
UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Chapter 8 Interprocess Communication, Part I

Concepts Covered

Pipes
I/O Redirection
FIFOs
Concurrent Servers
Daemons

Multiplexed I/O with select()
API: dup, dup2, fpathconf, mk�fo, mknod, pipe,
pclose, popen, select, setsid, shutdown, syslog,
tee.

8.1 Introduction

Processes that cooperate in order to complete one or more tasks almost always need to communicate
with each other. Sometimes the communication requires sharing data. One method of sharing
data is by sharing a common �le. If at least one of the processes modi�es the �le, then the �le
must be accessed in mutual exclusion. Sharing a �le is essentially like sharing a memory-resident
resource in that both are a form of communication that uses a shared resource that is accessed in
mutual exclusion. Another paradigm involves passing data back and forth through some type of
communication channel that provides the required mutual exclusion. A pipe is an example of this,
as is a socket. This type of communication is broadly known as a message-passing solution to the
problem.

This chapter is concerned only with message-passing types of communication. We will begin with
unnamed pipes, after which we will look at named pipes, also known as FIFO 's, and then look at
sockets. Part I is exclusively related to pipes.

8.2 Unnamed Pipes

You are familiar with how to use pipes at the command level. A command such as

$ last | grep 'reboot'

connects the output of last to the input of grep, so that the only lines of output will be those
lines of last that contain the word 'reboot'. The '|' is a bash operator; it causes bash to start the
last command and the grep command simultaneously, and to direct the standard output of last
into the standard input of grep.

Although '|' is a bash operator, it uses the lower-level, underlying pipe facility of UNIX, which was
invented by Douglas Mcilroy, and was incorporated into UNIX in 1973. You can visualize the pipe
mechanism as a special �le or bu�er that acts quite literally like a physical pipe, connecting the
output of last to the input of grep, as in Figure 8.1.

The last program does not know that it is writing to a pipe and grep does not know that it is
reading from a pipe. Moreover, if last tries to write to the pipe faster than grep can drain it, last

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Figure 8.1: A pipe connecting last to grep.

will block, and if grep tries to read from an empty pipe because it is reading faster than last can
write, grep will block, and both of these actions are handled behind the scenes by the kernel.

What then is a pipe? Although a pipe may seem like a �le, it is not a �le, and there is no �le
pointer associated with it. It is conceptually like a conveyor belt consisting of a �xed number of
logical blocks that can be �lled and emptied. Each write to the pipe �lls as many blocks as are
needed to satisfy it, provided that it does not exceed the maximum pipe size, and if the pipe size
limit was not reached, a new block is made available for the next write. Filled blocks are conveyed
to the read-end of the pipe, where they are emptied when they are read. These types of pipes are
called unnamed pipes because they do not exist anywhere in the �le system. They have no names.

An unnamed pipe1 in UNIX is created with the pipe() system call.

#include <unistd.h>

int pipe(int filedes[2]);

The system call pipe(fd), given an integer array fd of size 2, creates a pair of �le descriptors,
fd[0] and fd[1], pointing to the "read-end" and "write-end" of a pipe inode respectively. If it is
successful, it returns a 0, otherwise it returns -1. The process can then write to the write-end, fd[1],
using the write() system call, and can read from the read-end, fd[0], using the read() system
call. The read and write-ends are opened automatically as a result of the pipe() call. Written
data are read in �rst-in-�rst-out (FIFO) order. The following program (pipedemo0.c in the demos
directory) demonstrates this simple case.

Listing 8.1: pipedemo0.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>

#de f i n e READ_END 0
#de f i n e WRITE_END 1
#de f i n e NUM 5
#de f i n e BUFSIZE 32

i n t main (i n t argc , char ∗ argv [])
{

i n t i , nbytes ;
i n t fd [2] ;
char message [BUFSIZE+1] ;

1Unless stated otherwise, the word "pipe" will always refer to an unnamed pipe.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

i f (−1 == pipe (fd)) {
pe r ro r (" pipe c a l l ") ;
e x i t (2) ;

}

f o r (i = 1 ; i <= NUM; i++) {
s p r i n t f (message , " h e l l o #%2d\n" , i) ;
wr i t e (fd [WRITE_END] , message , s t r l e n (message)) ;

}
c l o s e (fd [WRITE_END]) ;

p r i n t f ("%d messages sent ; s l e e p i n g a b i t . P lease wait . . . \ n" , NUM) ;
s l e e p (3) ;

whi l e ((nbytes = read (fd [READ_END] , message , BUFSIZE)) != 0)
{

i f (nbytes > 0) {
message [nbytes] = ' \ 0 ' ;
p r i n t f ("%s " , message) ;

}
e l s e

e x i t (1) ;
}
f f l u s h (stdout) ;
e x i t (0) ;

}

Notes.

• In this program, the write calls are not error-checked, which they should be. The read()

in the while loop condition is error-checked: if it returns something strictly less than zero,
exit(1) is executed.

• The read() call is a blocking read by default; you have to explicit make it non-blocking if you
want it to be so. By design, a blocking read on a pipe will block waiting for data as long as
the write-end of the pipe is held open. If the program does not close the write-end of the pipe
before the read-loop starts, it will hang forever, because read() will continue to wait for data.
This could be avoided if the read-loop knew in advance exactly how many bytes to expect,
because in that case it could just read exactly that many bytes and then exit the loop, but
it is rarely the case that one knows how much data to expect. Naturally, the process has to
write the data into the pipe before the read loop begins, otherwise there will be nothing to
read!

• Notice that the read() calls always read the same amount of data. This example demonstrates
that the reader can read �xed-size chunks and assemble them into larger chunks, because the
data arrives in the order it was sent (unlike data sent across a network.) Pipes have no concept
of message boundaries � they are simply byte streams.

• Finally, observe that before calling printf() to print the string on the standard output, the
string has to be null-terminated.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Figure 8.2: Parent and child sharing a pipe.

The semantics of reading from a pipe are much more complex than reading from a �le. The following
table summarizes what happens when a process tries to read n bytes from a pipe that currently has
p bytes in it that have not yet been read.

Pipe Size (p)

At least one process has the pipe open for writing No processes

have the

pipe open

for writing

Blocking read Non-

blocking

read

At least one writer

is sleeping

No writer is

sleeping

p = 0 Copy n bytes and
return n, waiting for
data as necessary
when the pipe is
empty.

Block until data is
available, copy it
and return its size.

Return
-EAGAIN.

Return 0.

0 < p < n Copy p bytes and return p, leaving the bu�er empty.

p ≥ n Copy n bytes and return n leaving p-n bytes in the pipe bu�er.

The semantics depend upon whether or not a writer has been put to sleep because it tried to write
into the pipe previously but the pipe was full. On a non-blocking read request, if the number of
bytes requested, n, is greater than what is currently in the pipe and at least one writer is in this
sleeping state, then the read will attempt to read n bytes, because as he pipe is emptied, the writer
will be awakened to write into the pipe. If no writer is sleeping and the pipe is empty, however,
then the read will block until some data becomes available.

8.2.1 Parent and Child Sharing a Pipe

Of course there is little reason for a process to create a pipe to write messages to itself. Pipes exist
in order to allow two di�erent processes to communicate. Typically, a process will create a pipe,
and then fork a child process. After the fork, the parent and child will each have copies of the read
and write-ends of the pipe, so there will be two data channels and a total of four descriptors, as
shown in Figure 8.2.

On some Unix systems, such as System V Release 4 Unix, pipes are implemented in this full-duplex
mode, allowing both descriptors to be written into and read from at the same time. POSIX allows
only half-duplex mode, which means that data can �ow in only one direction through the pipe, and

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Figure 8.3: Pipe in half-duplex mode.

each process must close one end of the pipe. The following illustration depicts this half-duplex
mode.

The paradigm for half-duplex use of a pipe by two processes is as follows:

if (-1 == pipe(fd))

exit(2); // failed to create pipe

switch (fork()) {

// child process:

case 0:

close(fd[1]); // close write-end

bytesread = read(fd[0], message, BUFSIZ);

// check for errors afterward of course

break;

// parent process:

default:

close(fd[0]); // close read-end

byteswritten = write(fd[1], buffer, strlen(buffer));

// and so on

break;

}

Linux follows the POSIX model but does not require each process to close the end of the pipe it is
not going to use. However, for code to be portable, it should follow the POSIX model. All examples
here will assume half-duplex mode. The following is the �rst example of two-process communication
through a pipe. The parent process reads the command line arguments and sends them to the child
process, which prints them on the screen. As we get more deeply involved with pipes, you will
discover that it is easy to make mistakes when coding for them, as there are many intricacies to be
aware of. This �rst program exposes a few of them.

Listing 8.2: pipedemo1.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>

#de f i n e READ_FD 0

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

#de f i n e WRITE_FD 1

in t main (i n t argc , char ∗ argv [])
{

i n t i ;
i n t bytesread ;
i n t fd [2] ;
char message [BUFSIZ] ;

/∗ check proper usage ∗/
i f (argc < 2) {

f p r i n t f (s tde r r , "Usage : %s message\n" , argv [0]) ;
e x i t (1) ;

}

/∗ t ry to c r e a t e pipe ∗/
i f (−1 == pipe (fd)) {

pe r ro r (" pipe c a l l ") ;
e x i t (2) ;

}

/∗ c r e a t e ch i l d p roce s s ∗/
switch (f o rk ()) {
case −1:

/∗ f o rk f a i l e d −− e x i t ∗/
pe r ro r (" f o rk () ") ;
e x i t (3) ;

case 0 : /∗ ch i l d code ∗/
/∗ Close wr i t e end , o therw i se ch i l d w i l l never terminate ∗/
c l o s e (fd [WRITE_FD]) ;
/∗ Loop whi le not end o f f i l e or not a read e r r o r ∗/
whi l e ((bytesread = read (fd [READ_FD] , message , BUFSIZ))

!= 0)
i f (bytesread > 0) { /∗ more data ∗/

message [bytesread] = ' \ 0 ' ;
p r i n t f (" Child r e c e i v ed the word : '%s ' \ n" , message) ;
f f l u s h (stdout) ;

}
e l s e { /∗ read e r r o r ∗/

pe r ro r (" read () ") ;
e x i t (4) ;

}
e x i t (0) ;

d e f au l t : /∗ parent code ∗/
c l o s e (fd [READ_FD]) ; /∗ Close read end , s i n c e parent i s wr i t i ng ∗/
f o r (i = 1 ; i < argc ; i++)

/∗ send each word s epa r a t e l y ∗/
i f (wr i t e (fd [WRITE_FD] , argv [i] , s t r l e n (argv [i])) != −1)
{

p r i n t f (" Parent sent the word : '%s ' \ n" , argv [i]) ;
f f l u s h (stdout) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

e l s e {
pe r ro r (" wr i t e () ") ;
e x i t (5) ;

}
c l o s e (fd [WRITE_FD]) ;

/∗ wait f o r c h i l d so i t does not remain a zombie ∗/
/∗ don ' t care about i t ' s s tatus , so pass a NULL po in t e r ∗/
i f (wait (NULL) == −1) {

pe r ro r (" wait f a i l e d ") ;
e x i t (2) ;

}
}
e x i t (0) ;

}

Notes.

• It is now critical that the child closes the write-end of its pipe before it starts to read. As was
noted earlier, reads are blocking by default and will remain waiting for input as long as ANY
write-end of the pipe is open, including its own. Therefore, not only do we want to close the
unused end of the pipe for the code to be more portable, but also for it to be correct!

• The parent waits for the child process because if it does not, the child will become a zombie
in the system. You should make a habit of waiting for all processes that you create.

• The output of the parent and child on the terminal may occur in any order. This program
makes no attempt to coordinate the use of the terminal simply because it would distract from
its purpose as a demonstration of how to use pipes.

8.2.2 Atomic Writes

In a POSIX-compliant system, a single write will be executed atomically as long as the number of
bytes to be written does not exceed PIPE_BUF. This means that if several processes are each writing
to the pipe at the same time, as long as each limits the size of each write to N ≤ PIPE_BUF bytes,
the data will not be intermingled. If there is not enough room in the pipe to store N ≤ PIPE_BUF

bytes, and writes are blocking (the default), then write() will be blocked until room is available.
On the other hand, if N > PIPE_BUF, there is no guarantee that the writes will be atomic.

To use the value of PIPE_BUF in a program, include the header �le <limits.h>. For example,

#include <limits.h>

char chunk[PIPE_BUF];

In the event that your <limits.h> header �le does not de�ne PIPE_BUF, it means that the value is
greater than the POSIX minimum value for this constant, which is POSIX_PIPE_BUF, and is usually
512 bytes. POSIX does not require that PIPE_BUF be de�ned in this case. Therefore, you should
write the above code snippet as

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

#include <limits.h>

#ifndef PIPE_BUF

#define PIPE_BUF POSIX_PIPE_BUF;

#endif

char chunk[PIPE_BUF];

An alternative that may work on your system is to use the fpathconf() system call to determine the
value of the atomic write size dynamically. The fpathconf() system call returns the value of various
system dependent con�guration values associated with an open �le descriptor. The fpathconf()

function's synopsis and description is

#include <unistd.h>

long fpathconf(int filedes, int name);

long pathconf(char *path, int name);

DESCRIPTION

fpathconf() gets a value for the configuration option name

for the open file descriptor filedes.

The second argument to fpathconf() is a mnemonic name de�ned in the man page. These are
names such as _PC_NAME_MAX, _PC_PATH_MAX, and _PC_PIPE_BUF. Each name has a di�erent usage,
and its validity depends upon whether the given �le descriptor is that of a �le, a directory, a pipe, or
a terminal. If filedes is a pipe, then the constant _PC_PIPE_BUF is supposed to tell fpathconf()
to return the maximum number of bytes that may be written atomically to that pipe. It may not
return this value. This will be explained below.

Although it is not necessary to know the value of PIPE_BUF, it is an interesting exercise to learn
its value and make sure that it has the magical properties it is supposed to have. The following
program is designed to demonstrate (but not prove) that writes of up to PIPE_BUF bytes are atomic,
and that larger writes may not be atomic. It also demonstrates how to create multiple writers and a
single reader. The program creates two writer processes and one reader. One writer writes 'X's into
the pipe, the other 'y's. They each write the same number of characters each time. The command
line argument speci�es the number of writes that each makes to the pipe. The idea is that if the
number is large enough the scheduler will time slice them often enough so that one will write for
a while, then the next, and so on. The parent is the reader. It reads the data from the pipe and
stores it in a �le. The parent reads smaller chunks since it does not matter.

Listing 8.3: pipedemo2.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <l im i t s . h>
#inc lude <s i g n a l . h>
#inc lude <sys /wait . h>

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

#de f i n e READ_FD 0
#de f i n e WRITE_FD 1
#de f i n e RD_CHUNK 10
#de f i n e ATOMIC

#i f n d e f PIPE_BUF
#de f i n e PIPE_BUF POSIX_PIPE_BUF

#end i f

void do_nothing (i n t s i gno)
{

re turn ;
}

i n t main (i n t argc , char ∗ argv [])
{

i n t i , r epeat ;
i n t bytesread ;
i n t mssglen ;
pid_t ch i ld1 , ch i l d2 ;
i n t fd [2] ;
i n t out fd ;
char message [RD_CHUNK+1] ;
char ∗Child1_Chunk , ∗Child2_Chunk ;
long Chunk_Size ;

s t a t i c s t r u c t s i g a c t i o n s i g a c t ;

s i g a c t . sa_handler = do_nothing ;
s i g f i l l s e t (&(s i g a c t . sa_mask)) ;
s i g a c t i o n (SIGUSR1 , &s i gac t , NULL) ;

/∗ check proper usage ∗/
i f (argc < 2) {

f p r i n t f (s tde r r , "Usage : %s s i z e \n" , argv [0]) ;
e x i t (1) ;

}

/∗ t ry to c r e a t e pipe ∗/
i f (−1 == pipe (fd)) {

pe r ro r (" pipe c a l l ") ;
e x i t (2) ;

}

repeat = a t o i (argv [1]) ;
#i f de f i ned ATOMIC

Chunk_Size = PIPE_BUF;
#e l s e

Chunk_Size = PIPE_BUF + 200 ;
#end i f

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

9

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

p r i n t f ("Chunk s i z e = %ld \n" , Chunk_Size) ;
p r i n t f (" Value o f PIPE_BUF i s %d\n" , PIPE_BUF) ;

Child1_Chunk = c a l l o c (Chunk_Size , s i z e o f (char)) ;
Child2_Chunk = c a l l o c (Chunk_Size , s i z e o f (char)) ;
i f ((NULL == Child1_Chunk) | |

(NULL == Child2_Chunk)) {
pe r ro r (" c a l l o c ") ;
e x i t (2) ;

}

/∗ c r e a t e the s t r i n g that ch i l d1 wr i t e s ∗/
Child1_Chunk [0] = ' \ 0 ' ; /∗ j u s t to be s a f e ∗/
f o r (i = 0 ; i < Chunk_Size−2; i++)

s t r c a t (Child1_Chunk , "X") ;
s t r c a t (Child1_Chunk ,"\n ") ;

/∗ c r e a t e the s t r i n g that ch i l d2 wr i t e s ∗/
Child2_Chunk [0] = ' \ 0 ' ; /∗ j u s t to be s a f e ∗/
f o r (i = 0 ; i < Chunk_Size−2; i++)

s t r c a t (Child2_Chunk , "y ") ;
s t r c a t (Child2_Chunk ,"\n ") ;

/∗ c r e a t e f i r s t c h i l d p roce s s ∗/
switch (ch i l d1 = fo rk ()) {
case −1: /∗ f o rk f a i l e d −− e x i t ∗/

pe r ro r (" f o rk () ") ;
e x i t (3) ;

case 0 : /∗ ch i l d1 code ∗/
mssglen = s t r l e n (Child1_Chunk) ;
pause () ;
f o r (i = 0 ; i < repeat ; i++) {

i f (wr i t e (fd [WRITE_FD] , Child1_Chunk , mssglen)
!= mssglen) {
pe r ro r (" wr i t e ") ;
e x i t (4) ;

}

}
c l o s e (fd [WRITE_FD]) ;
e x i t (0) ;

d e f au l t : /∗ parent c r e a t e s second ch i l d p roce s s ∗/
switch (ch i l d2 = fo rk ()) {
case −1: /∗ f o rk f a i l e d −− e x i t ∗/

pe r ro r (" f o rk () ") ;
e x i t (5) ;

case 0 : /∗ ch i l d2 code ∗/
mssglen = s t r l e n (Child2_Chunk) ;
pause () ;
f o r (i = 0 ; i < repeat ; i++) {

i f (wr i t e (fd [WRITE_FD] , Child2_Chunk , mssglen)
!= mssglen) {

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

10

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

per ro r (" wr i t e ") ;
e x i t (6) ;

}

}
c l o s e (fd [WRITE_FD]) ;
e x i t (0) ;

d e f au l t : /∗ parent code ∗/
out fd = open (" pd2_output " ,

O_WRONLY | O_CREAT | O_TRUNC, 0644) ;
i f (−1 == outfd) {

pe r ro r (" open ") ;
e x i t (7) ;

}

c l o s e (fd [WRITE_FD]) ;
k i l l (ch i ld1 , SIGUSR1) ;
k i l l (ch i ld2 , SIGUSR1) ;
whi l e ((bytesread = read (fd [READ_FD] , message , RD_CHUNK))

!= 0)
i f (bytesread > 0) { /∗ more data ∗/

wr i t e (outfd , message , bytesread) ;
}
e l s e { /∗ read e r r o r ∗/

pe r ro r (" read () ") ;
e x i t (8) ;

}

c l o s e (out fd) ;
/∗ c o l l e c t zombies ∗/
f o r (i = 1 ; i <= 2 ; i++)

i f (wait (NULL) == −1) {
pe r ro r (" wait f a i l e d ") ;
e x i t (9) ;

}
c l o s e (fd [READ_FD]) ;
f r e e (Child1_Chunk) ;
f r e e (Child2_Chunk) ;

}
e x i t (0) ;

}
}

Notes.

• The parent process is the reader; the two child processes are writers. Each child calls pause()
to start so that neither gets to grab the processor immediately. The parent sends a SIGUSR1

signal to them when it is ready to start reading from the pipe.

• Each child write a chunk of size Chunk_Size into the pipe. Chunk_Size is either PIPE_BUF or
200 bytes larger than it.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

11

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

• The parent reads from the pipe and writes the data into a �le named pd2_output. When the
read() returns 0, the children have �nished writing and closed the pipe, so the parent closes
the output �le and calls wait() to collect the exit status of the children.

• The program prints the value of PIPE_BUF and the actual chunk size before the pipe operations
begin.

First compile the program as it is written, naming the executable pipedemo2. When pipedemo2 is
run, the output will show that writes are atomic � each string written by each child in a single write
has a newline at its end, and in the output, every sequence of X's will be terminated by a newline
and every sequence of y's will end in a newline. There will be no occurrence of the string Xy or
yX in the output because the kernel serializes the concurrent writes, and each time a child process
writes, it writes its entire string, either X's or y's. The output does not prove it is atomic; it just
shows that no output was intermingled, and thus no write was interrupted.

Each child should write two thousand times or more in order for us to see the possibility of their
each competing for the shared pipe, so the program should be run with a command line argument
of 2000 or more. It would be tedious to check the output by hand to determine whether there are
any lines with intermingled output. The following script is designed to do this automatically:

#!/bin/bash

if [[$# < 1]]

then

printf "Usage: %b repeats\n" $0

exit

fi

pipedemo2 $1

printf "Number of X lines : "

grep X pd2_output | wc -l

printf "Number of y lines : "

grep y pd2_output | wc -l

printf "X lines in first %b : " $1

head -$1 pd2_output | grep X | wc -l

printf "y lines in first %b : " $1

head -$1 pd2_output | grep y | wc -l

printf "X lines in last %b : " $1

tail -$1 pd2_output | grep X | wc -l

printf "y lines in last %b : " $1

tail -$1 pd2_output | grep y | wc -l

printf "Xy lines : "

grep Xy pd2_output | wc -l

printf "yX lines : "

grep yX pd2_output | wc -l

The command line argument is the number of chunks that each child should write. The script
summarizes the output. If repeats is 1000, You should see output something like

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

12

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Number of X lines : 1000

Number of y lines : 1000

X lines in first 1000 : 515

y lines in first 1000 : 485

X lines in last 1000 : 485

y lines in last 1000 : 515

Xy lines : 0

yX lines : 0

The last two lines show that all writes were atomic because there are no lines that contain an Xy or
yX combination. Now edit the program by commenting out the line

#define ATOMIC

and recompile it. This �ag determines how large the chunk is. When it is turned o�, the chunk is
larger than PIPE_BUF bytes. Run the script again. The output will most likely look something like
this:

Number of X lines : 1443

Number of y lines : 1437

X lines in first 1000 : 758

y lines in first 1000 : 718

X lines in last 1000 : 685

y lines in last 1000 : 719

Xy lines : 577

yX lines : 586

which shows that when the chunk size of a write exceeds PIPE_BUF, the writes will not be atomic.

8.2.2.1 More About fpathconf()

Almost all systems comply with the POSIX requirement that result of the call

pipe_size = fpathconf(fd, _PC_PIPE_BUF);

is the system's current value of PIPE_BUF. But not all do. Some systems using recent versions of the
GNU C Library will use a di�erent version of fpathconf(). This version returns the pipe capacity,
not the value of PIPE_BUF, but only if the kernel supports it. Linux kernels after 2.6.35 do for
certain. What this implies is that you cannot reliably use the result of fpathconf() to determine
the maximum number of bytes in an atomic write on all systems.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

8.2.3 Pipe Capacity

The capacity of a pipe may be larger than PIPE_BUF. There is no exposed system constant that
indicates the total capacity of a pipe; however, the following program, based on one from [Haviland
et al], can be run on any system to test the maximum capacity of a pipe, and also to prove that a
process cannot write to a pipe unless it has at least PIPE_BUF bytes available.

Listing 8.4: pipesizetest.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <l im i t s . h>

in t count = 0 ;
sig_atomic_t f u l l = 0 ;

/∗∗
∗ The SIGALRM handler . This s e t s the f u l l f l a g to i nd i c a t e that the
∗ wr i t e c a l l blocked , and i t p r i n t s the number o f cha ra c t e r s wr i t t en
∗ to the pipe so f a r .
∗/
void on_alarm (i n t s i gno)
{

p r i n t f ("\ nwri te () blocked with %d chars in the pipe . \ n" , count) ;
f u l l = 1 ;

}

i n t main (i n t argc , char ∗ argv [])
{

i n t fd [2] ;
i n t p ipe_s ize ;
i n t bytesread ;
i n t amount_to_remove ;

char bu f f e r [PIPE_BUF] ;
char c = 'x ' ;
s t a t i c s t r u c t s i g a c t i o n s i g a c t ;

s i g a c t . sa_handler = on_alarm ;
s i g f i l l s e t (&(s i g a c t . sa_mask)) ;
s i g a c t i o n (SIGALRM, &s i gac t , NULL) ;

i f (−1 == pipe (fd)) {
pe r ro r (" pipe f a i l e d ") ;
e x i t (1) ;

}

/∗ Check whether the _PC_PIPE_BUF constant r e tu rn s the pipe capac i ty
or the atomic wr i t e s i z e

∗/
p ipe_s ize = fpathcon f (fd [0] , _PC_PIPE_BUF) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

14

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

whi le (1) {
/∗ Set an alarm long enough that i f wr i t e f a i l s i t w i l l f a i l ∗/
/∗ with in t h i s amount o f time . 8 seconds i s long enough . ∗/
alarm (4) ;
wr i t e (fd [1] , &c , 1) ;
/∗ Unset the alarm ∗/
alarm (0) ;

/∗ Did alarm exp i r e ? I f so , wr i t e f a i l e d and we stop the loop ∗/
i f (f u l l)

break ;

/∗ Report how many chars wr i t t en so f a r ∗/
i f ((++count % 1024) == 0)

p r i n t f ("%d chars in pipe \n" , count) ;
}

p r i n t f ("The maximum number o f bytes that the pipe s to r ed i s %d . \ n" ,
count) ;

p r i n t f ("The value returned by fpathcon f (fd ,_PC_PIPE_BUF) i s %d . \ n\n" ,
p ipe_s ize) ;

p r i n t f ("Now we remove cha ra c t e r s from the pipe and demonstrate that "
" we cannot\n"
"wr i t e i n to the pipe un l e s s i t has %d (PIPE_BUF) f r e e bytes . \ n" ,
PIPE_BUF) ;

amount_to_remove = PIPE_BUF−1;

p r i n t f (" F i r s t we remove %d cha ra c t e r s (PIPE_BUF−1) and try to "
"wr i t e i n to the pipe . \ n" , amount_to_remove) ;

f u l l = 0 ;
bytesread = read (fd [0] , &bu f f e r , amount_to_remove) ;
i f (bytesread < 0) {

pe r ro r (" e r r o r read ing pipe ") ;
e x i t (1) ;

}
count = count − bytesread ;
alarm (4) ;
wr i t e (fd [1] , &c , 1) ;
/∗ Unset the alarm ∗/
alarm (0) ;
i f (f u l l)

p r i n t f ("We could not wr i t e in to the pipe . \ n ") ;
e l s e

p r i n t f ("We s u c c e s s f u l l y wrote in to the pipe . \ n ") ;

amount_to_remove = PIPE_BUF − amount_to_remove ;
f u l l = 0 ;

p r i n t f ("\nNow we remove one more charac t e r and try to "
"wr i t e i n to the pipe . \ n ") ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

15

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

bytesread = read (fd [0] , &bu f f e r , amount_to_remove) ;
i f (bytesread < 0) {

pe r ro r (" e r r o r read ing pipe ") ;
e x i t (1) ;

}
count = count − bytesread ;
alarm (4) ;
wr i t e (fd [1] , &c , 1) ;
/∗ Unset the alarm ∗/
alarm (0) ;
i f (f u l l)

p r i n t f ("We could not wr i t e in to the pipe . \ n ") ;
e l s e

p r i n t f ("We s u c c e s s f u l l y wrote in to the pipe . \ n ") ;

r e turn 0 ;
}

Notes.

• The main program is the only process, and within its loop it repeatedly writes a single character
to the pipe.

• Since the program never reads from the pipe, the pipe will eventually �ll up. When the process
attempts to write to the pipe after it is full, it will be blocked. To prevent it from being blocked
forever, it sets an alarm before each write() call and unsets it afterwards. The alarm interval,
10 seconds, is long enough so that the alarm will never expire before a successful write �nishes.
When the pipe is full however, the write will be blocked inde�nitely, and therefore the alarm
will expire, interrupting the write(), and the alarm handler will display the total number of
bytes written so far and then terminate the program.

• The program reports the value of fpathconf(fd,_PC_PIPE_BUF) in order to compare it to
the actual pipe capacity. On Linux systems using recent versions of the GNU C Library, this
value will be the pipe capacity, not the current value of PIPE_BUF.

• Once the pipe is full, the program removes PIPE_BUF-1 bytes from the pipe and attempts to
write to it. This will fail. It then removes one more byte so that the pipe has PIPE_BUF bytes
free, and writes to it again. This time the write will succeed.

• The program displays messages to indicate the various successes and failures.

8.2.4 Caveats and Reminders Regarding Blocking I/O and Pipes

Quite a bit can go wrong when working with pipes. These are some important facts to remember
about using pipes and non-blocking reads and writes. Some of these have been mentioned already,
some not. This section consolidates them into a single place.

1. If a write() is made to a pipe that is not open for reading by any process, a SIGPIPE signal
will be sent to the writing process, which, if not caught, will terminate that process. If it is

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

16

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

caught, after the SIGPIPE handler �nishes, the write() will return with a -1, and errno will
be set to the value EPIPE.

2. If there are one or more processes writing to a pipe, if a reading process closes its read-end of
the pipe and no other processes have the pipe open for reading, each writer will be sent the
SIGPIPE signal, and the same rules mentioned above regarding handling of the signal apply
to each process.

3. As long as one writer has a pipe open for writing, a call to read() will remain blocked until
there is data in the pipe. Therefore, if all writers �nish writing to the pipe, but a single
writer fails to close the write-end of the pipe, if a reader calls read(), the reader will remain
permanently blocked. Once all writers close the write-ends of the pipe, the read() will return
zero.

4. A write() to a full pipe will block the writer until there are PIPE_BUF free bytes in the pipe.

5. Unlike reads from a �le, read() requests to a pipe drain the pipe of the data that was read.
Therefore, when multiple readers read from the same pipe, no two read the same data.

6. Writes are atomic as long as the number of bytes is smaller than PIPE_BUF.

7. Reads are atomic in the sense that, if there is any data in the pipe when the call is initiated,
the read() will return with as much data as is available, up to the number of bytes requested,
and it is guaranteed not to be interrupted.

8. Processes cannot seek() on a pipe.

The situation is entirely di�erent with non-blocking reading and writing. These will be discussed
later. However, before continuing with the discussion of pipes, we will take a slight detour to look
at I/O redirection in general, because studying I/O redirection will give us insight into some of the
ways in which pipes are used.

8.3 I/O Redirection Revisited

8.3.1 Simulating Output Redirection

How does the shell implement I/O redirection? The key to understanding this rests on one simple
principle used by the kernel: the open() system call always chooses the lowest numbered available
�le descriptor.

Suppose that you have entered the command

$ ls > listing

The steps taken by the shell are

1. fork() a new process.

2. In the new process, close() �le descriptor 1 (standard output).

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

3. In the new process, open() (with the O_CREAT �ag) the �le named listing.

4. Let the new process exec() the ls program.

After step 1, the child and parent each have copies of the same �le descriptors. After step 2, the
child has closed standard output, so �le descriptor 1 is free. In step 3, the kernel sees descriptor 3
is free, so it uses descriptor 3 to point to the �le structure for the �le named listing. Then the
child calls exec() passing it the string "ls". The ls program writes to �le descriptor 1, usually
standard output, but in fact it is really writing to the �le named listing. In the meanwhile, the
shell continues to have descriptor 1 pointing to the standard output device, so it is una�ected by
this secret trick it played on the ls command.

The following program, called redirectout.c, illustrates how this works. It simulates the shell's
'>' operator. It forks a child, closes standard output descriptor 1, opens the output �le speci�ed
in argv[2] for writing, and execs argv[1]. The parent simply waits for the child to terminate.
Compile it and name it redirectout, and then try a command such as the following:

$ redirectout who whosloggedon

Redirecting standard input works similarly. The only di�erence is that the process has to close the
standard input descriptor 0, and then open a �le for reading.

Listing 8.5: redirectout.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <sys /wait . h>

in t main (i n t argc , char ∗ argv [])
{

i n t fd ;

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : %s command output− f i l e \n" , argv [0]) ;
e x i t (1) ;

}

switch (f o rk ()) {
case −1:

pe r ro r (" f o rk ") ;
e x i t (1) ;

case 0 : /∗ ch i l d code ∗/
/∗ Close standard output ∗/
c l o s e (1) ;
/∗ Open the f i l e i n to which to r e d i r e c t standard output ∗/
/∗ and check that i t succeeds ∗/
i f ((fd = open (argv [2] , O_WRONLY | O_CREAT | O_TRUNC, 0644))

== −1)
e x i t (1) ;

/∗ execute the command in argv [1] ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

exec lp (argv [1] , argv [1] , NULL) ;

/∗ should not reach here ! ∗/
pe r ro r (" exec lp ") ;
e x i t (1) ;

d e f au l t : /∗ parent code ; j u s t wai t s f o r c h i l d ∗/
wait (NULL) ;

}
re turn 0 ;

}

8.3.2 Simulating the '|' Shell Operator

The pertinent question now is, how can we write a similar program that can simulate how the shell
carries out a command such as

$ last | grep 'pts/2'

This cannot be accomplished using just the open(), close(), and pipe() system calls, because
we need to connect one end of a pipe to the standard output for last, and the other end to the
standard input for grep. Just closing �le descriptors cannot do this. There are two system calls
that can be used for this purpose: dup() and dup2(). dup() is the progenitor of dup2(), which
superseded it. We will �rst look at a solution using dup().

The dup() system call duplicates a �le descriptor. From the man page:

#include <unistd.h>

int dup(int oldfd);

After a successful return from dup(), the old and new file descriptors

may be used interchangeably. They refer to the same open file description

(see open(2)) and thus share file offset and file status flags;

for example, if the file offset is modified by using lseek(2) on one

of the descriptors, the offset is also changed for the other.

In other words, given a �le descriptor, oldfd, dup() creates a new �le descriptor that points to the
same kernel �le structure as the old one. But again the critical feature of dup() is that it returns
the lowest-numbered available �le descriptor. Therefore, consider the following sequence of actions.

int fd[2]; /* Declare descriptors for a pipe */

pipe(fd); /* Create the pipe */

switch (fork()) /* Fork a child */

case 0: /* In the child: */

close(fileno(stdout)); /* close standard output */

dup(fd[1]); /* dup write-end of pipe */

close(fd[0]); /* close read-end of pipe */

exec("last", "last", NULL); /* exec the command that writes to the pipe */

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

The dup() call will �nd the standard output �le descriptor available, and since that is the lowest
numbered available descriptor, it will make that point to the same structure as fd[1] points to.
Therefore, when the last command writes to standard output, it will really be writing to the
write-end of the pipe.

Now it is not hard to imagine what the parent's job is. It has to close the standard input descriptor,
then dup(fd[0]), and exec the grep command. We can put these ideas together in a more general
program, called shpipe1.c, which follows.

Listing 8.6: shpipe1.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>

in t main (i n t argc , char ∗ argv [])
{

i n t fd [2] ;

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : %s command1 command2\n" , argv [0]) ;
e x i t (1) ;

}

i f (−1 == pipe (fd)) {
pe r ro r (" pipe c a l l ") ;
e x i t (2) ;

}

switch (f o rk ()) {
case −1:

pe r ro r (" f o rk ") ;
e x i t (1) ;

case 0 :
c l o s e (f i l e n o (stdout)) ;
dup (fd [1]) ;
c l o s e (fd [0]) ; /∗ c l o s e read end s i n c e ch i l d does not use i t ∗/
c l o s e (fd [1]) ; /∗ c l o s e wr i t e end s i n c e i t i s not needed now ∗/
exec lp (argv [1] , argv [1] , NULL) ;
pe r ro r (" exec lp ") ;
e x i t (1) ;

d e f au l t :
c l o s e (f i l e n o (s td in)) ;
dup (fd [0]) ;
c l o s e (fd [1]) ; /∗ c l o s e wr i t e end to prevent ch i l d from block ing ∗/
c l o s e (fd [0]) ; /∗ c l o s e read end s i n c e i t i s not needed now ∗/
exec lp (argv [2] , argv [2] , NULL) ;
e x i t (2) ;

}
re turn 0 ;

}

If you compile this and name it shpipe1, then you can try commands such as

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

$ shpipe1 last more

and

$ shpipe1 ls wc

There is a problem here. For one, the parent cannot wait for the child because it uses execlp() to
replace its image. This can be solved by forking two children and letting the second do the work of
the reading process. More importantly, this solution is not general, because there are two steps �
close standard output and then dup() the write end of the pipe. There is a small window of time
between closing standard output and duplicating the write-end of the pipe in which the child could
be interrupted by a signal whose handler might close �le descriptors so that the descriptor returned
by dup() will not be the one that was just closed.

This is the reason that dup2() was created. dup2(fd1, fd2) will duplicate fd1 in fd2, closing fd2

if necessary, as a single atomic operation. In other words, if fd2 is open, it will close it, and make
fd2 point to the same �le structure to which fd1 pointed. Its man page entry is

#include <unistd.h>

int dup2(int oldfd, int newfd);

.....

dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

(dup() and dup2() share the same page. I deleted dup2()'s description above. This is the relevant
part of it.)

0

6

5

4

3

2

1

Process’s File Descriptor Table
 (Open File Table)

stdin

stdout

stderr

fd1

fd2

System File Structure Table

Figure 8.4: Initial state of open �le table.

A picture best illustrates how dup2() works. Assume the initial state of the �le descriptors for the
process is as shown in Figure 8.4. Now suppose that the process makes the call

dup2(fd2 , fileno(stdin));

Then, after the call the table is as shown in Figure 8.5. Descriptor 0 (standard input) became a
copy of fd2 as a result of the call. Descriptor fd2 is now redundant and can be closed if stdin is
going to be used instead.

The following listing is of a program, shpipe2.c , which is an improved version of shpipe1.c. that
uses the dup2() call instead of dup().

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

21

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

0

6

5

4

3

2

1

Process’s File Descriptor Table
 (Open File Table)

stdin

stdout

stderr

fd1

fd2

System File Structure Table

Figure 8.5: State of open �le table after dup2(fd2,�leno(stdin));

Listing 8.7: shpipe2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <sys /wait . h>

in t main (i n t argc , char ∗ argv [])
{

i n t fd [2] ;
i n t i ;
pid_t ch i ld1 , ch i l d2 ;

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : %s command1 command2\n" , argv [0]) ;
e x i t (1) ;

}

i f (−1 == pipe (fd)) {
pe r ro r (" pipe c a l l ") ;
e x i t (2) ;

}

switch (ch i l d1 = fo rk ()) {
case −1:

pe r ro r (" f o rk ") ;
e x i t (1) ;

case 0 : /∗ ch i l d1 ∗/
dup2 (fd [1] , f i l e n o (stdout)) ; /∗ now stdout po in t s to fd [1] ∗/
c l o s e (fd [0]) ; /∗ c l o s e input end o f pipe ∗/
c l o s e (fd [1]) ; /∗ c l o s e output end o f pipe ∗/
exec lp (argv [1] , argv [1] , NULL) ; /∗ run the f i r s t command ∗/
pe r ro r (" exec lp ") ;
e x i t (1) ;

d e f au l t :
switch (ch i l d2 = fo rk ()) {
case −1:

pe r ro r (" f o rk ") ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

22

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

e x i t (1) ;
case 0 : /∗ ch i l d2 ∗/

dup2 (fd [0] , f i l e n o (s td in)) ; /∗ now s td in po in t s to fd [0] ∗/
c l o s e (fd [0]) ; /∗ c l o s e input end o f pipe ∗/
c l o s e (fd [1]) ; /∗ c l o s e output end o f pipe ∗/
exec lp (argv [2] , argv [2] , NULL) ; /∗ run the f i r s t command ∗/
pe r ro r (" exec lp ") ;
e x i t (2) ;

d e f au l t :
c l o s e (fd [0]) ; /∗ parent must c l o s e i t s ends o f the f i r s t p ipe ∗/
c l o s e (fd [1]) ;

f o r (i = 1 ; i <= 2 ; i++)
i f (wait (NULL) == −1) {

pe r ro r (" wait f a i l e d ") ;
e x i t (3) ;

}
re turn 0 ;

}
}
return 0 ;

}

There are a couple of things you can try to do at this point to test your understanding of pipes.

1. There is a UNIX utility called tee that copies its input stream to standard output as well as
to its �le argument:

$ ls -l | tee listing

will copy the output of "ls -l" into the �le named listing as well as to standard output. Try
to write your own version of tee.

2. Extend shpipe2 to work with any number of commands so that

$ shpipe3 cmmd cmmd ... cmmd

will act like

$ cmmd | cmmd | ... | cmmd

8.3.3 The popen() Library Function

The sequence

1. generate a pipe,

2. fork a child process,

3. duplicate �le descriptors, and

4. execute a new program in order to redirect the input or output of that program to the parent,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

23

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

is so common that the developers of the C library added a pair of functions, popen() and pclose()

to streamline this procedure:

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

The popen() function creates a pipe, forks a new process to execute the shell /bin/sh (which is
system dependent), and passes the command to that shell to be executed by it (using the -c �ag
to the shell, which tells it to expect the command as an argument.)

popen() expects the second argument to be either "r" or "w". If it is "r" then the process invoking
it will be returned a FILE pointer to the read-end of the pipe and the write-end will be attached to
the standard output of the command. If it is "w", then the process invoking it will be returned a
FILE pointer to the write-end of the pipe, and the read-end will be attached to the standard input
of the command. The output stream is fully bu�ered.

File streams created with popen() must be closed with pclose(), which will wait for the invoked
process to terminate and returns its exit status or -1 if wait4() failed.

An example will illustrate. We will write a third version of the shpipe program, called shpipe3,
using popen() and pclose() instead of the pipe(), fork(), dup() sequence. See Listing 8.8 below.

Listing 8.8: shpipe3.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <l im i t s . h>

in t main (i n t argc , char ∗ argv [])
{

i n t nbytes ;
FILE ∗ f i n ; /∗ read−end o f pipe ∗/
FILE ∗ f out ; /∗ write−end o f pipe ∗/
char bu f f e r [PIPE_BUF] ; /∗ bu f f e r f o r t r a n s f e r r i n g data ∗/

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : %s command1 command2\n" , argv [0]) ;
e x i t (1) ;

}

i f ((f i n = popen (argv [1] , " r ")) == NULL) {
f p r i n t f (s tde r r , "popen () f a i l e d \n ") ;
e x i t (1) ;

}

i f ((f out = popen (argv [2] , "w")) == NULL) {
f p r i n t f (s tde r r , "popen () f a i l e d \n ") ;
e x i t (1) ;

}

whi l e ((nbytes = read (f i l e n o (f i n) , bu f f e r , PIPE_BUF)) > 0)

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

24

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

wr i t e (f i l e n o (fout) , bu f f e r , nbytes) ;

p c l o s e (f i n) ;
p c l o s e (f out) ;
r e turn 0 ;

}

8.4 Named Pipes

Unnamed pipes are an elegant mechanism, however, they have several drawbacks. They can only
be shared by processes with a common ancestor, such as a parent and child, or multiple children
or descendants of a parent that created the pipe. Also, they cease to exist as soon as the processes
that are using them terminate, so they must be recreated every time they are needed. If you are
trying to write a server program with which clients can communicate, the clients will need to know
the name of the pipe through which to communicate, but an unnamed pipe has no such name.

Named pipes make up for these shortcomings. A named pipe, or FIFO, is very much like an unnamed
pipe in how you use it. You read from it and write to it in the same way. It behaves the same way
with respect to the consequences of opening and closing it when various processes are either reading
or writing or doing neither. In other words, the semantics of opening, closing, reading, and writing
named and unnamed pipes are the same.

What distinguishes named pipes from unnamed pipes is that

• They exist as directory entries in the �le system and therefore have associated permissions
and ownership2.

• They can be used by processes that are not related to each other.

• They can be created and deleted at the shell level or at the programming level.

8.4.1 Named Pipes at the Command Level

Before we look at how they are created within a program, let us look at how they are created at
the user level. There are two commands to create a FIFO. The older command is mknod. mknod is
a general purpose utility for creating device special �les. There is also a mkfifo command, which
can only be used for creating a FIFO �le. We will look at how to use mknod. You can read about
the mkfifo command in the man pages.

$ mknod PIPE p

creates a FIFO named "PIPE". The lowercase p , which must follow the �le name, indicates to
mknod that PIPE should be a FIFO (p for pipe.) After typing this command, look at the working
directory:

2Although they have directory entries, they do not exist in the �le system. They have no disk blocks and their
data is not on disk when they are in use.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

25

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

$ ls -l PIPE

prw-r--r-- 1 stewart stewart 0 Apr 30 22:29 PIPE|

The 'p' �le type indicates that PIPE is a FIFO. Notice that it has 0 bytes. Try the following
command sequence:

$ cat < PIPE &

$ ls -l > PIPE; wait

If we do not put the cat command into the background it will hang because a process trying to read
from a pipe will block until there is at least one process trying to write to it. The cat command
is trying to read from PIPE and so it will not return and you will not get the shell prompt back
without backgrounding it. The cat command will terminate as soon as it receives the return value
0 from its read() call, which will be delivered when the writer closes the �le after it is �nished
writing. In this case the writer is the process that executes "ls -l". When the output of ls -l is
written to the pipe, cat will read it and display it on the screen. The wait command's only purpose
is to delay the shell's prompt until after cat exits.

By the way, if you reverse this procedure:

$ ls -l > PIPE &

$ ls -l PIPE

$ cat < PIPE; wait

and expect to see that the PIPE does not have 0 bytes when the second ls -l is executed, you will
be disappointed. That data is not stored in the �le system.

8.4.2 Programming With Named Pipes

We turn to the creation and use of named pipes at the programming level. A named pipe can
be created either by using the mknod() system call, or the mkfifo() library function. In Linux,
according to the mknod() (2) man page,

"Under Linux, this call cannot be used to create directories. One should make directories with
mkdir(2), and FIFOs with mk�fo(3)."

Therefore, we will stick to using mkfifo() for creating FIFOs. The other advantage of mkfifo()
over mknod() is that it is easier to use and does not require superuser privileges:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

The call mkfifo("MY_PIPE", 0666) creates a FIFO named MY_PIPE with permission 0666 & ~umask.
The convention is to use UPPERCASE letters for the names of FIFOs. This way they are easily
identi�ed in directory listings.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

26

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

It is useful to distinguish between public and private FIFOs. A public FIFO is one that is known
to all clients. It is not that there is a speci�c function that makes a FIFO public; it is just that it
is given a name that is easy to remember and that its location is advertised so that client programs
know where to �nd it. Some authors call these well-known FIFOs, because they are analogous to
well-known ports used for sockets, which are covered later. A private FIFO, in contrast, is given
a name that is not known to anyone except the process that creates it and the processes to which
it chooses to divulge it. In our �rst example, we will use only a single public FIFO. In the second
example, the server will create a public FIFO and the clients will create private FIFOs that they
will each use exclusively for communicating with the server.

8.4.2.1 Example

This is a simple example that demonstrates the basic principles. In it, the server creates a public
FIFO and listens for incoming messages. When a message is received, it just prints it on the console.
Client programs know the name of the FIFO because its pathname is hard-coded into a publicly
available header �le that they can include. In fact, for this example, the server and the clients share
this common header �le. Ideally the FIFO's name should be chosen so that no other processes in
the system would ever choose the same �le name, but for simplicity, we use a name that may not
be unique. 3.

The server will execute a loop of the form

while (1) {

memset(buffer, 0, PIPE_BUF);

if ((nbytes = read(publicfifo, buffer, PIPE_BUF)) > 0) {

buffer[nbytes] = '\0';

printf("Message %d received by server: %s", ++count, buffer);

fflush(stdout);

}

else

break;

}

In each iteration, it begins by zeroing the bu�er into which it will copy the FIFO's contents. It
reads at most PIPE_BUF bytes at a time into the bu�er. When read() returns, if nbytes is positive,
it null-terminates the bu�er and writes what it received onto its controlling terminal. Because the
input data may not have a terminating newline, it forces the write by calling fflush(stdout). If
nbytes is negative, there was an error and the server quits. If nbytes is 0, it means that read()
returned without any data, and so there is nothing for it to write. We could design the loop so that
it does not exit in this case but just re-executes the read(), but there are reasons not to, as we now
explain.

The server has to perform blocking reads (the O_NONBLOCK and O_NDELAY �ags are clear), otherwise
it would continually run in a loop, needlessly calling read() until a client actually wrote to the
FIFO. This would be a waste of CPU cycles. By using a blocking read, it relinquishes the CPU
so that it can be used for other purposes. The problem is that the read() call will return 0 when

3There are programs that can generate unique keys of an extremely large size that can be used in the name of the
�le. If all applications cooperate and use this method, then all pipe names would be unique.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

27

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

there are no processes writing to the FIFO, so if no clients attempt to write to the server, or if all
clients that were writing close their ends of the FIFO and exit, the server would receive a 0 from the
read(). If we designed the loop so that it was re-entered when read() returned 0, this would not
be a problem. However, it is a cleaner design to let the server open the FIFO for writing, so that
there is always at least one process holding the FIFO open for writing, and so that the return value
of read() will be either positive or negative, unless there is some unanticipated error condition.

Therefore, the server begins by creating the FIFO and opening it for both reading and writing,
even though it will only read from it. Since the server never writes to this pipe, it does not matter
whether or not writes are non-blocking, but POSIX does not specify how a system is supposed to
handle opening a �le in blocking mode for both reading and writing, so it is safer to open it with
the O_NONBLOCK �ag set, since POSIX does not specify how a system is supposed to handle opening
a �le in blocking mode for both reading and writing, we avoid possibly unde�ned behavior.

The server is run as a background process and is the process that must be started �rst, so that it
can create the FIFO. If the server is not running and a client is started up, it will exit, because the
FIFO does not exist.

The common header �le is listed �rst, in Listing 8.9, followed by the server code.

Listing 8.9: �fo1.h

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <errno . h>
#inc lude <sys / s t a t . h>

#de f i n e PUBLIC "/tmp/FIFODEMO1_PIPE"

Listing 8.10: rcv�fo1.c

#inc lude <s i g n a l . h>
#inc lude " f i f o 1 . h"

i n t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/

/∗∗ on_signal ()
∗ This c l o s e s both ends o f the FIFO and then removes i t , a f t e r
∗ which i t e x i t s the program .
∗/
void on_signal (i n t s i g)
{

c l o s e (p u b l i c f i f o) ;
c l o s e (dummyfifo) ;
un l ink (PUBLIC) ;
e x i t (0) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

28

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

i n t main (i n t argc , char ∗argv [])
{

i n t nbytes ; /∗ number o f bytes read from popen () ∗/
i n t count = 0 ;
s t a t i c char bu f f e r [PIPE_BUF] ; / ∗ bu f f e r to s t o r e output o f command ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/

/∗ Reg i s t e r the s i g n a l handler to handle a few s i g n a l s ∗/
handler . sa_handler = on_signal ; /∗ handler func t i on ∗/
handler . sa_f lags = SA_RESTART;
i f (((s i g a c t i o n (SIGINT , &handler , NULL)) == −1) | |

((s i g a c t i o n (SIGHUP, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGQUIT, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGTERM, &handler , NULL)) == −1)

) {
pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

/∗ Create pub l i c FIFO . I f i t e x i s t s a lready , the c a l l w i l l r e turn −1 and
s e t errno to EEXIST . This i s not an e r r o r in our case . I t j u s t means
we can reuse an e x i s t i n g FIFO that we crea ted but never removed . Al l
other e r r o r s cause the program to e x i t .

∗/
i f (mkf i fo (PUBLIC, 0666) < 0)

i f (e r rno != EEXIST) {
pe r ro r (PUBLIC) ;
e x i t (1) ;

}

/∗
We open the FIFO f o r reading , with the O_NONBLOCK f l a g c l e a r . The POSIX
semant ics s t a t e the the proce s s w i l l be blocked on the open () u n t i l some
proce s s (to be p r e c i s e , some thread) opens i t f o r wr i t i ng . Therefore , the
s e r v e r w i l l be stuck in t h i s open () u n t i l a c l i e n t s t a r t s up .

∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_RDONLY)) == −1) {

pe r ro r (PUBLIC) ;
e x i t (1) ;

}

/∗
We now open the FIFO f o r wr i t ing , even though we have no i n t en t i on o f
wr i t i ng to the FIFO . We w i l l not reach the c a l l to open ()
u n t i l a c l i e n t runs , but once the c l i e n t runs , the s e r v e r opens the FIFO
f o r wr i t i ng . I f we do not do th i s , when the c l i e n t te rminates and c l o s e s
i t s write−end o f the FIFO , the se rver ' s read loop would e x i t and the
s e r v e r would a l s o e x i t . This "dummy" open keeps the s e r v e r a l i v e .

∗/
i f ((dummyfifo = open (PUBLIC, O_WRONLY | O_NONBLOCK)) == −1) {

pe r ro r (PUBLIC) ;
e x i t (1) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

29

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

/∗ Block wai t ing f o r a message from a c l i e n t ∗/
whi l e (1) {

memset (bu f f e r , 0 , PIPE_BUF) ;
i f ((nbytes = read (p ub l i c f i f o , bu f f e r , PIPE_BUF)) > 0) {

bu f f e r [nbytes] = ' \ 0 ' ;
p r i n t f ("Message %d re c e i v ed by s e r v e r : %s " , ++count , bu f f e r) ;
f f l u s h (stdout) ;

}
e l s e

break ;
}
re turn 0 ;

}

Comments.

• The server reads from the public FIFO and displays the message it receives on its standard
output, even though it may be put in the background; it is not detached from the terminal.
The best way to run it is to leave it in the foreground and open a few clients in other terminal
windows.

• The server increments a counter and displays each received message with the value of the
counter, so that you can see the order in which the messages were received. As noted above,
it �ushes standard output just in case there is no newline in the message.

• It does detect a few signals, so that any of them are delivered to it, it will close its ends of the
FIFO, remove the �le, and bail out.

The client opens the public FIFO for writing and then enters a loop where it repeatedly reads
from standard input and writes into the write-end of the public FIFO. It uses the library function
memset(), found in <string.h>, to zero the bu�er where the user's text will be stored, and it
declares the bu�er to be PIPE_BUF chars, so that the write will be atomic. (If the locale uses
two-byte chars, this will not work properly.) When it is �nished, it closes its write-end.

Listing 8.11: send�fo1.c

#inc lude " f i f o 1 . h"
#de f i n e QUIT " qu i t "

i n t main (i n t argc , char ∗argv [])
{

i n t nbytes ; /∗ num bytes read ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
char t ext [PIPE_BUF] ;

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_WRONLY)) == −1) {

pe r ro r (PUBLIC) ;
e x i t (1) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

30

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

p r i n t f ("Type ' quit ' to qu i t . \ n ") ;

/∗ Repeatedly prompt user f o r command , read i t , and send to s e r v e r ∗/
whi l e (1) {

memset (text , 0 , PIPE_BUF) ; /∗ zero s t r i n g ∗/
nbytes = read (f i l e n o (s td in) , text , PIPE_BUF) ;
i f (! strncmp (QUIT, text , nbytes −1)) /∗ i s i t qu i t ? ∗/

break ;

i f ((wr i t e (p u b l i c f i f o , text , nbytes)) < 0) {
pe r ro r (" Server i s no l onge r running ") ;
break ;

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO ∗/
c l o s e (p u b l i c f i f o) ;
r e turn 0 ;

}

Comments.

• The client code allows the user to type "quit" to end the program.

• It is not very robust; it does not handle any terminal interrupts or signals and does no clean-up
if it is killed by a signal. If the server stops running though, it will detect this and exit, closing
its end of the FIFO.

8.4.3 An Iterative Server

In this example, we create a server that has two way communication with each client, processing
incoming client requests one after the other. Such a server is called an iterative server. In order to
achieve this, the server creates a public FIFO that it uses for reading incoming messages from clients
wishing to use its services. Each incoming message is a structure with a member that contains the
name of the private FIFO that the client creates when it starts up, and which should be used by
the server for sending a reply. The message structure also contains another �eld that the client can
use to supply data for the server.

When the server receives a message, it looks at the FIFO name in it and tries to open it for writing.
If successful, the server will use this FIFO for sending data to the client. After the client sends its
message to the server, it opens its private FIFO for reading. It will block until the server opens
the write end of this FIFO. When the server opens the write end, the client will read from it until
it receives a return value of 0, indicating that the server has �nished writing and closed its end of
the pipe. Figure 8.6 depicts the relationship between the clients and the server with respect to the
shared pipes.

In this particular example, the server provides lowercase-to-uppercase translation for clients. The
clients send it a piece of text and the server sends back another piece of text identical to the �rst
except that every lowercase letter has been converted to uppercase. The server will be named
upcased1 (for uppercase daemon), and the client, upcaseclient1.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

31

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Figure 8.6: The FIFOs used in the iterative server.

The message structure used by the server and client, as well as all necessary include �les and common
de�nitions, is contained in the header �le upcase1.h, displayed in the following listing.

Listing 8.12: upcase1.h

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <s i g n a l . h>
#inc lude <errno . h>
#inc lude <sys /wait . h>
#inc lude <sys / s t a t . h>
#inc lude <ctype . h>

#de f i n e PUBLIC "/tmp/UPCASE1_PIPE"
#de f i n e HALFPIPE_BUF (PIPE_BUF/2)

typede f s t r u c t _message {
char fifo_name [HALFPIPE_BUF] ; /∗ pr i va t e FIFO pathname ∗/
char t ext [HALFPIPE_BUF] ; /∗ message text ∗/

} message ;

Because the message must be no larger than PIPE_BUF bytes, and because it should be general
enough to allow FIFO pathnames of a large size, the structure is split equally between the length of
the FIFO name and the length of the text to be sent to the server. Thus, HALFPIPE_BUF is de�ned
as one half of PIPE_BUF and used as the maximum number of bytes in the string to be translated.

We begin with the client code this time. The basic steps that the client takes are as follows.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

32

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

1. It makes sure that neither standard input nor output is redirected.

2. It registers its signal handlers.

3. It creates its private FIFO in /tmp.

4. It tries to open the public FIFO for writing in non-blocking mode.

5. It enters a loop in which it repeatedly

(a) reads a line from standard input, and

(b) repeatedly

i. gets the next HALFPIPE_BUF-1 sized chunk in the input text,

ii. sends a message to the server through the public FIFO,

iii. opens its private FIFO for reading,

iv. reads the server's reply from the private FIFO,

v. copies the server's reply to its standard output, and

vi. closes the read-end of its private FIFO.

6. It closes the write-end of the public FIFO and removes its private FIFO.

The client listing follows.

Listing 8.13: upcaseclient1.c

#inc lude "upcase1 . h" /∗ Al l r equ i r ed header f i l e s are inc luded in ∗/
/∗ t h i s shared header f i l e . ∗/

#de f i n e PROMPT " s t r i n g : "
#de f i n e UPCASE "UPCASE: "
#de f i n e QUIT " qu i t "

const char startup_msg [] =
"upcased1 does not seem to be running . "
" Please s t a r t the s e r v i c e . \ n " ;

v o l a t i l e sig_atomic_t s i g_rece ived = 0 ;
s t r u c t message msg ;

/∗∗∗/
/∗ S igna l Handlers ∗/
/∗∗∗/

void on_sigpipe (i n t s i gno)
{

f p r i n t f (s tde r r , "upcased i s not read ing the pipe . \ n ") ;
un l ink (msg . fifo_name) ;
e x i t (1) ;

}

void on_signal (i n t s i g)

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

33

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

{
s i g_rece ived = 1 ;

}
/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

i n t strLength ; /∗ number o f bytes in t ext to convert ∗/
i n t nChunk ; /∗ index o f t ex t chunk to send to s e r v e r ∗/
i n t bytesRead ; /∗ bytes r e c e i v ed in read from se rv e r ∗/
i n t p r i v a t e f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
s t a t i c char bu f f e r [PIPE_BUF] ;
s t a t i c char textbu f [BUFSIZ] ;

s t r u c t s i g a c t i o n handler ;

/∗ Only run i f we are us ing the te rmina l . ∗/
i f (! i s a t t y (f i l e n o (s td in)) | | ! i s a t t y (f i l e n o (stdout)))

e x i t (1) ;

/∗ Reg i s t e r the on_signal handler to handle a l l keyboard s i g n a l s ∗/
handler . sa_handler = on_signal ; /∗ handler func t i on ∗/
i f (((s i g a c t i o n (SIGINT , &handler , NULL)) == −1) | |

((s i g a c t i o n (SIGHUP, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGQUIT, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGTERM, &handler , NULL)) == −1)

) {
pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

handler . sa_handler = on_sigpipe ;
i f (s i g a c t i o n (SIGPIPE , &handler , NULL) == −1) {

pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

/∗ Create hope fu l l y unique name f o r p r i va t e FIFO us ing process−id ∗/
s p r i n t f (msg . fifo_name , "/tmp/ f i f o%d" , getp id ()) ;

/∗ Create the p r i va t e FIFO ∗/
i f (mkf i fo (msg . fifo_name , 0666) < 0) {

pe r ro r (msg . fifo_name) ;
e x i t (1) ;

}

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_WRONLY | O_NONBLOCK)) == −1) {

i f (ENXIO == errno)
f p r i n t f (s tde r r ,"%s " , startup_msg) ;

e l s e

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

34

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

per ro r (PUBLIC) ;
e x i t (1) ;

}
p r i n t f ("Type ' quit ' to qu i t . \ n ") ;

/∗ Repeatedly prompt user f o r input , read i t , and send to s e r v e r ∗/
whi l e (1) {

/∗ Check i f SIGINT re c e i v ed f i r s t , and i f so , c l o s e write−end ∗/
/∗ o f pub l i c f i f o , remove p r i va t e f i f o and then qu i t ∗/
i f (s i g_rece ived) {

c l o s e (p u b l i c f i f o) ;
un l ink (msg . fifo_name) ;
e x i t (1) ;

}

/∗ Display a prompt on the te rmina l and read the input text ∗/
wr i t e (f i l e n o (stdout) , PROMPT, s i z e o f (PROMPT)) ;
memset (msg . text , 0x0 , HALFPIPE_BUF) ; /∗ zero s t r i n g ∗/
f g e t s (textbuf , BUFSIZ , s td in) ;
s trLength = s t r l e n (t ex tbu f) ;
i f (! strncmp (QUIT, textbuf , strLength −1)) /∗ i s i t qu i t ? ∗/

break ;

/∗ Display l a b e l f o r returned upper case t ext ∗/
wr i t e (f i l e n o (stdout) , UPCASE, s i z e o f (UPCASE)) ;

f o r (nChunk = 0 ; nChunk < strLength ; nChunk += HALFPIPE_BUF−1) {
memset (msg . text , 0x0 , HALFPIPE_BUF) ;
strncpy (msg . text , t ex tbu f+nChunk , HALFPIPE_BUF−1);
msg . t ex t [HALFPIPE_BUF−1] = ' \ 0 ' ;
wr i t e (p u b l i c f i f o , (char ∗) &msg , s i z e o f (msg)) ;

/∗ Open the p r i va t e FIFO f o r read ing to get output o f command ∗/
/∗ from the s e r v e r . ∗/
i f ((p r i v a t e f i f o = open (msg . fifo_name , O_RDONLY)) == −1) {

pe r ro r (msg . fifo_name) ;
e x i t (1) ;

}

/∗ Read maximum number o f bytes p o s s i b l e a tomica l l y ∗/
/∗ and copy them to standard output . ∗/
whi l e ((bytesRead= read (p r i v a t e f i f o , bu f f e r , PIPE_BUF)) > 0) {

wr i t e (f i l e n o (stdout) , bu f f e r , bytesRead) ;
}
c l o s e (p r i v a t e f i f o) ; /∗ c l o s e the read−end o f p r i va t e FIFO ∗/

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO and de l e t e p r i va t e FIFO ∗/
c l o s e (p u b l i c f i f o) ;
un l ink (msg . fifo_name) ;
r e turn 0 ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

35

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Comments.

• The program registers on_signal() to handle all signals that could kill it and that can be
generated by a user. If any of these signals is sent to the process, the handler simply sets
an atomic �ag. In its main loop, it checks whether the �ag is set, and if it is, it closes the
write-end of the public FIFO and removes its private FIFO. The server will get a SIGPIPE

signal the next time it tries to write to this FIFO, which it will handle.

• The program will get a SIGPIPE signal if it tries to write to the public FIFO but it is not
open for reading. This can only happen if the server is not running. The SIGPIPE handler,
on_sigpipe(), displays a message on standard error and terminates the program.

• The reason that the client opens the public FIFO with O_NONBLOCK set is that, in this case,
if the server is not reading the FIFO, the client, instead of blocking, will return with a ENXIO

error, so that it can gracefully exit.

• Inside the client's main loop, it displays a prompt and uses fgets() to read a line from the
terminal.

• This client has been designed to handle the highly improbable case that the user enters a
string that is larger than the allowed number of bytes in an atomic write to a pipe4. It does
this by breaking the string into "chunks" that are small enough to send atomically. It send
each chunk in sequence. It has to open and close the private FIFO before and after each chunk
is sent because the server is designed primarily for handling the most likely case in which the
string is small enough to �t into a single chunk. (The server only opens the client's private
FIFO after receiving a message from the client with the name of the FIFO; if the client tries
to open the FIFO for reading before sending any chunks, it will block on the open() call.
To prevent this, the open() would have to be non-blocking, which would complicate its read
loop. It is not worth the complication to save the run-time cost in this unusual case.)

Now we turn to the server, which is simpler than the client in this example. The steps that the
server takes can be summarized as follows.

1. It registers its signal handlers.

2. It creates the public FIFO. If it �nds it already exists, it displays a message and exits.

3. It opens the public FIFO for both reading and writing, even though it will only read from it.

4. It enters its main-loop, where it repeatedly

(a) does a blocking read on the public FIFO,

(b) on receiving a message from the read(), tries to open the private FIFO of the client that
sent it the message. (It tries 5 times, sleeping a bit between each try, in case the client
was delayed in opening it for writing. After 5 attempts it gives up on this client.)

(c) converts the message to uppercase,

(d) writes it to the private FIFO of the client, and

4Since BUFSIZ, the maximum size string allowed in the Standard I/O Library, may be larger than PIPE_BUF, it is
possible to read a string much larger than can be sent in the pipe atomically.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

36

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

(e) closes the write-end of the private FIFO.

It will loop forever because it will never receive an end-of-�le on the pipe, since it is keeping the
write-end open itself. It is terminated by sending it a signal. The code follows.

Listing 8.14: upcased1.c

#inc lude "upcase1 . h"

#de f i n e WARNING "\nNOTE: SERVER ∗∗ NEVER ∗∗ acce s s ed p r i va t e FIFO\n"
#de f i n e MAXTRIES 5

in t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t p r i v a t e f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/

void on_sigpipe (i n t s i gno)
{

f p r i n t f (s tde r r , " C l i en t i s not read ing the pipe . \ n ") ;
}

void on_signal (i n t s i g)
{

c l o s e (p u b l i c f i f o) ;
c l o s e (dummyfifo) ;
i f (p r i v a t e f i f o != −1)

c l o s e (p r i v a t e f i f o) ;
un l ink (PUBLIC) ;
e x i t (0) ;

}

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

i n t t r i e s ; /∗ num t r i e s to open pr i va t e FIFO ∗/
i n t nbytes ; /∗ number o f bytes read from popen () ∗/
i n t i ;
i n t done ; /∗ f l a g to stop loop ∗/
s t r u c t message msg ; /∗ s t o r e s p r i va t e f i f o name and command ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/

/∗ Reg i s t e r the s i g n a l handler ∗/
handler . sa_handler = on_signal ;
handler . sa_f lags = SA_RESTART;
i f (((s i g a c t i o n (SIGINT , &handler , NULL)) == −1) | |

((s i g a c t i o n (SIGHUP, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGQUIT, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGTERM, &handler , NULL)) == −1)

) {
pe r ro r (" s i g a c t i o n ") ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

37

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

e x i t (1) ;
}

handler . sa_handler = on_sigpipe ;
i f (s i g a c t i o n (SIGPIPE , &handler , NULL) == −1) {

pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

/∗ Create pub l i c FIFO ∗/
i f (mkf i fo (PUBLIC, 0666) < 0) {

i f (e r rno != EEXIST)
per ro r (PUBLIC) ;

e l s e
f p r i n t f (s tde r r , "%s a l ready e x i s t s . De lete i t and r e s t a r t . \ n" ,

PUBLIC) ;
e x i t (1) ;

}

/∗ Open pub l i c FIFO f o r read ing and wr i t i ng so that i t does not get an
EOF on the read−end whi l e wa i t ing f o r a c l i e n t to send data .
To prevent i t from hanging on the open , the write−end i s opened in
non−b lock ing mode . I t never wr i t e s to i t .

∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_RDONLY)) == −1 | |

(dummyfifo = open (PUBLIC, O_WRONLY | O_NDELAY)) == −1) {
pe r ro r (PUBLIC) ;
e x i t (1) ;

}

/∗ Block wai t ing f o r a msg s t r u c t from a c l i e n t ∗/
whi l e (read (p ub l i c f i f o , (char ∗) &msg , s i z e o f (msg)) > 0) {

/∗ A msg arr ived , so s t a r t t ry ing to open wr i t e end o f p r i va t e FIFO ∗/
t r i e s = done = 0 ;
p r i v a t e f i f o = −1;
do {

i f ((p r i v a t e f i f o = open (msg . fifo_name ,
O_WRONLY | O_NDELAY)) == −1)

s l e e p (1) ; /∗ s l e e p i f f a i l e d to open ∗/
e l s e {

/∗ Convert the text to uppercase ∗/
nbytes = s t r l e n (msg . t ex t) ;
f o r (i = 0 ; i < nbytes ; i++)

i f (i s l owe r (msg . t ex t [i]))
msg . t ex t [i] = toupper (msg . t ex t [i]) ;

/∗ Send converted text to c l i e n t ∗/
i f (−1 == wr i t e (p r i v a t e f i f o , msg . text , nbytes)) {

i f (e r rno == EPIPE)
done = 1 ;

}
c l o s e (p r i v a t e f i f o) ; /∗ c l o s e write−end o f p r i va t e FIFO ∗/
done = 1 ; /∗ terminate loop ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

38

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

}
} whi l e (++t r i e s < MAXTRIES && ! done) ;

i f (! done)
/∗ Fai l ed to open c l i e n t p r i va t e FIFO f o r wr i t i ng ∗/
wr i t e (f i l e n o (s t d e r r) , WARNING, s i z e o f (WARNING)) ;

}
re turn 0 ;

}

Comments.

This server handles all user-initiated terminating signals by closing any descriptors that it has open
and removing the public FIFO and exiting. It sets privatefifo to -1 at the start of each loop,
and if it opens the private FIFO successfully, privatefifo is no longer -1. This way, in the signal
handler, it can determine whether it had a private FIFO open for writing and needs to close it.

If it gets a SIGPIPE because a client closed its read end of its private FIFO immediately after sending
a message but before the server wrote back the converted string, it handles SIGPIPE by continuing
to listen for new messages and giving up on the write to that pipe.

8.4.4 Concurrent Servers

The preceding server was an iterative server; it handled each client request one after the other. If
some client requests could be very time-consuming, then the server would be busy servicing one
client to the exclusion of all others, and the others would experience delays. This can be avoided
by allowing the server to handle multiple clients simultaneously. A server that can process requests
from more than one client simultaneously is called a concurrent server.

The easiest way to create a concurrent server is to fork a child process for each client5. The server's
role then amounts to little more than "listening" to the public pipe for incoming requests, forking
a child process to handle a new request, and waiting for its children to �nish. The waiting must
be accomplished through a SIGCHLD handler, because, unlike a shell-style application, this process
has to return immediately to the task of reading the public pipe. The basic outline of the server
program's main process is therefore roughly:

1. It registers its signal handlers.

2. It creates the public FIFO. If it �nds it already exists, it displays a message and exits.

3. It opens the public FIFO for both reading and writing, even though it will only read from it.

4. It enters its main-loop, where it repeatedly

(a) does a blocking read() on the public FIFO,

(b) on receiving a message from the read(), forks a child process to handle the client request.

5When we cover threads, you will see that threads are another means of accomplishing this.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

39

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

Aside from spawning child processes, there are a few major di�erences between the way this server
works and the way the sequential server worked:

Each client will have two private FIFOs: one into which it writes raw text to be translated, and a
second from which it reads text that the server translated and sent back to it. The names of these
two FIFOs must be sent to the server's public FIFO when a client wishes its services. Therefore,
the message structure is di�erent in this program than it was in the iterative server. We will call
this message a connection message, because its only purpose is to establish the means by which
the client and the server can communicate privately. A connection message contains only the
information needed to establish this two-way private communication between the server and the
client:

typedef struct _message {

char raw_text_fifo [HALFPIPE_BUF];

char converted_text_fifo[HALFPIPE_BUF];

} message;

Each child process forked by the server begins by opening the read-end of the client's "raw_text"
FIFO, and then it repeatedly reads from the this raw_text FIFO, translates the text into uppercase,
opens the write-end of the client's converted_text FIFO, writes the converted text into it, and closes
the write-end of the converted_text FIFO, until it received an end-of-�le from the client.

8.4.4.1 The Concurrent Server Client

The client is also structurally di�erent from the previous client. The major steps that it takes are
as follows.

1. It registers its signal handlers.

2. It creates two private FIFOs in the /tmp directory with unique names.

3. It opens the server's public FIFO for writing.

4. It sends the initial message structure containing the names of its two FIFOs to the server to
establish the two-way communication.

5. It attempts to open its raw_text FIFO in non-blocking, write-only mode. If it fails, it delays
a second and retries. It retries a few times and then gives up and exits. If it fails it means
that the server is probably terminated.

6. Until it receives an end-of-�le on its standard input, it repeatedly

(a) reads a line from standard input,

(b) breaks the line into PIPE_BUF-sized chunks,

(c) sends each chunk successively to the server through its raw_text FIFO,

(d) opens the converted_text FIFO for reading,

(e) reads the converted_text FIFO, and copies its contents to its standard output, and

(f) closes the read-end of the converted_text FIFO

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

40

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

7. It closes all of its FIFOs and removes the �les.

Figure 8.7 shows how the client processes and the server parent and child processes use the various
FIFOs. Compare this to Figure 8.6.

Figure 8.7: Concurrent server and client communication.

The code for the client is displayed �rst, in the following Listing.

Listing 8.15: upcaseclient2.c

#inc lude "upcase2 . h" /∗ Al l r equ i r ed header f i l e s are inc luded in t h i s ∗/
/∗ shared header f i l e . ∗/

#de f i n e MAXTRIES 5

const char startup_msg [] =
"The upcased2 s e r v e r does not seem to be running . "
" Please s t a r t the s e r v i c e . \ n " ;

const char server_no_read_msg [] =
"The s e r v e r i s not read ing the pipe . \ n " ;

i n t convertedtext_fd ; /∗ f i l e d e s c r i p t o r f o r READ PRIVATE FIFO ∗/
i n t dummyreadfifo ; /∗ to hold f i f o open ∗/
i n t rawtext_fd ; /∗ f i l e d e s c r i p t o r to WRITE PRIVATE FIFO ∗/
i n t dummyrawfifo_fd ; /∗ to hold the raw text f i f o open ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
FILE∗ input_srcp ; /∗ F i l e po in t e r to input stream ∗/
message msg ; /∗ 2−way communication s t r u c tu r e ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

41

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

/∗ S igna l Handlers and U t i l i t i e s ∗/

void on_sigpipe (i n t s i gno)
{

f p r i n t f (s tde r r , "upcased i s not read ing the pipe . \ n ") ;
un l ink (msg . raw_text_fi fo) ;
un l ink (msg . converted_text_f i fo) ;
e x i t (1) ;

}

void on_signal (i n t s i g)
{

c l o s e (p u b l i c f i f o) ;
i f (convertedtext_fd != −1)

c l o s e (convertedtext_fd) ;
i f (rawtext_fd != −1)

c l o s e (rawtext_fd) ;
un l ink (msg . converted_text_f i fo) ;
un l ink (msg . raw_text_fi fo) ;
e x i t (0) ;

}

void clean_up ()
{

c l o s e (p u b l i c f i f o) ;
c l o s e (rawtext_fd) ;
un l ink (msg . converted_text_f i fo) ;
un l ink (msg . raw_text_fi fo) ;

}

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

i n t strLength ; /∗ number o f bytes in t ext to convert ∗/
i n t nChunk ; /∗ index o f t ex t chunk to send to s e r v e r ∗/
i n t bytesRead ; /∗ bytes r e c e i v ed in read from se rv e r ∗/
s t a t i c char bu f f e r [PIPE_BUF] ;
s t a t i c char t extbu f [BUFSIZ] ;
s t r u c t s i g a c t i o n handler ;
i n t t r i e s ; /∗ f o r count ing t r i e s to open rawtext f i f o ∗/

/∗ Check whether the re i s a command l i n e argument , and i f so , use i t as
the input source . ∗/

i f (argc > 1) {
i f (NULL == (input_srcp = fopen (argv [1] , " r "))) {

pe r ro r (argv [1]) ;
e x i t (1) ;

}
}
e l s e

input_srcp = s td in ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

42

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

/∗ I n i t i a l i z e the f i l e d e s c r i p t o r s f o r e r r o r handl ing ∗/
p u b l i c f i f o = −1;
convertedtext_fd = −1;
rawtext_fd = −1;

/∗ Reg i s t e r the on_signal handler to handle a l l s i g n a l s ∗/
handler . sa_handler = on_signal ;
i f (((s i g a c t i o n (SIGINT , &handler , NULL)) == −1) | |

((s i g a c t i o n (SIGHUP, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGQUIT, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGTERM, &handler , NULL)) == −1)

) {
pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

handler . sa_handler = on_sigpipe ;
i f (s i g a c t i o n (SIGPIPE , &handler , NULL) == −1) {

pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

/∗ Create unique names f o r p r i va t e FIFOs us ing process−id ∗/
s p r i n t f (msg . converted_text_f i fo , "/tmp/ f i f o_rd%d" , getp id ()) ;
s p r i n t f (msg . raw_text_fifo , "/tmp/ f i fo_wr%d" , getp id ()) ;

/∗ Create the p r i va t e FIFOs ∗/
i f (mkf i fo (msg . converted_text_f i fo , 0666) < 0) {

pe r ro r (msg . converted_text_f i fo) ;
e x i t (1) ;

}

i f (mkf i fo (msg . raw_text_fifo , 0666) < 0) {
pe r ro r (msg . raw_text_fi fo) ;
e x i t (1) ;

}

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_WRONLY | O_NDELAY)) == −1) {

i f (e r rno == ENXIO)
f p r i n t f (s tde r r ,"%s " , startup_msg) ;

e l s e
pe r ro r (PUBLIC) ;

e x i t (1) ;
}

/∗ Send a message to s e r v e r with names o f two FIFOs ∗/
wr i t e (p u b l i c f i f o , (char ∗) &msg , s i z e o f (msg)) ;

/∗ Try to open the raw text FIFO f o r wr i t i ng . After MAXTRIES
attempts we g ive up . ∗/

t r i e s = 0 ;
whi l e (((rawtext_fd = open (msg . raw_text_fifo ,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

43

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

O_WRONLY | O_NDELAY)) == −1) && (t r i e s < MAXTRIES)) {
s l e e p (1) ;
t r i e s++;

}
i f (t r i e s == MAXTRIES) {

f p r i n t f (s tde r r , "%s " , server_no_read_msg) ;
clean_up () ;
e x i t (1) ;

}

/∗ Get one l i n e o f input at a time from the input source ∗/
whi l e (1) {

memset (textbuf , 0x0 , BUFSIZ) ;
i f (NULL == f g e t s (textbuf , BUFSIZ , input_srcp))

break ;

strLength = s t r l e n (t ex tbu f) ;

/∗ Break input l i n e s in to chunks and send them one at a ∗/
/∗ time through the c l i e n t ' s wr i t e FIFO ∗/
f o r (nChunk = 0 ; nChunk < strLength ; nChunk += PIPE_BUF−1) {

memset (bu f f e r , 0x0 , PIPE_BUF) ;
strncpy (bu f f e r , t ex tbu f+nChunk , PIPE_BUF−1);
bu f f e r [PIPE_BUF−1] = ' \ 0 ' ;
wr i t e (rawtext_fd , bu f f e r , s t r l e n (bu f f e r)) ;

/∗ Open the p r i va t e FIFO f o r read ing to get output o f command ∗/
/∗ from the s e r v e r . ∗/
i f ((convertedtext_fd = open (msg . converted_text_f i fo , O_RDONLY))

== −1) {
pe r ro r (msg . converted_text_f i fo) ;
e x i t (1) ;

}
memset (bu f f e r , 0x0 , PIPE_BUF) ;
whi l e ((bytesRead= read (convertedtext_fd , bu f f e r , PIPE_BUF)) > 0)

wr i t e (f i l e n o (stdout) , bu f f e r , bytesRead) ;

c l o s e (convertedtext_fd) ;
convertedtext_fd = −1;

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO and de l e t e p r i va t e FIFO ∗/
c l o s e (p u b l i c f i f o) ;
c l o s e (rawtext_fd) ;
un l ink (msg . converted_text_f i fo) ;
un l ink (msg . raw_text_fi fo) ;
r e turn 0 ;

}

Comments.

• The order of events here is important, and in some cases critical. After the client creates its
private FIFOs without error, it opens the write-end of the server's public FIFO. It then sends

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

44

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

a message containing the names of its private FIFOs. After sending the names of the private
FIFOs, it tries to open the write-end of its raw_text FIFO in non-blocking mode. This will
fail if the server has not opened the read-end yet. Assuming that the server is running, the
client will succeed in opening the raw_text FIFO. The server can open its read-end without
the write-end being open, so this works well. If we were to reverse the order and open the
raw_text FIFO before sending the server the message, we would need to open it in read-write
mode since the server is blocked on its read of the public FIFO and the two processes would
deadlock otherwise. But if we open the raw_text FIFO in read-write mode, then if the server
terminates unexpectedly and never reads the raw_text FIFO again, the client will not get
a SIGPIPE signal because the client itself has a read-end open, preventing the kernel from
generating the signal. The client would never be noti�ed that the server died.

• The client then keeps the write-end of its raw_text FIFO open for the duration of its main
loop.

• Within the loop, the client �rst writes to its raw_text FIFO, and then opens its converted_text
FIFO, after which, if all goes well, it reads and closes it again. Thus, it repeatedly opens and
closes this FIFO within the loop. We could just let it stay open for the duration of the loop,
but closing it and re-opening it we give ourselves the chance to detect in the open() call that
the server closed its write end of the FIFO unexpectedly.

• The error handling in the client is similar to what it was in the iterative server's client.
The code has redundant error checks such as guards to prevent closing a FIFO that is not
open (setting the �le descriptors to -1 unless they are in use), and closing descriptors before
unlinking the �les. On the other hand, it should really check the return values of the close()
calls. A clean_up() function simpli�es the error-handling, consolidating the cleaning up code.

8.4.4.2 The Concurrent Server

The server code is in the next listing.

Listing 8.16: upcased2.c

#inc lude "upcase2 . h"
#inc lude " sys /wait . h"

#de f i n e WARNING "Server could not a c c e s s c l i e n t FIFO\n"
#de f i n e MAXTRIES 5

in t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t c l i ent_convertedtext_fd ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t c l ient_rawtext_fd ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/
FILE∗ upcaselog_fp ; /∗ po in t s to l og f i l e f o r s e r v e r ∗/
pid_t server_pid ; /∗ to s t o r e se rver ' s p roce s s id ∗/

/∗∗∗/
/∗ S igna l Handler Prototypes ∗/
/∗∗∗/
/∗∗ on_sigpipe ()
∗ This handles the SIGPIPE s i gna l s , j u s t wr i t e s to standard e r r o r .
∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

45

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

void on_sigpipe (i n t s i gno) ;

/∗∗ on_signal ()
∗ This handles the i n t e r r up t s i g n a l s . I t c l o s e s open FIFOs and f i l e s ,
∗ removes the pub l i c FIFO and e x i t s .
∗/
void on_signal (i n t s i g) ;

/∗∗ on_s igch i ld ()
∗ Because t h i s i s a concurrent se rver , the parent p roce s s has to c o l l e c t the
∗ e x i t s t a tu s o f each ch i l d . The SIGCHLD handler i s s u e s wait s and wr i t e s to
∗ the log f i l e .
∗/
void on_sigchld (i n t s i gno) ;

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

i n t t r i e s ; /∗ num t r i e s to open p r i va t e FIFO ∗/
i n t nbytes ; /∗ number o f bytes read from pr i va t e FIFO ∗/
i n t i ;
s t r u c t message msg ; /∗ message s t r u c tu r e with FIFO names ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/
char bu f f e r [PIPE_BUF] ;
char l o g f i l e p a t h [PATH_MAX] ;
char ∗homepath ; /∗ path to home d i r e c t o r y ∗/
pid_t chi ld_pid ; /∗ pid o f each spawned ch i l d ∗/
/∗ Open the log f i l e in the user ' s home d i r e c t o r y f o r appending . ∗/
homepath = getenv ("HOME") ;
s p r i n t f (l o g f i l e p a t h , "%s / . upcase_log " , homepath) ;

i f (NULL == (upcaselog_fp = fopen (l o g f i l e p a t h , "a "))) {
pe r ro r (l o g f i l e p a t h) ;
e x i t (1) ;

}

/∗ Reg i s t e r the i n t e r r up t s i g n a l handler ∗/
handler . sa_handler = on_signal ;
handler . sa_f lags = SA_RESTART;
i f (((s i g a c t i o n (SIGINT , &handler , NULL)) == −1) | |

((s i g a c t i o n (SIGHUP, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGQUIT, &handler , NULL)) == −1) | |
((s i g a c t i o n (SIGTERM, &handler , NULL)) == −1)

) {
pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

handler . sa_handler = on_sigpipe ;
i f (s i g a c t i o n (SIGPIPE , &handler , NULL) == −1) {

pe r ro r (" s i g a c t i o n ") ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

46

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

e x i t (1) ;
}

handler . sa_handler = on_sigchld ;
i f (s i g a c t i o n (SIGCHLD, &handler , NULL) == −1) {

pe r ro r (" s i g a c t i o n ") ;
e x i t (1) ;

}

/∗ Create pub l i c FIFO ∗/
i f (mkf i fo (PUBLIC, 0666) < 0) {

i f (e r rno != EEXIST)
per ro r (PUBLIC) ;

e l s e {
f p r i n t f (s tde r r , "%s a l ready e x i s t s . De lete i t and r e s t a r t . \ n" ,

PUBLIC) ;
}
e x i t (1) ;

}

/∗ Open pub l i c FIFO f o r read ing and wr i t i ng so that i t does not get ∗/
/∗ EOF on the read−end whi l e wa i t ing f o r a c l i e n t to send data . ∗/
/∗ To prevent i t from hanging on the open , the write−end i s opened ∗/
/∗ in non−b lock ing mode . I t never wr i t e s to i t . ∗/
i f ((p u b l i c f i f o = open (PUBLIC, O_RDONLY)) == −1 | |

(dummyfifo = open (PUBLIC, O_WRONLY | O_NDELAY)) == −1) {
pe r ro r (PUBLIC) ;
e x i t (1) ;

}

server_pid = getp id () ;

/∗ Block wai t ing f o r a msg s t r u c tu r e from a c l i e n t ∗/
whi l e (read (p ub l i c f i f o , (char ∗) &msg , s i z e o f (msg)) > 0) {

/∗ spawn ch i l d p roce s s to handle t h i s c l i e n t ∗/
i f (0 == fo rk ()) {

/∗ We get the pid f o r message i d e n t i f i c a t i o n . ∗/
chi ld_pid = getp id () ;

/∗ We use the value o f c l ient_rawtext_fd to de t e c t e r r o r s ∗/
c l ient_rawtext_fd = −1;

/∗ Cl i en t should have opened rawtext_fd f o r wr i t i ng be f o r e
sending the message s t ruc ture , so the f o l l ow i ng open should
succeed immediately . I f not i t b locks u n t i l the c l i e n t opens
i t . ∗/

i f ((c l ient_rawtext_fd = open (msg . raw_text_fifo , O_RDONLY))
== −1) {

f p r i n t f (upcaselog_fp ,
" C l i en t did not have pipe open f o r wr i t i ng \n ") ;

e x i t (1) ;
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

47

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

/∗ Clear the bu f f e r used f o r read ing the c l i e n t ' s t ex t ∗/
memset (bu f f e r , 0x0 , PIPE_BUF) ;

/∗
Attempt to read from c l i e n t ' s raw_text_fi fo . This read w i l l
b lock un t i l e i t h e r input i s a v a i l a b l e or i t r e c e i v e s an EOF.
An EOF i s d e l i v e r e d only when the c l i e n t c l o s e s the write−end
o f i t s raw_text_fi fo .

∗/
whi l e ((nbytes = read (cl ient_rawtext_fd , bu f f e r ,

PIPE_BUF)) > 0) {
/∗ Convert the text to uppercase ∗/
f o r (i = 0 ; i < nbytes ; i++)

i f (i s l owe r (bu f f e r [i]))
bu f f e r [i] = toupper (bu f f e r [i]) ;

/∗ Open c l i e n t ' s conver tedtext FIFO f o r wr i t i ng . To a l low f o r
de lays , we try 5 t imes . Here i t i s c r i t i c a l that the
O_NONBLOCK f l a g i s set , o therw i se i t w i l l hang in the loop
and we w i l l not be ab le to abandon the attempt i f the c l i e n t
has died . ∗/

t r i e s = 0 ;
whi l e (((c l i ent_convertedtext_fd = open (msg . converted_text_f i fo ,

O_WRONLY | O_NDELAY)) == −1) && (t r i e s < MAXTRIES))
{

s l e e p (2) ;
t r i e s++;

}
i f (t r i e s == MAXTRIES) {

/∗ Fai l ed to open c l i e n t conver tedtext FIFO f o r wr i t i ng ∗/
f p r i n t f (upcaselog_fp , "%d : " WARNING, chi ld_pid) ;
e x i t (1) ;

}

/∗ Send converted text to c l i e n t in i t s r e a d f i f o ∗/
i f (−1 == wr i t e (c l i ent_convertedtext_fd , bu f f e r ,

nbytes)) {
i f (e r rno == EPIPE)

e x i t (1) ;
}
/∗ See the notes below . ∗/
c l o s e (c l i ent_conver tedtext_fd) ;
c l i ent_conver tedtext_fd = −1;

/∗ Clear the bu f f e r used f o r read ing the c l i e n t ' s t ex t ∗/
memset (bu f f e r , 0x0 , PIPE_BUF) ;

}
e x i t (0) ;

}
}
re turn 0 ;

}

The signal handlers for the server are below. The SIGCHLD handler uses waitpid() to wait for all

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

48

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

children, and it remains in its loop as long as there is a zombie to be collected. The WNOHANG �ag is
used to prevent it from blocking in the waitpid() code. This way, if multiple SIGCHLD signals arrive
while it is in the handler, the children whose deaths caused them will be collected. (Remember that
signals may not be reliably handled on all systems, and even though in a POSIX compliant system,
each SIGCHLD will be delivered if we set SA_NODEFER, it is safer to collect them in this loop.)

void on_sigchld (i n t s i gno)
{

pid_t pid ;
i n t s t a tu s ;

whi l e ((pid = waitp id (−1 , &status , WNOHANG)) > 0)
f p r i n t f (upcaselog_fp , "Child p roce s s %d terminated . \ n" , pid) ;

f f l u s h (upcaselog_fp) ;
r e turn ;

}

void on_sigpipe (i n t s i gno)
{

f p r i n t f (s tde r r , " C l i en t i s not read ing the pipe . \ n ") ;
}

void on_signal (i n t s i g)
{

c l o s e (p u b l i c f i f o) ;
c l o s e (dummyfifo) ;
i f (c l i e n t r e a d f i f o != −1)

c l o s e (c l i e n t r e a d f i f o) ;
i f (c l i e n t w r i t e f i f o != −1)

c l o s e (c l i e n t w r i t e f i f o) ;
i f (ge tp id () == server_pid)

un l ink (PUBLIC) ;
f c l o s e (upcase log) ;
e x i t (0) ;

}

Comments.

• All of the work is performed by the child processes. Each child begins by trying to open the
client's raw_text FIFO for reading. If successful, it enters a loop in which it repeatedly reads,
converts the text to uppercase, opens the client's converted_text FIFO, writes the converted
text to it, and closes it.

• Since the client may not have the converted_text open for reading for any number of reasons
� it might have been terminated � the child process tries the open() a �xed number of times
before it gives up. It uses the same technique as the iterative server did, using a non-blocking
open().

• When the child process does successfully open the FIFO, it still checks whether the write()
failed, since anything can happen in between, and if so, the child exits. Otherwise, it writes

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

49

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

the data, closes its end of the FIFO and waits to read more text from the client. When it
receives the end-of-�le, it exits.

• You may wonder why the server repeatedly opens and closes the write end of the client's
converted_text FIFO. This is the only way that the client will receive an EOF in its read().
If the client does not get the EOF, then it will remain blocked in its read of the converted_text
FIFO, and will not be able to send any more data to the server. This would put the client
and this server subprocess into deadlock, because this process would go back to the read()

of the client's raw_text FIFO and block waiting for data from the client, which would never
arrive. Therefore, although it seems ine�cient to open and close this FIFO each time, it is
the simplest means of preventing deadlock.

• The signal handler checks whether the parent process is executing it. If the parent has been
signaled, then it should remove the public FIFO, otherwise not. We do not want child processes
to remove this FIFO!

• If you are at all familiar with sockets, you might have noticed that the design of this server
is easily converted to one that uses sockets. We will refer back to this example when we take
up sockets.

8.5 Daemon Processes

As was mentioned earlier, a daemon is a process that runs in the background, has no controlling
terminal. In addition, daemons set their working directory to "/". Usually daemons are started by
system initialization scripts at boot-time. If you have written a server and want to turn it into a
full-�edged daemon, it is not enough to put it into the background. This will only tell the shell not
to wait for it; it will still have a control terminal and will still be killed by any signals from that
terminal.

Some daemons are started by other programs. For example, some network daemons are started by
the inetd or xinetd superserver. Some are started by programs such as the crond daemon, which
runs scheduled jobs. Some are invoked at the user terminal. For example, sometimes the printer
daemon is stopped and restarted at the terminal by the superuser.

Because daemons do not have a controlling terminal, they cannot write messages to standard output
or to standard error. Instead they can use a system logging function named syslog(), which is
a client that talks to the syslogd daemon, which write messages to speci�c log �les. The glibc

version of this function is klogctl(). Later we will look at an example of how it can be used. A
server should be designed to turn itself into a daemon. In other words, when the server is run, it
should take all of the steps necessary to become a daemon, which include:

1. Putting itself in the background. It does this by forking a new process and executing its
code as the child and having the parent execute exit(). When the parent exits, the shell
that started it collects its exit status and thinks the invoked program has terminated (which
it has.) The child, which is now the server, is no longer in the foreground, but it is still
controlled by the terminal.

2. Making itself a session leader. Recall that a process can detach itself from a terminal by
becoming a session leader, but only processes that are neither session leaders nor process

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

50

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

group leaders can do this. Since the server is now a child of the original process, it is neither,
so it can call setsid(), which makes it a session leader of a new session and a group leader
of a new process group.

3. Registering its intent to ignore SIGHUP.

4. Forking another child process, terminating in the parent again, and letting the new child,
which is the grandchild of the original process, execute the server code. In some versions of
UNIX, when a session leader opens a terminal device (which it may want to do sometimes),
that terminal is automatically made the control terminal for the process. By running as the
child of a session leader, the server is now immune from this eventuality. In Linux, a process
can set the O_NOCTTY �ag on open() to prevent this. The reason for ignoring SIGHUP is that
when a session leader terminates, all of its children are sent a SIGHUP, which would otherwise
kill them. Since the parent is a session leader, the child must ignore SIGHUP.

5. Changing the working directory to "/".

6. Clearing the umask.

7. Closing any open �le descriptors.

A procedure for doing all of these steps, based on one from [Stevens], is below.

Listing 8.17: daemon_init.c

void daemon_init (const char ∗pname , i n t f a c i l i t y)
{

i n t i ;
pid_t pid ;

i f ((pid = fo rk ()) == −1) {
pe r ro r (" f o rk ") ;
e x i t (1) ;

}
e l s e i f (pid != 0)

e x i t (0) ; /∗ parent te rminates ∗/

/∗ Child cont inues from here ∗/
/∗ Detach i t s e l f and make i t s e l f a s e s s s i o n l e ade r ∗/
s e t s i d () ;

/∗ Ignore SIGHUP ∗/
s i g n a l (SIGHUP, SIG_IGN) ;

i f ((pid = fo rk ()) == −1) {
pe r ro r (" f o rk ") ;
e x i t (1) ;

}
e l s e i f (pid != 0)

e x i t (0) ; /∗ F i r s t c h i l d te rminates ∗/

/∗ Grandchild cont inues from here ∗/
chd i r (" / ") ; /∗ change working d i r e c t o r y ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

51

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

umask (0) ; /∗ c l e a r our f i l e mode c r e a t i on mask ∗/

/∗ Close a l l open f i l e d e s c r i p t o r s ∗/
f o r (i = 0 ; i < MAXFD; i++)

c l o s e (i) ;

/∗ Star t l ogg ing with sy s l o g () ∗/
openlog (pname , LOG_PID, f a c i l i t y) ;

}

The �nal version of the upcase server incorporates this function and turns itself into a daemon.
The only changes required are to include this function into the code and insert the line

daemon_init(argv[0], 0);

before the �rst executable statement.

8.6 Multiplexed I/O With select

Imagine the situation in which a process has multiple sources of input open for reading, such as
a set of pipes as well as the terminal. Suppose the process has to respond to commands typed at
the terminal as well as display messages that are available in the pipes. This is what is meant by
multiplexed input : when a process has to obtain input available from multiple sources simultaneously.
One solution would be to make all of the reads non-blocking and to continually poll each descriptor
to see if there is data ready for reading on it. Polling, though, has many drawbacks, as we have
seen, the most important of which is that it is wasteful of the CPU resource.

Another alternative would be to use asynchronous reads on each descriptor. This is also possible,
but quite messy to code, and has the drawback that it relies on signals which may not be handled
properly or reliably.

It is for these reasons that the select() system call was developed6. Basically, the select() call
allows a process to listen to multiple descriptors at once and to be noti�ed when any of them
have pending input or output. Roughly put, select() is given a set of masks of �le descriptors,
representing I/O devices or �les in which the process is interested. When input or output is ready
on any of them, the appropriate bits in these masks are set. The process can check the masks to
see which I/O is ready and can then read or write the ready descriptors. The select() call works
with any �le descriptor, so that it can be used with �les, pipes, FIFOs, devices, and sockets.

select() is fairly complex:

/* According to POSIX.1-2001 */

#include <sys/select.h>

/* According to earlier standards */

6There is a similar call named poll().

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

52

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

The parameters have the following meanings:

ndfs The number of �le descriptors of potential interest.

readfds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in reading.

writefds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in writing.

exceptfds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in checking for out-of-band data7. (Out-of-band messages or data should be
thought of as exceptions or error conditions concerning any of the descriptors in the
read or write descriptor masks.)

timeout The address of a timeval structure containing the amount of time to wait before com-
pleting the select() call. If timeout is NULL, it means wait forever, i.e., block until at
least one descriptor is ready. If it is zero, it means return immediately with the status of
all descriptors in the above sets. If it is non-zero, it will either wait the speci�ed amount
of time or return before if one of the speci�ed descriptors is ready.

The return value of the select() call is the number of descriptors that are ready, or -1 if there was
an error.

The fd_set data type is not necessarily a scalar. It is usually an array of long integers. If you
do a little digging you will discover a constant, FD_SETSIZE, that de�nes the maximum number of
descriptors in a fd_set, which is usually on the order of 1024 or more. Fortunately, you do not
need to know how it is de�ned to use it, since there are macros and/or functions in the library for
manipulating fd_set objects:

This turns o� the bit for descriptor fd in the mask pointed to by fdset:

void FD_CLR(int fd, fd_set *fdset);

This turns on the bit for descriptor fd in the mask pointed to by fdset:

void FD_SET(int fd, fd_set *fdset);

This sets all bits to zero in the mask pointed to by fdset:

7Out-of-band refers to data that is transferred in a separate communication channel. Out-of-band implies that
the data does not arrive in sequence with the rest of the data, but in a parallel channel. It is used for transmitting
error or control messages.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

53

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

void FD_ZERO(fd_set *fdset);

This checks whether the bit for descriptor fd is set in the mask pointed to by fdset:

int FD_ISSET(int fd, fd_set *set);

The value of the �rst parameter, ndfs, must be set to the value of the largest �le descriptor +
1, since the �le descriptor array is 0-based. The reason that the �rst argument is the maximum
number of descriptors of interest is for e�ciency. By supplying this number to the kernel, it saves
the kernel the work of having to copy parts of the descriptor mask that are not needed. To give
you an idea of how this call is used in a simple case, if we wanted to read from two di�erent open
�le descriptors, we would use something like

#include <sys/time.h>

#include <sys/types.h>

...

int fd1, fd2, maxfd;

fd_set readset, tempset;

fd1 = open("file1", O_RDONLY); /* open file1 */

fd2 = open("file2", O_RDONLY); /* open file2*/

maxfd = fd1 > fd2 ? fd1+1 : fd2+1;

FD_ZERO(&readset); /* clear the bits in the mask */

FD_SET(fd1, &readset); /* set the bit for fd1 (file1) */

FD_SET(fd2, &readset); /* set the bit for fd2 (file2) */

tempset = readset; /* copy into tempset */

while (select(maxfd, &tempset, NULL, NULL, NULL) > 0) {

if (FD_ISSET(fd1, &tempset)) {

/* read from descriptor fd1 */

}

if (FD_ISSET(fd2, &tempset)) {

/* read from descriptor fd2 */

}

tempset = readset;

}

Notes.

• Although we are interested only in �le descriptors fd1 and fd2, the proper way to use select
is to specify the full range of descriptors from 0 to the maximum of fd1 and fd2. Since it is
a zero-based array, this value is max(fd1, fd2) + 1.

• Because the return value of select() is positive as long as there is data to be read on either
of fd1 or fd2, the loop will continue until we get end-of-�le on both �les.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

54

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

• The way that select() works, it resets the �le descriptor masks to re�ect the status of
the descriptors of interest. In other words, the masks change after each call to select().
Therefore, you need to keep a copy of the original mask, and before each call, reset the masks
to their original states.

• The masks are not modi�ed if the select() call returned with an error.

• Inside the loop, you use the FD_ISSET() function to test each descriptor in which you expressed
interest.

• It is a very common mistake to forget to add 1 to the largest descriptor in the �rst argument.
It is also a common mistake to forget to reset the mask between each successive call.

We will put these ideas to work in a slightly more interesting example, borrowed from [Haviland et
al].

Listing 8.18: selectdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <errno . h>
#inc lude <sys / time . h>
#inc lude <sys /wait . h>

#de f i n e MSGSIZE 6

char msg1 [] = "He l lo " ;
char msg2 [] = "Bye ! ! " ;

void parent (i n t p i p e s e t [3] [2]) ;
i n t c h i l d (i n t fd [2]) ;

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main (i n t argc , char ∗ argv [])
{

i n t fd [3] [2] ; /∗ array o f three p ipe s ∗/
i n t i ;

f o r (i = 0 ; i < 3 ; i++) {
/∗ c r e a t e three p ipe s ∗/
i f (p ipe (fd [i]) == −1) {

pe r ro r (" pipe ") ;
e x i t (1) ;

}

/∗ f o rk ch i l d r en ∗/
switch (f o rk ()) {

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

55

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

case −1 :
f p r i n t f (s tde r r , " f o rk f a i l e d . \ n ") ;
e x i t (1) ;

case 0 :
c h i l d (fd [i]) ;

}
}
parent (fd) ;
r e turn 0 ;

}

/∗∗∗/
/∗ Parent and Child ∗/
/∗∗∗/

void parent (i n t p i p e s e t [3] [2])
{

char buf [MSGSIZE] ;
char l i n e [8 0] ;
fd_set i n i t i a l , copy ;
i n t i , nbytes ;

f o r (i = 0 ; i < 3 ; i++)
c l o s e (p i p e s e t [i] [1]) ;

/∗ c r e a t e d e s c r i p t o r mask ∗/
FD_ZERO(& i n i t i a l) ;
FD_SET(0 , &i n i t i a l) ; /∗ add standard input ∗/

f o r (i = 0 ; i < 3 ; i++)
FD_SET(p ip e s e t [i] [0] , &i n i t i a l) ; /∗ add read end o f each pipe ∗/

copy = i n i t i a l ; /∗ make a copy ∗/
whi l e (s e l e c t (p i p e s e t [2] [0]+1 , © , NULL, NULL, NULL) > 0) {

/∗ check standard input f i r s t ∗/
i f (FD_ISSET(0 , ©)) {

p r i n t f ("From standard input : ") ;
nbytes = read (0 , l i n e , 8 1) ;
l i n e [nbytes] = ' \ 0 ' ;
p r i n t f ("%s " , l i n e) ;

}

/∗ check the pipe from each ch i l d ∗/
f o r (i = 0 ; i < 3 ; i++) {

i f (FD_ISSET(p ip e s e t [i] [0] , ©)) {
/∗ i t i s ready to read ∗/
i f (read (p i p e s e t [i] [0] , buf , MSGSIZE) > 0) {

p r i n t f ("Message from ch i l d %d:%s \n" , i , buf) ;
}

}
}
i f (waitp id (−1 , NULL, WNOHANG) == −1)

re turn ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

56

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

copy = i n i t i a l ;
}

}

i n t ch i l d (i n t fd [2])
{

i n t count ;
c l o s e (fd [0]) ;

f o r (count = 0 ; count < 10 ; count ++) {
wr i t e (fd [1] , msg1 , MSGSIZE) ;
s l e e p (1 + getp id () % 6) ;

}

wr i t e (fd [1] , msg2 , MSGSIZE) ;
e x i t (0) ;

}

Comments.

• Each child writes a small string to the write-end of its pipe and then sleeps a bit so that the
output does not �ood the screen too quickly.

• The parent uses the select() call to query standard input and the read-ends of each child's
pipe. The user can type a string on the keyboard and the parent will detect that standard
input is ready. Within the while-loop each descriptor is tested, and if it is set, the read()

can be done because input is waiting. This way the parent never holds up any child that is
waiting for its message to be read.

There will be another, more interesting use of select() after the introduction to sockets.

8.7 Summary

Related processes can use unnamed pipes to exchange data. Unrelated processes running on the
same host can use named pipes to exchange data. Unlike unnamed pipes, named pipes are entities
in the �le system. Both named and unnamed pipes are guaranteed by the kernel to be read and
written atomically provide that the amount of data written is at most PIPE_BUF bytes.

Servers can be iterative or concurrent. A concurrent server creates a child process to handle every
distinct client. An iterative server handles each client within a single process, sharing its time among
them. Concurrent servers provide more reliable response time to the clients.

When a process has to handle I/O from multiple �le descriptors, it can multiplex the I/O by means
of the select() system call. This is one alternative of many, but it provides a relatively simple
solution. Other alternatives include asynchronous I/O and the poll() call.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

57

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Interprocess Communication, Part I
	Introduction
	Unnamed Pipes
	Parent and Child Sharing a Pipe
	Atomic Writes
	More About fpathconf()

	Pipe Capacity
	Caveats and Reminders Regarding Blocking I/O and Pipes

	I/O Redirection Revisited
	Simulating Output Redirection
	Simulating the '|' Shell Operator
	The popen() Library Function

	Named Pipes
	Named Pipes at the Command Level
	Programming With Named Pipes
	Example

	An Iterative Server
	Concurrent Servers
	The Concurrent Server Client
	The Concurrent Server

	Daemon Processes
	Multiplexed I/O With select
	Summary

