.

For each of the three classes of users, there are three protection bits that define the read, write, and
execute privileges afforded to members of the class. For each class, if a specific protection bit is set,
then for anyone in that class, the particular type of access is permitted. Thus, there are three bits
called the read, write, and execute bits for the user (u), for the group (g), and for others (o), or
nine in total. These bits, which are called mode or permission bits, are usually expressed in one of
two forms: as an octal number, or as a string of nine characters.

The nine-character permission bit string is:

r wX r wX r wX
user bits group bits others bits

Various commands use a dash is used to indicate that the bit is turned off.

Examples

e The string rwxrw-r--, gives the user (owner) read, write, and execute permission, the group,
read and write but no execute, and others, only read permission.

e The string r-xr-xr-x gives everyone only read and execute permission.

e The string ruxr-xr-- gives the user read, write, and execute permission, the group, read and
execute permission, and others, only read access.

The mode string can be represented as a 3-digit octal number, by treating each group of three bits
as a single octal digit. Using the C ternary operator, 7:, I would write this as

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 24
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

value = r74:0 + w?2:0 + x71:0

which results in the following table of values for each group of three bits.

rWwx Iw- Tr-X T-- -WX -W- --X ---

For example, the octal number for ruxrw-r-- is 764 because the user digit is 7, the group is 6 and

the others is 4.

In addition to the mode bits, a file’s permission string is usually displayed with a single character
file attribute that characterizes the file type. The character, which appears to the left of the mode
bits, can be one of - (regular file), d (directory), b (buffered special file), ¢ (character special file),

1 (symbolic link), p (pipe), or s (socket).

1.8.2.5 Viewing and Modifying File Attributes

To see the attributes of a file, use the -1 option to the 1s command: The "-1" means "long listing"
and it prints the permission string, the number of links to the file, the user-name of the owner,
the group name of the group, the number of bytes in the file, the last modification time, and the
file link. For example, to look at the attributes of the file named .bashrc in the current working

directory, I would type

$ 1s -1 ~/.bashrc
-rw-r--r-- 1 sweiss faculty 3304 Sep 22 13:05 .bashrc

This file is a regular file and can be read and modified by me, its owner (-rw-). It can be read by

anyone in the faculty group (r--), and it can be read by anyone else (r--).

1s has many other

options, for displaying additional information. Read its man page for details. You can also use the

stat command, which will provide additional information:

$ stat .bashrc
File: ‘.bashrc¢’

Size: 3304 Blocks: 8 I0 Block: 4096 regular file

Device: 18h/24d Inode: 1318 Links: 1

Access: (0644/-rw-r--r--)Uid: (1220/ sweiss)Gid: (400/ faculty)

Access: 2010-12-20 13:20:04.582733000 -0500
Modify: 2010-09-22 13:05:11.271251000 -0400
Change: 2010-09-22 13:05:11.278893000 -0400

You can get the count of bytes, words, and lines with wc:

$ wc .bashrc
156 387 3304 .bashrc

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.

25

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

There are 156 lines, 387 words, and 3304 bytes in the file. Other options provide different informa-
tion.

Commands that alter the attributes of a file are:

Command Explanation

chmod <mode> <files> change the file permissions

chown <owner> <files> change the file ownership

chgrp <group> <files> change the group ownership

touch <files> update timestamps of files; create empty files (a file of size 0)

1.8.2.6 Symbolic Links

A symbolic link, also called a soft link, is a file that stores a string containing the pathname of
another file. The stored string has a length of SYMLINK_MAX bytes or fewer. This string is not
part of the content of the file, but can be used by programs to access the file whose pathname it
contains. Symbolic links are like shortcuts in the Windows operating system; they have no data in
themselves, but instead point to files. They are useful for overcoming the limitations of hard links
that they cannot link to directories and cannot cross file systems. For example, suppose that one
frequently accesses a directory whose absolute path is

/data/research/biochem/proteins

He or she could create a link in his or her home directory for easier access to this directory, as
follows:

$ 1n -s /data/research/biochem/proteins ~/proteins

The 1n command, with the -s option, creates symbolic links. The pathname /data/research/biochem/proteins
would be stored in the file “/proteins in such a way that the commands that use the filename pro-
teins would replace it by the pathname stored there.

Symbolic links pose hazards for the operating system because of the possibility of circular references
and infinite loops. More will be said about them in Chapter 3.

1.9 Under the Hood: How Logging In Works

When you log in to a UNIX system, what actually happens? What does it mean to be logged in?

There is no single answer to this question, as it depends upon (1) which version of UNIX is running
and (2) whether the login is at the console, or within a terminal window, or across a network using
a protocol such as SSH. Fortunately, the way that logging in works at the console or in a terminal
window in the predominant UNIX systems — Linux, Mac OS, Solaris, and BSD@ variants — is pretty
much the same, with minor variations, and the way that it works over a network, while very different
from how it works at a console or terminal window, is similar across the major UNIX systems.

24BSD stands for Berkeley Software Distribution. See the historical notes at the end of this chapter.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 26
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Terminal or console logins in the predominant UNIX systems are usually based upon the method
used by the early BSD UNIX system. We will examine how the BSD method worked. Modern
UNIX systems have the option to use a very different method known as PAM, discussed below.

When a UNIX system is started, after the kernel initializes the data structures that it needs and
enables interrupts, it creates a new process with process-id 1, named init. init is the first process
created at start-up, and it is also the ancestor of all user-level processes in a UNIX system, even
though it runs with root’s privileges. init monitors the activities of all processes in the outer layers
of the operating system, and also manages what takes place when the computer is shutdown.

The init process does a number of interesting things, but of interest to us now is that init uses
information about available terminal devices on the system (i.e., consoles, modems, etc.) to create,
for each available terminal, a process to listen for activity on that terminal. These processes are
the getty processe@ The name getty stands for "get tty". The getty process configures the
terminal device, displays a prompt such as "login:" in the terminal, and waits for the user to enter
a user-name.

The "tty" in "getty" is short for Teletype. For those who do not know the history, a Teletype
is the precursor to the modern computer terminal. Teletype machines came into existence as
early as 1906, but it was not until around 1930 that their design stabilized. Teletype machines
were essentially typewriters that converted the typed characters into electronic codes that could be
transmitted across electrical wires. Modern computer terminals inherit many of their characteristics
from Teletype machines.

When the user enters a user-name on the terminal, the getty process runs the login program@
passing it the entered user-name. login performs a number of tasks and prompts the user for the
password and tries to validate it. If it is valid, login sets the current working directory (PW[F_?I)
to the user’s home directory, sets the process’s user-id to that of the user, initializes the user’s
environment, adjusts permissions and ownership of various files, and then starts up the user’s login
shell. If the password is invalid, the login program will exit, and init will notice this and start up
a new getty for that terminal, which will repeat the above procedure.

Systems that use PAM do not work this way. PAM, which is short for Pluggable Authentication
Modules, is a library of dynamically configurable authentication routines that can be selected at
runtime to do various authentication tasks, not just logins. We will not cover PAM here.

Network logins, which are usually based upon the BSD network login mechanism, must work differ-
ently. For one, there are no physical terminals, and so there is no way to know in advance how many
terminals must be initialized. For another, the connection between the terminal and the computer
is not point-to-point, but is a network service, such as SSH or SFTP.

BSD took the approach of trying to make the login code independent of the source of the login.
The result is that it uses the idea of a pseudo-terminal. These will be covered in depth later. With
network logins, rather than creating a getty process for each terminal, init creates the process

Z5This is not quite accurate but it is good enough for now. If you want to know the actual steps, it is best to wait
until you understand how processes are created and what the difference is between creating a process and running a
program.

26 Actually, the getty process replaces itself with the login program using a system call named execve(). This
topic is covered in a later chapter.

*"In bash, the environment variable PWD stores the absolute pathname of the current working directory. Bash
inherits this name from the Bourne shell, in which it stood for "present working directory." In the C-shell, it is still
cwd. Even though it is PWD in bash, no one calls it the present working directory anymore; it is the current working
directory.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 27
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

that will listen for the incoming network requests for logins. For example, if the system supports
logging in through SSH, then init will create a process named sshd, the SSH daemon, which will
in turn create a new process for each remote login. These new processes will, in turn, create what
is called a pseudo-terminal driver (pts driver), which will then spawn the login program, which
does everything described above. The picture is quite different and much more complicated than
a simple terminal login, because the management of the pseudo-terminal is complex. This will be
covered in depth later.

1.10 UNIX From The System Programmer’s Perspective

The way that a systems programmer sees UNIX is very different from the way that a user sees it.
Whereas the user perceives UNIX by the functionality of the shell, the systems programmer looks
“beneath” the shell at the functionality of the kernel inside, as suggested by Figure [1.6]

However, not only does the systems programmer need to understand the kernel API, he or she also
has to understand how programs interact with users, how they interact with the operating system,
and how they interact with other programs. Interaction encompasses three distinct actions:

e Acquiring data
e Delivering data

e Coordinating execution in time

Simple programs acquire data from an external source such as a file or the keyboard, and deliver
data to external sources such as files or the console. But real applications may also have to acquire
data from other programs, and the operating system in particular, or acquire it from a system
resource or a shared resource such as a file already opened by a different process. They may also
have to write to a shared resource, such as a window into which other processes are writing, or a
file that may be shared by other processes.

Figure 1.6: The system programmer’s view of UNIX.

Even more complex is the possibility that data may be delivered to the process asynchronously,
meaning, not when the process asked for it, but at some later, unpredictable time. And if that
is not enough, consider the possibility that the process should not continue execution until some
other process has performed some other task. For example, consider a program that is playing chess
against another program. Neither program is allowed to make a move until the other has finished

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 28
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

its turn. Similarly, imagine multiple processes that are cooperating to compute the structure of a
complex protein. Certain parts of the structure cannot be constructed until other parts have been
calculated, so the processes must coordinate their activities with respect to the work accomplished
by the others. Both of these situations require the use of process synchronization. The challenge is
to master these concepts.

1.11 A First System Program

We will begin by writing a stripped down version of the more program, which displays a file one
”screen[g_g]" at a time. When more runs, it displays one screen’s many lines of a file and then displays
information and a prompt on the very bottom line of the screen:

~More—(0%)

It then waits for the user to press a key such as the space-bar to advance to the next screen, or
the Enter key to advance one line, or the "q" key to exit. The prompt is in reverse video, meaning
the foreground and background terminal colors are reversed. While there are other more advanced
options, we will limit our version to these alone. Run more and observe that when you press the
space-bar, it responds immediately; you do not have to press the Enter key after space-bar.

1.11.1 A First Attempt at the more Program

The more command can be run in several ways:

$ more filel file2 ... filelN
$ 1s -1 | more
$ more < myfile

The first line causes more to display the files named filel, file2, and so on until fileN, one after
the other. This proves that the more program has to look at the command line arguments and
use them as its input if they exist. In the second example, the output of the command "1s -1"
becomes the input of the more program, and the result is that more displays the directory listing
a screen at a time. This implies that more also has to work when its input comes from standard
input through a pipe. In the last line, the file myfile is used as input to the more command, but
the more command is simply getting input from the standard input stream.

These three examples show that more has to be able to read from a file specified on the command
line as well as read from standard input, and in either case it has to output a screen at a time.
Suppose that we let P represent the number of lines in a terminal window (P stands for “page”, which
is what a screenful of data is called.) A crude outline of the more program, ignoring the issue of
where it gets its input, is:

28 The standard screen has 24 lines, but this is user-adjustable and also dependent on both hardware and system
settings. Until we know how to find the actual number, we will assume a screen has 24 lines, and we write 23 new
lines at a time.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 29
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss f b
Chapter 1 Introduction to System Programming D#

SO W N

Show P—1 lines from standard input (save the last line for the prompt)
Show the [more?]| message after the lines.

Wait for an input of Enter, Space, or ’q’

If input is Enter, advance one line; go to 2
If input is Space, go to 1

If input is ’'q’, exit.

We have to add to this the ability to extract the filenames, if they exist, from the command line.
Listing contains a C main program for a version of more using the above logic, that also checks
if there are one or more command line arguments, and if there are, uses the arguments as the names
of files to open instead of standard input. If there are no command line arguments, it uses standard
input. We will assume for now that P=24.

Listing 1.4: A first version of the main program for more.

#include <stdio .h>

#define SCREEN ROWS 23 /x assume 24 lines per screen x/
#define LINELEN 512
#define SPACEBAR 1
#define RETURN 2
#define QUIT 3
#define INVALID 4

JEL:

*/

do_more of()

Given a FILEx argument fp, display up to a page of the

file fp, and then display a prompt and wait for user input.
If user inputs SPACEBAR, display next page.

If user inputs RETURN, display one more line.

If user inputs QUIT, terminate program.

void do_more of (FILE x filep);

JEL:

get user input ()

x* Displays more’s status and prompt and waits for user response,
* Requires that user press return key to receive input
* Returns one of SPACEBAR, RETURN, or QUIT on valid keypresses
x and INVALID for invalid keypresses.
*/
int get wuser input();
int main(int argc , char xargv[])
{
FILE *1Ip ;
int i = 0;
if (1 = argc)
do_more of(stdin); // no args, read from standard input
else
while (++i < arge) {
fp = fopen(argv[i]| , "r");
This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 30

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

if (NULL != fp) {
do_more of(fp) ;
fclose(fp);

}

else
printf ("Skipping %s\n", argv|[i]);
}

return 0;

}

If you are not familiar with some of the C functions (also in C++) used in this program, then read
about them, either in the man pages, or in any introductory C/C++ textbook. In particular you
need to know about the following functions and types, all part of ANSI standard q?_;] and defined
in <stdio.h>:

FILE a file stream

fopen opens a file and returns a FILE*
fclose closes a FILE stream

fgets reads a string from a FILE stream
fputs writes a string to a FILE stream

One thing to observe in the code above is that it checks whether or not the return value of the
fopen() function is NULL. Every time a program makes a call to a library function or a system
function, it should check the possible error conditions. A program that fails to do this is a program
that will have frustrated users.

If the argument list in the main program signature is also new to you, here is a brief explanation.
In the signature

int main(int argc , char *argv[])

argc is an integer parameter that specifies the number of words on the command line. Since the
program name itself is one word, argc is always at least 1. If it is exactly 1, there are no command
line arguments. The second parameter, argv, is an array of char pointers. In C, a char pointer is
a pointer to a NULL-terminated string, i.e., a string whose last character is >\0’. The array argv is
an array whose strings are the words on the command line. argv[0] is the program name itself,
argv[1], the first command argument, and so on. The name of the parameter is arbitrary. It
will work whether argc is named rosebud, numargs, or ac. The shell is responsible for putting the
command arguments into the memory locations where the first and second parameters are expected
(which it does by making a system call and passing these arguments to the call).

Listing does not include the definitions of the two functions used by main(): do_more_of ()
and get_user_input (), which are contained in Listing [I.5] The first of these is easy to figure out,
except that you might not have used fgets() and fputs() before. The function keeps track of
how many lines can be written to the screen before the screen is full in the variable num_of_lines,
which is initially 23. The second function is also pretty straightforward. The only part that might
require explanation is the printf () instruction.

2 . .
9These are in all versions of C.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 31
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.11.2 A Bit About Terminals

Our program requires that we display the prompt in reverse video. The question is how we can
display text in reverse video on a terminal. Terminals are a complex subject, about which we devote
almost an entire chapter later on (Chapter 4). Now we offer just a brief introduction to them.

A terminal normally performs two roles: it is an input device and an output device. As an output
device, there are special codes that can be delivered to it that it will treat, not as actual text to
be displayed, but as control sequences, i.e., sequences of bytes that tell it where to position the
cursor, how to display text, how to scroll, how to wrap or not, what colors to use, and so on. When
terminals were first developed, there were many different types of them and many vendors. Each
different type had a different set of control sequences. In 1976, the set of sequences that can be
delivered to a terminal was standardized by the Furopean Computer Manufacturers Association
(ECMA). The standard was updated several times and ultimately adopted by the International
Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC)
and was named ISO/IEC 6429. It was also adopted by the American National Standards Institute
(ANSI) and known as ANSI X3.64. The set of these sequences are now commonly called the ANSI
escape sequences even though ANSI withdrew the standard in 1997.

An ANSI escape sequence is a sequence of ASCII characters, the first two of which are normally the
ASCII Escape character, whose decimal code is 27, and the left-bracket character " [". The Escape
character can be written as ’\033’ using octal notation. The string “\033[“ is known as the Conirol
Sequence Introducer, or CSI. The character or characters following the CSI specify an alphanumeric
code that controls a keyboard or display function. For example, the sequence "\033[7m" is the CSI
followed by the control code "7m". The code “7m” is a code that reverses the video display. The
escape sequence "\033[m" turns off all preceding character codes.

If we want to display a portion of text, such as a prompt, in reverse video, we need to send the escape
sequences and text to the terminal device. Any output function that can write to the terminal will
suffice. We use the printf () function because it is the easiest. To write the prompt “ more? ” in
reverse video, we send the first escape sequence, then the prompt, then the sequence to restore the
terminal:

printf ("\033[7m more? \033[m");

Although the preceding discussion centered on terminals, it is not likely that you are using an
actual terminal when you are working in a shell. Most likely, you are using a terminal emulation
package, such as Gnome Terminal or Konsole on Linux, or if connecting remotely, a package such
as PuTTY. Almost all terminal emulators running on Unix systems interpret some subset of the
ANSI escape sequences. They use software to emulate the behavior of hardware terminals. One of
the first terminals to support ANSI escape sequences was the VT100. To this day, most terminal
emulators support the VT100. Some also support more advanced terminals such as the VT102 or
the VT220. In principle, if the terminal emulator supports the full set of ANSI escape sequences, a
program that uses these sequences should work regardless of which terminal is being emulated.

This preceding code to reverse the video is just one of many escape sequences that can control the
terminal. We will explore a few more of them a little later.

Listing 1.5: The supporting functions for Version 1 of more.
void do_more of(FILE xfp)

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 39
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss f b
Chapter 1 Introduction to System Programming ' Dﬁ?

char line [LINELEN | ; // buffer to store line of input
int num_of lines = SCREEN ROWS; // # of lines left on screen
int getmore = 1; // boolean to signal when to stop

int reply ; // input from user

while (getmore && fgets(line, LINELEN, fp)){
// fgets() returns pointer to string read or NULL
if (num_of lines =— 0) {
// reached screen capacity so display prompt
reply get user input ();
switch (reply) {
case SPACEBAR:
// allow full screen
num_of lines = SCREEN ROWS;
break ;
case RETURN:
// allow one more line
num_of lines++;
break ;
case QUIT:
getmore = 0;
break ;
default : // in case of invalid input
break ;

}
}
if (fputs(line, stdout) = EOF)

exit (1);
num_of lines——;

int get wuser input ()

* display message, wait for response, return key entered as int
* Returns SPACEBAR, RETURN, QUIT, or INVALID

int C;

printf("\033|7m more? \033[m"); /* reverse on a VTI100 * /

while((¢ = getchar()) != EOF) /* wait for response * /
switch (¢) {
case ’'q’ : /* 'q’ pressed x/
return QUIT;
case ' 7 /* ' 7 pressed x/

return SPACEBAR;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 33
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

case '\n’ /* Enter key pressed x/
return RETURN;
default /* invalid if anything else x/

return INVALID;

}

Compile and run this program. To compile and run, if all of the code is in the single file named
more_vl.c, use the commands

$ gcc more_vl.c -o more_vl
$ more_vl more_vl.c

My code is in three files, more_v1.c, more_utils_vl.c, and more_utils_v1.h. I compile using
$ gcc -o more_vl more_utils_vl.c more_vl.c

When you run it you will find that

e more_v1l does display the first 23 lines, and
e It does produce reverse video over the more? prompt.
e But pressing space-bar or 'q’ has no effect until you press the Enter key.

e If you press Enter, the more? prompt is replicated and the old one scrolls up with the displayed
text. In other words, the more? prompt is not erased.

Next, run the command
$ 1s /bin | more_vl

and observe what happens. It is not what you expected. Why not? The function get_user_input ()
calls getchar () to get the user’s response to determine what more_v1 should do next. If you recall
the discussion in the beginning of this chapter, getchar() reads from the standard input stream.
Since standard input is the output end of the pipeline from the 1s -1 command, getchar() gets
characters from the 1s listing instead of from the user’s typing at the keyboard. As soon as the
output of 1s -1 contains a space character or a q or a newline, the program will treat that as what
the user typed. This first version of more fails to work correctly because it uses getchar () to get the
user’s input in the get_user_input () function. Somehow, we have to get the user’s input from the
keyboard regardless of the source of the standard input stream. In other words, get_user_input ()
has to read from the actual keyboard device. Well, not exactly. It has to read from the terminal
that the user was given when the user logged into the UNIX system.

A process can read directly from a terminal in UNIX by reading from the file /dev/tty. /dev/tty
is an example of a device special file.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 34
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.11.3 Device Special Files

The UNIX system deviated from the design of all other operating systems of the time by simplifying
the way in which programs handled I/O. Every I/0 device (disk, printer, modem, etc.) is associated
with a device special file, which is one kind of special file. Special files can be accessed using the
same system calls as regular files, but the way the kernel handles the system call is different when
the file argument is a device special file; the system call activates the device driver for that device
rather than causing the direct transfer of data. This frees the programmer from having to write
different code for different types of devices: he or she can write a program that performs output
without having to know whether the output will go to a disk file, a display device, a printer, or any
other device. The program just connects to a file variable, which may be associated at run time
with any of these files or devices. This is the essence of device-independent 1/0.

To illustrate, suppose a portion of C++ code writes to an output stream as follows:

ofstream outfile;

cout << "Where should output be sent? ";
cin >> filename;

outfile.open(filename) ;

On a UNIX system, the user can enter the filename "/dev/console" at the prompt, and the output
will go to the display device. If the user enters "myfile" the output will go to myfile. The kernel
will take care of the details of transferring the data from the program to the device or the file.

There is another type of special file called a named pipe, also called a FIFO special file, or a FIFO
for short. Named pipes are used for inter-process communication on a single host; they will be
covered in Chapter 8.

The last typeET] of special file is a socket. Sockets were introduced into UNIX in 4.2BSD, and provide
inter-process communication across networks. Sockets are special files in the sense that they are part
of the special file system, but they are different than other special files because there are different
system calls needed to manipulate them. Sockets will be covered in Chapter 9.

An entry for each device file resides in the directory /dev, although system administrators often
create soft links to them in other parts of the file system. The advantages of device files are that

e Device I/O is treated uniformly, making it easier to write programs that are device indepen-
dent;

e Changes to the hardware result only in changes to the drivers and not to the programs that
access them;

e Programs can treat files and devices the same, using the same naming conventions, so that a
change to a program to write to a device instead of a file is trivial;

e Devices are accorded the same protections as files.

Device files are described in greater depth in Chapter 4 of these notes.

30This is not completely true, since certain versions of UNIX have other special files, such as the door in Sun
Solaris. The ones listed here are part of most standards.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 35
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

1.11.3.1 Examples

The names of device files vary from one version of UNIX to another. The following are examples of
device files that with very high certainty will be found on any system you use.

e /dev/tty is the name of the terminal that the process is using. Any characters sent to it are
written to the screen.

e /dev/mem is a special file that is a character interface to memory, allowing a process to write
individual characters to portions of memory to which it has access.

e /dev/null is a special file that acts like a black hole. All data sent to it is discarded. On
Linux, /dev/zero is also used for this purpose, and will return null characters (?\0’) when
read.

e The names of hard disk drive partitions vary from one system to another. Sometimes they
have names like /dev/rd0a or /dev/hda. The cd-rom drive is almost always mapped to
/dev/cdrom. You should browse the /dev directory on your machine to see which files exist.

Now try an experiment. Login to the UNIX system and enter the command below and observe the
system response.

$ echo "hello" > /dev/tty

Now do the following. Type "tty" and use the output in the echo command as below.

$ tty

/dev/pts/4

$ echo "hello" > /dev/pts/4
hello

Now open a second window. If you are connected remotely, you can either login a second time, or
use the SSH client to open a second terminal window. If you are logged in directly, just create a
second terminal window. Type the tty command in the new window and record the name of the
device file. Suppose it is /dev/pts/2. Now in the first window, type

$ echo "hello" > /dev/pts/2

and observe what happens. You have just discovered that you can write to a terminal by writing
to a device file. You will only be able to write to terminals that you own, not those of other people.
Later we will see how you can write to other terminals, provided that the owner of that terminal
has granted this type of access.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 36
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss f b
Chapter 1 Introduction to System Programming ' Dﬁ?

1.11.4 A Second Attempt at the more Program

We can use the device file idea to modify the more program to overcome the problem of redirected
standard input. All that is necessary is to supply the get_user_input () function with a parameter
that specifies the source of user input. This requires

1. That do_more_of () declare a FILE* variable and assign to it the result of a call to fopen(/dev/tty).
2. That do_more_of () call get_user_input() with the FILE* variable assigned by fopen().

3. That get_user_input () have a parameter fp of type FILE*.

4. That we replace the call in the while loop condition (¢ = getchar()) by (c=fgetc(fp)).

The getchar () function always reads from the standard input stream. It does not take an argument.
It may be, in fact, a macro. It is better to use fgetc (), which takes a FILE* argument. The modified

functions are in Listing

Listing 1.6: Corrected versions of do_more_of () and get_user_input ().
void do_ more of(FILE xfp)
{

char line |[LINELEN|; // buffer to store line of input
int num_of lines = SCREEN ROWS; // number of lines left on screen
int getmore = 1, // boolean to signal when to stop
int reply; // input from user

FILE xfp tty;

fp_tty = fopen("/dev/tty", "r"); // NEW: FILE stream argument
if (fp_tty = NULL) // if open fails
exit (1); /] exit

while (getmore && fgets(line, LINELEN, fp)){
/] fgets() returns pointer to string read
if (num_of lines =— 0) { // reached screen capacity
reply = get user input(fp_ tty); // NEW
switch (reply) {
case SPACEBAR:
// allow full screen
num_of lines = SCREEN ROWS;
break ;
case RETURN:
// allow one more line
num _of lines+-+;
break ;
case QUIT:
getmore = 0;
break ;
default : // in case of invalid input
break ;

t

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 37
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss f b
Chapter 1 Introduction to System Programming ' D#

if (fputs(line, stdout) = EOF)
exit (1);
num_of lines——;

int get user input(FILE *fp)

// Display message, wait for response, return key entered as int
// Read user input from stream fp

// Returns SPACEBAR, RETURN, QUIT, or INVALID

int C;

printf("\033[7m more? \033[m"); // reverse on a VTI100
// Now we use getc instead of getchar. It is the same except
// that it requires a FILEx argument

while((¢ = getc(fp)) != EOF) // wait for respounse
switch (¢) {

case 'q’ // ’q’ pressed
return QUIT;
case ' 7 // 7 7 pressed
return SPACEBAR;
case ’\n’ // Enter key pressed
return RETURN;
default // invalid if anything else

return INVALID;

1.11.5 What Is Still Wrong?

The second version does not display the percentage of the file displayed. It still requires the user to
press the Enter key after the space-bar and the ’q’, and the space characters and ’q’ are echoed on
the screen, which the real more prevents. It still keeps displaying the old more? prompt instead of
erasing it. It has hard-coded the number of lines in the terminal, so it will not work if the terminal
has a different number of lines. So how do we get our version of more to behave like the real thing?
There is something we have yet to understand, which is how the kernel communicates with the
terminal.

Displaying the percentage is mostly a matter of logic. The real more prints the percentage of bytes
of the file displayed so far, not the number of lines displayed. If you know the size of the file, you
can calculate the percentage of bytes printed. That problem is easy to solve once we know how to
obtain the size of a file programmatically.

Remember that /dev/tty is not really a file; it is an interface that allows the device driver for the
particular terminal to run. That device driver allows us to configure the terminal, to control how

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 38
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

it behaves. We will see that we can use this interface to do things such as suppressing echoing of
characters and transmitting characters without waiting for the Enter key to be pressed.

The problem of the more? prompt not disappearing is harder to solve, and also requires understand-
ing how to control the terminal. One alternative is to learn more of the VT100 escape sequences
and use them to erase the more? prompt. Another alternative is to write copies of all lines to an
off-screen buffer and clear the screen and then replace the screen contents whenever the user presses
the Enter key. This is an easier solution than the first, but it is not how the real more command
behaves.

1.11.6 A Third Attempt at the more Program

Our final version, not a correct version, will address some of the above problems.

The first problem is how we can determine the actual size of the terminal window. There are two
solutions to this problem. If the user’s environment contains the environment variables COLUMNS
and LINES, then the program can use their values to determine the number of columns and lines in
the terminal window, as suggested in the following code snippet that stores the LINES value in the
variable num_lines.

int num_lines;
char *endptr;
char *linestr = getenv("LINES");
if (NULL !'= linestr) {
num_lines = strtol(linestr, &endptr, 0);
if (errno != 0) {
/* handle error and exit */
}
if (endptr == linestr) {
/* not a number so handle error and exit */
¥
}

The code is incomplete — one should fill in the error handling portions with the appropriate code.
We will discuss error handling later. But the preceding code will not work if the LINES variable has
not been put into the user’s environment, and it will not work in the case that the user resizes the
window after the program starts.

The better solution is to use a more advanced function, which will be covered in more depth in
Chapter 4, named ioctl(). The function ioctl() is short for I/O Control. It is designed to do a
great many things with peripheral devices, not just terminals. Its prototype is

#include <sys/ioctl.h>
int ioctl(int d, int request, ...);

Notice the “...” in the parameter list. This is C’s notation for a variable number of parameters. The
first parameter is a file descriptor. File descriptors are covered in Chapter 2. The second parameter,
of integer type, is a command. The following parameters are arguments to the command, and they
depend on the given command. The ioctl() call to get the number of rows and columns of the
current terminal window has three arguments:

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 39
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

ioctl(tty_file_descriptor, TIOCGWINSZ, &window_structure))

where tty_file_descriptor is a file descriptor for our terminal, TIOCGWINSZ is a command that
means “get the terminal window size structure” and window_size_structure is a variable of type
struct winsize. The structure winsize is defined in a header file that is automatically included
when you include the <sys/ioctl.h> header file in the code. The code that would use this ioctl
is

struct winsize window_arg;
int num_rows, num_cols;

fp_tty = fopen("/dev/tty", "r");

if (fp_tty == NULL)
exit(1);

if (-1 == ioctl(fileno(fp_tty), TIOCGWINSZ, &window_arg))
exit(1);

num_rows = window_arg.ws_row;

num_cols = window_arg.ws_col;

The function fileno () used inside the ioctl is covered in Chapter 2; it converts a FILE* to a file de-
scriptor. File descriptors are also explained in Chapter 2. We will use the following get_tty_size()
function in our last version of the do_more_of () and get_user_input () functions:

void get_tty_size(FILE *tty_fp, int* numrows, int* numcols)

{

struct winsize window_arg;

if (-1 == ioctl(fileno(tty_fp), TIOCGWINSZ, &window_arg))
exit(1);

*NuUMrows = window_arg.ws_row;

*numcols = window_arg.ws_col;
by

Although the ioctl() function is standard and should be available on any UNIX system, the par-
ticular commands that it implements may not be. In particular, it is possible that the TIOCGWINSZ
command is not available. When you write code that depends on features that are not guaranteed
to be present, it is best to conditionally compile it by enclosing it within preprocessor directives to
conditionally compile. The preceding function is better written using

void get_tty_size(FILE *tty_fp, int* numrows, int* numcols)
{
#ifdef TIOCGWINSZ

struct winsize window_arg;

if (-1 == ioctl(fileno(tty_fp), TIOCGWINSZ, &window_arg))

exit(1);
*xnumrows = window_arg.ws_row;
*numcols = window_arg.ws_col;
This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 40

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

#else

/* some fallback code here */
#tendif
}

We will omit the fallback code for now, since it requires knowing more about terminals.

The second problem is how to remove the old more? prompt so that it does not scroll up the screen.
In short we need a way to clear portions of the screen. We also need a way to move the cursor to
various places on the screen. There are various ANSI escape sequences that do these things. The
table below lists a small fraction of the set of ANSI escape sequences. The ones in the table are the
easiest to learn and use. In the table, the symbol “ESC” is short for ’\033’. In almost all cases, the
default value of n in the table is 1.

Key Sequence Meaning

ESC[M Move the cursor up in scrolling region.
ESC[nA Move the cursor up n lines.
ESC[nB Move the cursor down n lines
ESC[nC Move the cursor right n columns
ESC[nD Move the cursor left n columns
ESC[nG Move the cursor to column n
ESCE Move cursor to start of next line
ESC[r;cH Move the cursor to row r, column c.
ESC[OK Erase from the cursor to the end of the line
ESC[1K Erase from the beginning of the line to the cursor.
ESC[2K Erase the line
ESC[0J Erase from the cursor to the end of the screen.
ESC[1J Erase from the bottom of the screen to the cursor
ESC[2J Erase the screen
ESC[Om Normal characters
ESC[1m Bold characters
ESC[4m Underline characters.
ESC[5m Blinking characters
ESC[7m Reverse video characters
ESClg Clear tab stop at current column.
ESC[3g Clear all tab stops.
Examples

Following are a few examples of sequences of commands. The last two are compound control
sequences, and they are of signficance because we can use them in our program.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 41
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Sequence Meaning

\033[24 Move the cursor up two lines.

\033[2J Clear the entire screen.

\033[24;80H Move the cursor to row 24, column 80.

\033[1A\033[2K\033[1G Move up one line, erase that line, and move the
cursor to the leftmost column.

\033[1A\033[2K\033[1B\033[7D Move the cursor up one line; erase that line; move

the cursor back down one line, and move it to the
left 7 positions.

We can combine the formatting features of the printf () function with our get_tty_size () function
and these escape sequences to park the cursor in the lower left hand corner of the screen, regardless
of how large the screen is, and display the prompt in reverse video:

int tty_rows;

int tty_cols;

get_tty_size(fp, &tty_rows, &tty_cols);
printf ("\033[%d;1H", tty_rows);

printf ("\033[7m more? \033[m");

The first printf () moves the cursor to the last row of the screen in the first column. The second
displays the prompt in reverse video and then reverts the terminal back to normal character display.
The third version of more, in Listing[I.7]below, includes these two improvements. The main program
does not change, so it is not listed.

Listing 1.7: A third version of the more program.

#include "more utils.h"
#include <sys/ioctl.h>

#define LINELEN 512

void get tty size(FILE xtty fp, int* numrows, int* numcols)

{
struct winsize window arg;
if (-1 == ioctl(fileno (tty_fp), TIOCGWINSZ, &window_arg))
exit (1);
xnumrows = window _arg.ws_row;
xnumcols = window arg.ws col;
}

/%% get_user_input (FILE xfp)

* Displays more’s status and prompt and waits for user response,
* Requires that user press return key to receive input

x Returns one of SPACEBAR, RETURN, or QUIT on valid keypresses
* and INVALID for invalid keypresses.

* Reads from fp instead of from standard input.

*/
int get user input(FILE xfp)
{
int c;
This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 49

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

int tty _rows;
int tty cols;
/%

* Get the size of the terminal window dynamically , in case it changed.
x Then use it to put the cursor in the bottom row, leftmost column
* and print the prompt in "standout mode" i.e. reverse video.
*
/
get tty size(fp, &tty rows, &tty cols);
printf("\033[%d;1H", tty rows);
printf ("\033[7m more? \033[m");

/* Use fgetc () instead of getc(). It is the same except
* that it is always a function call , not a macro, and it is in general
* safer to use.
*/
while ((¢ = fgetc(fp)) != EOF) {
/% There is no need to use a loop here, since all possible paths
x lead to a return statement. It remains since there is no downside
* to using it.

*/
switch (¢) {
case 'q’ : /% 'q’ pressed %/
return QUIT;
case ’ ’ : /% 7 7 pressed x/
return SPACEBAR;
case ’'\n’ : /* Enter key pressed x/
return RETURN;
default : /+ invalid if anything else x/

return INVALID;
}
}

return INVALID;

/*% do_more of (FILE x fp)

x Given a FILEx argument fp, display up to a page of the

x file fp, and then display a prompt and wait for user input.
x If user inputs SPACEBAR, display next page.

* If user inputs RETURN, display one more line.

* If user inputs QUIT, terminate program .

*/

void do_more of(FILE xfp)

{
char line [LINELEN | ; // buffer to store line of input
int num_of lines; // number of lines left on screen
int reply ; // input from user
int tty rows; // number of rows in terminal
int tty cols; // number of columns in terminal
FILE *fp _tty; // device file pointer
fp_tty = fopen("/dev/tty", "r"); // NEW: FILE stream argument
if (fp_tty = NULL) // if open fails

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 43

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

exit (1); // exit

/* Get the size of the terminal window */
get tty size(fp tty, &tty rows, &tty cols);
num_of lines — tty rows;

while (fgets(line, LINELEN, fp)){
if (num_of lines = 0) {
// reached screen capacity so display prompt
reply = get user input(fp tty); // note call here
switch (reply) {
case SPACEBAR:

// allow full screen

num_of lines = tty rows;
printf ("\033[1A\033[2K\033[1G");
break ;

case RETURN:

// allow one more line
printf ("\033[1A)\033[2K\033[1G");
num_of lines++;
break ;

case QUIT:
printf ("\033[1A\033[2K\033[1B\033[7D");
return ;

default : // in case of invalid input
break ;

}

if (fputs(line, stdout) = EOF)
exit (1);
num_of lines——;

}

This version still has a few deficiencies. One is that it checks whether the terminal has been resized
in each iteration of the loop, whenever it retrieves the user input. Although this works, it wastes
cycles. Later we will learn how to do this asynchronously, finding the size of the terminal only when
it has actually been resized.

Another deficiency is that it still requires the user to press the Enter key. Remedying this requires
further understanding of terminals, again in Chapter 4. One feature we can easily integrate into
the program is calculating the percentage of the file displayed so far. This is left as an exercise.

1.12 Where We Go from Here

The real purpose of trying to write the more program is to show that, using only the usual high-
level 1/0 libraries, we cannot write a program that does the kind of things that more does, such as
ignoring keyboard input and suppressing display of typed characters. The objective of these notes
is to give you the tools for solving this kind of problem, and to expose you to the major components
of the kernel’s API, while also explaining how the kernel looks "under the hood." We are going to
look at each important component of the kernel. You will learn how to rummage around the file
system and man pages for the resources that you need.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 44
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming
Appendix A Brief History of UNIX

In 1957, Bill Norris started Control Data Corporation (CDC). In 1959 Ken Olsen started DEC
with $70,000 in venture capital money. The first PDP-1 (manufactured by DEC) was shipped in
1960. In 1963, Project MAC (Multiple Access Computers) was organized at MIT to do research
on interactive computing and time-sharing systems. In 1965, AT&T, GE, and Project MAC at
IBM joined together to develop the time-sharing system MULTICS (Multiplexed Information and
Computing Service).

In 1966, Ken Thompson finished studies at University of California at Berkeley (UCB) and joined the
technical staff at AT&T Bell Telephone Laboratories to work on MULTICS. Two years later, Dennis
Ritchie completed work on his doctorate at Harvard and joined Bell Labs to work on MULTICS
project.

Thompson developed the interpretive language B based upon BCPL. Ritchie improved on "B" and
called it "C".

In 1969 while working for AT&T Bell Labs, Ken Thompson and Dennis Ritchie wrote the first
version of UNICS for a PDP-7, manufactured by DEC. It ran on a machine with 4K of 18-bit words.
UNICS is a pun on MULTICS and stood for Uniplexed Information and Computing Services. Three
years later, it was rewritten in C so that they could port it to other architectures. By 1973, the first
UNIX support group was formed within Bell Labs, and some fundamental UNIX design philosophies
emerged. Ritchie and Thompson gave a presentation about the new operating system at the ACM
Symposium on Operating Systems at IBM that year. This was the catalyst that sparked the spread
of the UNIX system. The University of California at Berkeley (UC Berkeley) soon acquired Version
4 from Bell Labs and embarked on a mission to add modern features to UNIX.

Over the next four years, a number of events shaped the future of UNIX. AT&T started licensing it
to universities. Boggs and Metcalfe invented the Ethernet at Xerox in Palo Alto. Bill Joy joined UC
Berkeley and developed BSD Version 1. UNIX was ported to a non-DEC machine. (DEC had been
unwilling to support UNIX.) P.J. Plauger wrote the first commercial C compiler, and Doug and
Larry Michel formed a company called Santa Cruz Operations (SCO) to start selling a commercial
version of UNIX for the PC.

In 1974, "The UNIX Time-Sharing System" was published in CACM by Ken Thompson and Dennis
Ritchie. That same year, the University of California at Berkeley (UCB) got Version 4 of UNIX,
and Keith Standiford converted UNIX to a PDP 11/45. The Elements of Programming Style by
Kernighan and Plauger was published, and AT&T officially began licensing UNIX to universities.

In 1976, Software Tools by Kernighan and Plauger was published, and Boggs and Metcalfe invented
the Ethernet at Xerox in Palo Alto.

By 1978, UNIX had essentially all of the major features that are found in it today. One year later,
Microsoft licensed UNIX from AT&T and announced XENIX (even before producing MS-DOS).

UNIX spread rapidly because:

e [t was easily ported from one architecture to another because it was written in a high level
language (C), unlike other operating systems.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 45
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

e It was distributed to universities and research laboratories for free by AT&T, and early com-
mercial versions were sold at very low cost to academic institutions.

e The source code was freely available, making it easy for people to add new features and
programs to their systems.

e It had several features (e.g., pipes) that had not been part of other operating systems.

In 1979, Bell Labs released UNIX™ Version 7, attempting to stake proprietary rights to UNIX, and
Microsoft licensed UNIX from AT&T and announced XENIX (even before producing MS-DOS). In
the early 1980s, a number of developments occurred that shaped the future of the UNIX evolutionary
tree:

e AT&T and Berkeley (the Computer Systems Research Group, or CSRG) each started to
develop their own independent versions of UNIX.

e Bill Joy left Berkeley to co-found a new company, SUN Microsystems, to produce UNIX
workstations. Sun got its name from the Stanford University Network (SUN) board. The
workstation was based on the Motorola 68000 chip running SunOS based on 4.2BSD. It in-
cluded an optional local area network based on Ethernet. The commercial UNIX industry
was in full gear.

e Microsoft shifted its focus on the development of MS-DOS, shelving marketing of XENIX.

e The X/Open standards group was formed.

Over the next fifteen years, many different versions of UNIX evolved. Although the differences
between these versions are not major, care must be taken when trying to treat "UNIX" as a single
operating system. Through the 1980s and early 1990s, the two major UNIX distributions were the
Berkeley series known by names such as 4.2BSD and 4.3BSD and the AT&T series known by names
such as System IIT and System V. SUN’s UNIX was called SunOS, and later Solaris, and was a
hybrid of the two strains.

Since its creation in 1969, UNIX has grown from a single, small operating system to a collection of
distinct operating systems of varying complexity, produced by vendors all around the world. The
essential features of most UNIX systems have remained the same, partly because of standardization
efforts that began in the late 1980’s and continued through the 1990’s. Modern UNIX is a slippery
concept. Several standards have been written, and they have a large common core. What is
generally called UNIX is the common core of these standards, which include POSIX, and UNIX 98
from the Open Group. UNIX 98 is also called the Single UNIX Specification and it alone is UNIX
as far as property rights are concerned, since the Open Group owns the UNIX trademark now. The
Open Group is an international consortium of more than 200 members from government, academia,
worldwide finance, health care, commerce and telecommunications. Of course, there is also Linux,
which has overtaken BSD and System V on the desktop.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 46
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming
Appendix B UNIX at the User Level

This section is designed for people with little, if any, experience with UNIX. It covers:

e Logging in and out
e Shells

e The environment

B.1 Notation

In the description of a command, square brackets [] enclose optional arguments to the command,
and angle brackets < > enclose placeholders. The brackets are not part of the command. A vertical
bar "|" is a logical-or. An ellipsis ... means more than one copy of the preceding token. For
example

1ls [<option>] ... [<directory_name>]

indicates that both the option specifiers and the argument to the 1s command are optional, but
that any options should precede any directory names, and that both option specifiers and directory
names can occur multiple times, as in

1s -1 -t mydir yourdir

Commands will be preceded by a dollar sign to indicate that they are typed after the shell prompt.
When the input and output of a command are shown, the user’s typing will be in bold, and output
will be in regular text.

$ 1s -1 -t mydir yourdir

B.2 Logging In

A wuser uses a UNIX system by logging in, running programs, and logging out. There are two
different ways to login to a UNIX system:

e When sitting at the console of the computer, i.e., the computer keyboard and monitor are
physically in front of you, and no one is presently logged in to the machine, or

¢ Remotely, by using a remote login utility like SSH.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 47
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

At the Console

If you login to the computer at its own console, the appearance of the screen will depend upon which
version of UNIX you use. In all cases, there will be an option to enter a user or login name followed
by a password. For RedHat 9 with the Gnome 2 desktop environment, the screen will appear as
in Figure After logging in, you will see a desktop with a graphical user interface, and a menu
somewhere on the screen with an option somewhere to open a terminal window. It is within that
terminal window that the rest of the notes pertain.

«W redhat.

Welcome to localhost.localdomain

Username:

Please enter your username

> Language » Session > Reboot ?» Shutdown Tue Feb 17,12:20 AM

Figure B.1: RedHat 9 login screen.

Remotely via SSH

SSH is a protocol that provides encrypted communication to prevent passwords and other secure
information from being captured in transit over insecure networks. SSH stands for Secure SHell.
SSH is a client/server application. The server runs on the remote host, the one into which you
want to login, and the client is on your local host. Once you have established a connection to the
UNIX system from your local machine using SSH, everything that you type is encrypted by the
SSH client on your local machine and decrypted by the remote host. The encryption algorithms are
very strong and the keys are very secure.

These notes do not describe how to use any particular SSH client. All such clients will need from
you the TP address of the remote host, the login or user name, and your password. Assuming that
you have provided these, the SSH client will log you in and display a terminal window on your local
machine.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 48
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

You will see some messages, followed by the prompt displayed by your login shell. A login shell is
the shell that runs when you log-in. It depends on the particular version of UNIX you are using
and how the initial messages were configured by the system administrator. On the Hunter College
Computer Science Department’s network gateway machine, named eniac, which was running Solaris
9, a version of UNIX from SunSoft, it looked like:

Last login: Mon Aug 30 2004 19:51:19 -0500 from pool-68-161-100-
Sun Microsystems Inc. Sun0S 5.9 Generic October 1998
This workstation is running Sun0S 5.x

eniac{sweiss} [42] $

When eniac was later converted to a Linux host, the login messages became:

Last login: Fri Jan 20 17:21:53 2006
from pool-68-161-21-160.ny325.east.verizon.net
eniac{sweiss} [339] $

In both cases, the last line begins with a prompt string, which is a sequence of characters followed
by a waiting cursor. In each of these the prompt string looks like

eniac{sweiss} [n] $

where n is some number. The prompt is sometimes "$" alone. It depends on how it has been
configured, which partly depends upon the shell. Some shells let you do more configuring than
others. This prompt displays the name of the host computer, the user-name on that host, and the
history number (42 or 339) of the current command. The history number is the ordinal number
that indicates how many commands you have entered so far. It gets reset to 1 when it reaches the
maximum number of saved commands. One can retrieve old commands using their numbers.

Your login shell is the special shell that is started up each time you login. On UNIX systems with a
windowing environment, each window will have a separate instance of a running shell. Even UNIX
systems with a GUI follow the shell paradigm — instead of typing commands, you use a pointing
device and click on icons and controls, but the effect is still to construct calls to system programs,
to a shell, or to shell scripts.

When you have logged-in, you will be "in" your home directory. You might feel comfortable with
the idea of "being in a directory" but it makes no sense to say this. You are in your seat. You are
not in the computer. Nonetheless, this language has taken hold. You probably know that "being
in the home directory" means that when you view the contents of the current directory, you will
see the files in your home directory. But this is an inadequate explanation. I will have more to say
about the concept of "being in a directory" shortly. What you do need to understand now is that
the home directory is the directory that you "are in" each time you log-in. It is the starting place
for your current session. The HOME environment variable stores the "name" of your home directory.
This will also be clarified shortly.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 49
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

B.3 Logging Out

When you are finished using the system, you log out. There are usually a few ways to log out.
POSIX specifies that a shell provide a built-in exit command, which can be used to exit any shell.
There is also the logout command, which may or may not be built-into the shell:

eniac{sweiss} [342]$ logout

The difference is that logout can only be used to log out, not to terminate a shell that is not a login
shell, such as a sub-shell of some other shell, whereas exit terminates all shells and logs you out if
the shell is a login shell.

B.4 Online Help: The man Pages

Before going any further, you should understand how to get help online. Traditional UNIX provides
only one source of online help — the manual pages. The single most important command to remember
is the man command. The word "man" is short for "manual"; if you type man following by the
name of a command, UNIX will display the manual page, called the man page for short, for that
command. For example, to learn more about a command named echo, type

$ man echo
and you will see several screens of output, beginning with:

echo(1) User Commands echo(1)
NAME
echo - display a line of text

SYNOPSIS
echo [SHORT-OPTION]... [STRING]...
echo LONG-OPTION

DESCRIPTION
Echo the STRING(s) to standard output.
-n do not output the trailing newline
-e enable interpretation of backslash escapes
-E disable interpretation of backslash escapes (default)

(remaining lines omitted)

Every man page is in the same format, which may vary from one UNIX system to another. The first
line shows the name of the section of the manual in which the page was found (User Commands)
and the name of the man page followed by the section number (echo, section 1). Sometimes the
name of the man page will be different from the name of the command. The sections of the man
page, which may not all be present, are:

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 50
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

NAME name of the command

SYNOPSIS syntax for using the command

DESCRIPTION brief textual summary of what the command does

OPTIONS precise descriptions of command-line options

OPERANDS precise descriptions of command-line arguments

USAGE a more thorough description of the use of the command

ENVIRONMENT VARIABLES list of environment variables that affect the command
execution

EXIT STATUS list of exit values returned by the command

FILES list of files that affect the command execution

ATTRIBUTES architectures on which it runs, availability, code
independence, etc.

SEE ALSO list of commands related to this command

NOTES general comments that do not fit elsewhere

BUGS known bugs

In man pages, the square bracket notation [] as in [SHORT-0PTION] above defines an optional

@

command-line option or argument. The “:” is followed by your cursor because many UNIX systems
now pipe the output of the man command through the less command for viewing, and the “:”
is the less prompt to the user to type something on the keyboard. More accurately, the less

command is the viewer for the man command itselfll

For learning how to use a command, the man page by itself is usually sufficient. For learning how a
command interacts with the operating system or how it might be implemented, one must do more
research. In the next chapter, I will explain how to use the man pages in more detail for the latter
purpose. In the meanwhile, you should look at the man pages of the various commands mentioned
in this chapter as you read on.

It should also be mentioned that modern UNIX systems also provide other sources of help, such as
the help and info commands. If the system you are using has these commands, typing help or info
followed by a command or a topic will display information about that topic.

B.5 Shells

Your view and appreciation of UNIX is pretty much determined by the interface that the shell creates
for you, as suggested in Figure The shell hides the inner workings of the kernel, presenting a
set of high level functions that can make the system easy to use. Although you may have used a
UNIX system with a graphical user interface, you must be aware that this GUI is an application
separate and distinct from UNIX. The GUI provides an alternative to a shell for interacting with
UNIX, but experienced users usually rely on using a shell for many tasks because it is much faster
to type than it is to move a mouse around pointing and clicking.

There are many different shells, including the Bourne shell (sh), the C shell (csh), the Korn shell
(ksh), the Bourne-again shell (bash), the Z shell (zsh), and the TC shell (tcsh). Although a few
shells may be bundled with the operating system, they are not actually a part of it.

Unlike most operating systems, UNIX allows the user to replace the original login shell with one
of his or her own choosing. The particular shell that will be invoked for a given user upon login is

You can change which viewer the man command uses by changing the value of the PAGER environment variable.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 51
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Figure B.2: The shell: A user’s view of UNIX.

specified in the user’s entry in a file called the password file. The system administrator can change
this entry, but very often the chsh command available on some systems can also be used by the
user to change shells. In some versions of UNIX, the user can also use the command passwd -s to
change the login shell.

B.5.0.1 Shell Features

In all shells, a simple command is of the form
$ commandname command-options argl arg2 ... argn

The shell waits for a newline character to be typed before it attempts to interpret (parse) a command.
A newline signals the end of the command. Once it receives the entered line, it checks to see if
commandname is a built-in shell command (A built-in command is one that is hard-coded into the
shell itself.) If it is, it executes the command. If not, it searches for a file whose name, either
relative or absolute, is commandname. (How that search takes place is explained in a later chapter.)
If it finds one, this file is loaded into memory and the shell creates a child process to execute the
command, using the arguments from the command line. When the command is finished, the child
process terminates and the shell resumes its execution.

In addition to command interpretation, all shells provide

e redirection of the input and output of commands

e pipes — a method of channeling the output of one command to the input of another
e scripting — a method of writing shell programs that can be executed as files

e file name substitution using metacharacters

e control flow constructs such as loops and conditional execution
Shells written after the Bourne shell also provide

¢ history mechanism — a method of saving and reissuing commands in whole or in part

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 59
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

e backgrounding and job control — a method of controlling the sequencing and timing of com-
mands

e aliases for frequently used commands

The tcsh shell added a number of features to the C shell, such as interactive editing of the com-
mand line and interactive file and command name completion, but the Korn shell introduced many
significant additions, including:

e general interactive command-line editing

e coprocesses

e more general redirection of input and output of commands
e array variables within the shell

e autoloading of function definitions from files

e restricted shells

e menu selection

bash borrowed many of the features of its predecessors and has almost all of the above capabilities.

B.5.0.2 Standard I/O and Redirection

UNIX uses a clever method of handling I/0. Every program is automatically given three open files
when it begins execution, called standard input, standard output, and standard error. (POSIX does
not require standard error, but it is present in all systems that I know.) Standard input is by default
the keyboard and standard output and error are to the terminal window.

Commands usually read from standard input and write to standard output. The shell, however,
can "trick" a command into reading from a different source or writing to a different source. This is
called /0 redirection. For example, the command

$ 1s mydir
ordinarily will list the files in the given directory on the terminal. The command
$ 1s mydir > myfiles

creates a file called myfiles and redirects the output of the 1s command to myfiles provided
myfiles did not already exist, in which case it will display a message such as

bash: myfiles: cannot overwrite existing file

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 53
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

The notation "> outfile" means "put the output of the command in a file named outfile instead
of on the terminal." The output redirection operator, ">", replaces the standard output of a program
by the the file whose name follows the operator.

Analogously, the notation "< infile" means read the input from the file infile instead of from
the keyboard. Technically, the "<" known as the input redirection operator, replaces the standard
input of a program by the file whose name follows the operator.

A command can have both input and output redirected:
$ command < infile > outfile

which causes the command to read its input from infile and send its output to outfile. Th order
of the command, and the input and output redirection does not matter. One can also write any of
the following semantically equivalent lines:

$ command > outfile < infile
$ > outfile command < infile
$ < infile > outfile command

The concept of redirection is carried one step further to allow the output of one command to be the
input of another. This is known as a pipe or pipeline, and the operator is a vertical bar "|" :

$ 1s mydir | sort | lpr

means list the contents of the given directory, and instead of writing them on the terminal or in a
file, pass them as input to the sort command, which then sorts them, and sends the sorted list to
the 1pr command, which is a command to send files to the default printer attached to the system.
It could have been done using temporary files as follows:

$ 1s mydir > templ

$ sort < templ > temp2
$ lpr < temp2

$ rm templ temp2

but in fact this is not semantically equivalent because when a pipeline is established, the commands
run simultaneously. In the above example, the ls, sort, and lpr commands will be started up
together. The shell uses a kernel mechanism called pipes to implement this communication. There
are other kinds of I/O redirection, including appending to a file and redirecting the system error
messages; for details consult the shell’s man page.

There are two other I/O redirection operators: << and >>. If you are curious and unfamiliar with
these, read about them in the bash man page.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 54
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

B.5.0.3 Command Separators and Multitasking

Commands can be combined on single lines by using command separators. The semicolon ";" acts
like a newline character to the shell — it terminates the preceding command, as in:

$ 1s mydir ; date

which lists the contents of the given directory and then displays the current time and date. The
date command displays the date and time in various formats, but by default its output is in the
form

Mon Aug 15 22:53:54 EDT 2011
The semicolon ";" is used to sequentially execute the commands. In contrast,
$ 1s mydir > outfile &

causes the 1s command to work "in the background." The ampersand "&" at the end of the line
tells the shell not to wait for the command to terminate but to instead resume immediately; it is
a backgrounding operator. The 1s command runs in the background, sending its output to the file
outfile while the shell does other things. This is a form of multitasking. The "&" can be used to
run separate commands as well:

$ 1s mydir > outfilel & date > outfile2 &

tells the shell to run the 1s and date commands concurrently and in the background, putting their
respective outputs in files outfilel and outfile2 respectively. Note that the ">" binds more
closely, i.e., has higher priority, than "&". Lastly, parentheses can be used for grouping:

$ (1s mydir; date) > outfile &

means "execute ls mydir, then date, and direct their combined output to outfile," all in the
background.

B.5.0.4 The Shell as a Command

Shells can be run as commands. You can type the name of a shell, e.g., bash, sh, csh, etc., at the
command prompt within any other shell, to start another shell:

$ sh

in this case the Bourne shell. If you do this, you will have two instances of the bash shell running,
but the first will be dormant, waiting for the second to exit. When one shell is created as a result
of a command given in another shell, the created shell is called the sub-shell of the original shell,
which is called the parent shell.

If you need to know what shell you are currently running (because you forgot, for example), there
are two simple commands that can tell you:

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 55
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

$ echo $0

and
$ ps -p $%

The first uses the echo command. The echo command may sound at first rather useless, but it is
very convenient. All it does is evaluate its arguments and display them. So writing

$ echo hello out there
hello out there

But the key is that echo evaluates its arguments. If you give it the name of a variable preceded by
a dollar sign "$", it displays the value of the variable, not the name. As an example, you can use
it to see the value of a particular environment variable, such as

$ echo $SHELL
/bin/bash

This does not print your current shell however. It prints the name of your login shell, which may
not be the current shell. The value of $0 is the name of the currently running program, which is
the shell you are using, so echo $0 is one way to see its name. The value of $$ is the process-id
of the currently running process, and ps -p is a command that will display information about the
process whose process-id is given to it.

B.5.0.5 Scripts

Suppose the file named myscript contains the following lines:

1s mydir
date | lpr

Then the command
$ bash < myscript

causes the commands in the file to be executed as if they were typed directly to the bash shell, and
when they have terminated, the bash shell exits. The file myscript is an example of a shell script.
A script is nothing more than a program written in an interpreted language. It is not compiled,
but executed line by line. Shell scripts can have command line arguments just like ordinary shell
commands, making them very general. For example, the above script can be rewritten as

#!/bin/bash

1s $1
date | lpr
This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 56

ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

and executed by typing a command such as

$ myscript “/bin

whereupon the "$1" will be replaced by ~/bin before the 1s command is executed. The very first
line indicates that the bash shell must be run to execute the remaining lines of the file. For more
details of specific shell languages, consult the shell’s man page (or read any of a multitude of on-line
tutorials.)

Each shell has properties that determine how it behaves, which are stored in the shell’s environment.
As noted in Section [I.3.5] the operating system passes a pointer to a copy of the user’s environment
when it starts up a new process. Since a running shell is a process, each time a new shell is started
from within another, it is given a copy of the previous shell’s environment.

More generally, when any process is created from within a shell, that process inherits a copy of the
values of the environment variables of the shell. When you run a program from the command line,
the program inherits the environment of the shell. This is how programs "know" what their current
working directories are, for example, or which users are their owners. The environment is a key
element in making things work.

You are free to customize the environment of a shell by defining new variables, or redefining the
values of existing variables. The syntax is shell-dependent. In the Bourne shell and bash, variables
that you define, called locals, are not automatically placed into the environment; to place then in
the environment, you have to export them. For example,

$ export MYVAR=12

will put MYVAR into the environment with the value 12, so that it can be inherited by future com-
mands and processes, or equivalently:

$ MYVAR=12; export MYVAR

The convention is to use uppercase names for environment variables and lowercase names for locals.

B.5.0.6 Some Historical Remarks About Shells

The C shell was written by Bill Joy at UC Berkeley and made its appearance in Sixth Edition UNIX
(1975), the first widely distributed release from UC Berkeley. It was an enhancement of the original
Thompson shell with C-like syntax. It is part of all BSD distributions.

The Bourne shell, written by Stephen Bourne, was introduced into UNIX in System 7 (1979), which
was the last release of UNIX by AT&T Bell Labs prior to the commercialization of UNIX by AT&T.
Its syntax derives in part from the programming language Algol 68 and is a part of all UNIX releases.

The Korn shell was developed by David Korn at Bell Labs and introduced into the SVR4 commercial
release of UNIX by AT&T. Its syntax is based on the Bourne shell but it had many more features.

The TENEX C shell, or TC shell, extended the C shell with command line editing and completion,
as well as other features which were found in the TENEX operating system. It was written by Ken
Greer and others in 1983.

The Bourne-again shell (Bash) is an extension of the Bourne shell with many of the sophisticated
features of the Korn shell and the TC shell. It is the default user shell in Linux and has become
popular because of this.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 57
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 1 Introduction to System Programming

Bibliography

[1] Bruce Molay. Understanding UNIX/LINUX Programming: A Guide to Theory and Practice.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2002.

[2] Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Commun. ACM,
17(7):365-375, July 1974.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 58
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Introduction to System Programming
	Introduction
	A Programming Illusion
	Cornerstones of UNIX
	Files and the File Hierarchy
	Processes
	Users and Groups
	Privileged and Non-Privileged Instructions
	Environments
	Shells
	Online Documentation: The Man Pages

	The UNIX Kernel API
	System Resources
	System Calls
	System Libraries

	UNIX and Related Standards
	The Problem
	The Solution: Standards

	The C Library and C Standards
	Learning System Programming by Example
	The UNIX File Hierarchy
	About Pathnames and Directories
	Working with Directories

	Files and Filenames
	Filenames
	What is a File?
	Working with Files
	File Attributes
	Viewing and Modifying File Attributes
	Symbolic Links

	Under the Hood: How Logging In Works
	UNIX From The System Programmer's Perspective
	A First System Program
	A First Attempt at the more Program
	A Bit About Terminals
	Device Special Files
	Examples

	A Second Attempt at the more Program
	What Is Still Wrong?
	A Third Attempt at the more Program

	Where We Go from Here

	 Brief History of UNIX
	 UNIX at the User Level
	Notation
	Logging In
	Logging Out
	Online Help: The man Pages
	Shells
	Shell Features
	Standard I/O and Redirection
	Command Separators and Multitasking
	The Shell as a Command
	Scripts
	Some Historical Remarks About Shells

