
Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Creating Functions in C/C++

Motivation

There are many reasons to create functions for your programs.

• A fragment of code that appears in your program in multiple places can be placed into a function
de�nition and replaced by a function call instead, resulting in a smaller, more maintainable program.
It is smaller because there are fewer lines of code. It is more maintainable because if you decide to
change the code, you only have to do it in one place, instead of searching through the entire program
for all occurrences of that code fragment. This makes it less error-prone, since it is possible to miss
one of the fragments if they are dispersed throughout the program.

• By creating a function and putting a code fragment into it, the program becomes easier to read and
more modular. For example, if you have code that displays a menu on the screen and gets the user's
entered choice, you could create a function named GetUserSelection() that returns the user's choice,
making it obvious to the reader what the code does. The program becomes more modular because it
now contains another separately maintainable function.

• Functions can be reused more easily in other programs. You may �nd that you need the same code
fragment in many programs. By creating a function that encapsulates it, you can put that code into
other programs without having to rename variables and reorganize the program code.

There is one downside to creating a function: the function call overhead . I will discuss this later.

How do you create a function?

To de�ne a function in your C or C++ program, you write a function de�nition , which has the form

result_type function_name (parameter_list)

{ function_body }

where

• result_type is any type such as int, double, char, or string, but may also be the word void.

If the result_type is void, it means the function does not �return� anything.

• function_name is any valid C++ identi�er

• parameter_list is a list of the form typespec parameter, typespec parameter,... typespec

parameter

where typespec is a speci�cation of a type (such as int or char but might be a bit more complex
than this) and parameter is in the simplest case just a C/C++ identi�er. (In C++ there are things
that can appear here that cannot appear in a C function.)

• function_body is just like the body of a main program. In fact main() is just a special function. It
consists of declarations and statements.

The �rst line, which contains the result type, the function name, and the parameter list is called the function
header.

1

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Examples

double eva l (double a , double b , double c , double x) // The header
{ // The body

// r e tu rn s va lue o f polynomial a∗x^2 + b∗x + c
return a∗x∗x + b∗x + c ;

}

double volumeOfSphere (double rad iu s) // The header
{

// r e tu rn s the volume o f a sphere with g iven rad iu s
re turn 4∗3.141592∗ rad iu s /3 ;

}

void insertNewLines (i n t N) // The header
{

// i n s e r t N newl ines in to cout
f o r (i n t i = 0 ; i < N; i++)
std : : cout << std : : endl ;

}

The �rst two examples are of functions that return something. This means that when they �nish running,
the value of the expression in the return statement is the value that they �return�. The third example has a
void return type. This means it does not return a value. It runs and does something, and it can even have
return statements, but they cannot return a value.

Where do you put function de�nitions?

In the beginning, you should put all function de�nitions after all #include and using directives but before
the main() program. Once your understanding is solidi�ed, you will put them after main() but will put a
function prototype before main().

How do you use functions that you de�ne?

You use them the same way that you use library functions, by putting calls to them in the code. The program
that contains the call is the caller , and we say that it calls the function. For example the following partly
incomplete program calls the �rst function.

i n t main ()
{

double A, B, C, x ;
// get va lue s A, B, C, and x here
cout << "The value o f the polynomial i s " << eva l (A, B, C, x) << endl ;

}

In the function call, you must make sure to put the arguments in the correct order. Parameters are positional,
which means that it is their position in the list that matters, not their names. In the above call, the value of
A is copied into the parameter a, B into b, C into c, and x into x, and then the function executes. When it
returns, the value that it returns is used in the caller wherever the call was written. For example, if A = 1,
B = 8, C = 16, and x = -4, then eval(A,B,C,x) returns 0, and it would be the same e�ect as if the program
had the line

cout <�< "The value of the polynomial is " <�< 0 <�< endl;

If you change the order of the arguments, the result will be di�erent. If you call eval(C,B,A,x) you will get
a di�erent answer.

2

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

Some Guidelines About Writing Functions

• Functions that return values should not have side e�ects. A side e�ect is a change to the values of
variables in the program other than those that are declared within the function or in its parameter list.

• Functions should do one thing only.

• Functions should do one thing completely.

• Functions should have meaningful names.

• Functions should be grouped together in the program �le.

• Functions should always have comments that summarize its purpose, pre-conditions and post-conditions,
and what it returns.

• If a function is more than 50 to 100 lines, it is probably too long and should be broken into smaller
functions.

• Never write a function that is essentially a main program just to call it from main().

Examples of Functions Not to Write

double workerPay(double salary)

{

cout <�< �The pay is $�;

return salary;

}

This just prints something that could be printed by the caller and it returns what it was passed. It has a
side e�ect (it changes cout) and it returns a value too.

void mysqrt(double num)

{

cout <�< �The square root of � <�< num <�< � is � <�< sqrt(num) <�< endl;

}

This just calls a library function and prints some stu�. No need to do this.

Can functions call other functions?

They certainly can, and often do. In fact main() is a function and main() calls the functions you write as
well as the ones in the libraries. But to give you a better idea, the following is perfectly legitimate, albeit
silly, code.

void func1 (i n t n)
{

cout << " In func1 : " << n << "\n " ;
}

void func2 (i n t m)
{

cout << " In func2 : " << m << "\n " ;
func1 (m) ;

}

3

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

void func3 (i n t k)
{

cout << " In func3 : " << k << "\n " ;
func2 (k) ;

}

void func4 (i n t m, i n t n)
{

func3 (m) ;
func2 (n) ;

}

Can a function call itself?

Yes, but for now we will avoid this topic. It is perilous ground and we will visit it after you can walk, run,
and jump on solid ground.

Scope

The variables (and other identi�ers) in a program have various properties. You know about some of them
already. For example, variables have associated type , and at any given instant of time, they have a value .
They also have storage requirements, i.e., do they need two bytes, four bytes, or something larger?
Another property associated with variables and program identi�ers in general is their scope .

The scope of a name is the part of the program in which the name can be used. You already know one
scope rule : if you use a for-loop such as this:

for (int i = 0; i < 10; i++) {

// do something here

}

you should know that the name i extends only to the end of the for-loop statement itself, i.e., to everything
within the body of the loop, and no further. You should also know that this is C++ and not C. The C
standard does not let you declare the index within the loop, although some compilers allow it.)

For now, you should know about two types of scope.

Block Scope: A block is the code between a pair of matching curly braces. An identi�er declared inside
a block has block scope. It is visible from the point at which it is declared until the innermost right
curly brace containing the declaration. Function parameters have block scope � they are visible only
within the body of the function.

File Scope: An identi�er declared outside of any function including main is visible from the point of the
declaration to the end of the �le in which it was declared.

Local Variables

Functions can have variable declarations. The variables declared within functions have block scope � they
are visible until the end of the innermost right curly brace, which is in the simplest case, the function body.
For example, in each of the following functions

4

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

long arithmeticsum (i n t num)
{

long sum = 0 ;
i n t j ;

f o r (j = 1 ; j <= num; j++)
sum = sum + j ;

re turn sum ;
}

long sumsquares (i n t num)
{

long sum = 0 ;
i n t j ;

f o r (j = 1 ; j <= num; j++)
sum = sum + j ∗ j ;

r e turn sum ;
}

both sum and j have scope that extends to the end of the function block. They are called local variables

and are said to have local scope. Each function has a variable named sum (and a variable named j). They
are di�erent variables that just happen to have the same name. The variables declared in your main program
have local scope too. They are visible only from the point at which they are de�ned until the end of the
curly brace that ends the main program block.

Global Variables

Variables declared outside of any function (which therefore have �le scope) are called global variables. They
are visible to all functions in the �le from the point of their declarations forward. There are many reasons
not to use global variables in programs, because it makes program harder to read, understand, debug, and
maintain. The one exception to this is constant global variables. It is acceptable to de�ne global constants in
a program, if these de�nitions are placed at the very top of the �le after the #include and using directives.
This is because it makes them easy to see and makes changing them easier.

Example

// var i ous cons tant s used in the program
const double PI = 3 .14159236 ;
const i n t MAXSIZE = 1000 ;
const s t r i n g MESSAGE = "The f i l e could not be opened . \ n " ;

i n t main ()
{

// s t u f f here
re turn 0 ;

}

Function Prototypes (Declarations): Moving Towards Data Abstraction

If a program has several functions in it and their de�nitions precede the main program, the main program
ends up at the bottom of the �le. This is inconvenient, because when you read a program you usually want
to �rst read the main program to get a general sense of how it works. The functions in it are often solving

5

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

small problems while the main program provides structure. The C and C++ languages provide the means
to declare the functions in the beginning and put the de�nitions of them elsewhere.

What do we mean by declaring and de�ning functions, and how are they di�erent?

A function de�nition is what you just learned how to write. It is the function's header together with its
block. The function header by itself does not say what the function does, but it provides enough information
to the compiler so that it can check whether the calls to the function are valid. The function header, when
it is terminated by a semicolon, is called a function declaration or function prototype.

How does having the function prototype help?

This is the nice part. We put all of the function prototypes at the beginning of the �le, before main(), and
the de�nitions after main(). The comments that describe what the function does stay with the prototype
at the beginning of the �le. They do not need to be repeated with the function de�nitions. The comments
and the prototype ar all that a programmer needs to �gure out how to call the function and what it does.
The actual function body should be thought of as a black box, a hidden piece of code that does what the
comments say it does, but which the programmer does not need to see to use the function. This is the
essence of procedural abstraction, an important principle of good software engineering practice, and the
underpinning of object-oriented programming.

Example

#inc lude <s t r i ng>
#inc lude <iostream>
us ing namespace std ;

/∗∗∗/
/∗ Function Prototypes ∗/
/∗∗∗/

/∗ eva l (a , b , c , x) r e tu rn s va lue o f polynomial a∗x^2 + b∗x + c ∗/
double eva l (double a , double b , double c , double x) ;

/∗ volumeOfSphere (r) r e tu rn s the volume o f a sphere with rad iu s r ∗/
double volumeOfSphere (double rad iu s) ;

/∗ insertNewLines (N) i n s e r t s N newl ine cha ra c t e r s i n to cout ∗/
void insertNewLines (i n t N) ;

/∗∗∗/
/∗ Main Program ∗/
/∗∗∗/

i n t main ()
{

// tbe main program ' s body i s here
}

/∗∗∗/
/∗ Function De f i n i t i o n ∗/

6

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

/∗∗∗/

double eva l (double a , double b , double c , double x)
{

re turn a∗x∗x + b∗x + c ;
}

double volumeOfSphere (double rad iu s)
{

re turn 4∗3.141592∗ rad iu s /3 ;
}

void insertNewLines (i n t N)
{

f o r (i n t i = 0 ; i < N; i++)
std : : cout << std : : endl ;

}

The next step after this is to put the function declarations into one �le, called a header �le , and the function
de�nitions into a second �le, called the implementation �le . This will be discussed in a future lesson.

Call-by-Reference Parameters

What if we want to write a function that actually changes the value of its parameters? For example, suppose
we want a function that can be called like this:

swap(x,y)

that will swap the values of arguments x and y. In other words if x = 10 and y = 20 before the call, then
after the call x = 10 and y = 10. If we write the function like this:

void swap (int x, int y)

{

int temp = x;

x = y;

y = temp;

}

will this do the trick?

Try it and you will see that it does not. Remember that when a function is called, the values of the

arguments are copied into the storage cells of the parameters. The function runs and when it
terminates, the parameter storage cell contents are not copied back to the arguments. When you think
about it, it would make no sense. Suppose we de�ne a function double() like this:

int double (int x)

{

x = 2*x;

return x;

}

and we call it with the call

7

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

cout <�< double(10);

If the value of parameter x were copied back to its argument, it would mean we could replace a constant
literal 10 by the value 20, which is impossible.

The kind of parameters we have been using so far are known as call-by-value parameters. This is because
the value of the argument is passed to them. So what is the alternative?

The Concept Of A Reference

We mentioned before that variables have several di�erent properties, such as their type, their storage re-
quirements, and their scope. Every variable also has contents and location . In

int x = 5;

int y;

x is the name of a variable of type int with contents of 5. x also has a location. We don't know its actual
location exactly but we know that it has some storage location in memory and that location has a speci�c,
numbered address. In the picture below, think of each box as a storage location capable of storing an integer:

. . .

x y

 5

The boxes, which are actually memory words (4-byte units), have addresses but we don't care what they
are. The assignment statement

y = x;

causes the contents of x to be copied into the location of y1:

. . .

x y

 5 5

A reference variable is like another name for a location that already exists. A reference variable really stores
an address. If we de�ne two variables x and y as follows:

int x = 5;

int& y = x;

then y is called a reference to x. The variable y stores the location, or address, of x, but it can be used in
place of x. The two statements

cout <�< x;

cout <�< y;

1Notice the asymmetry of the = operator: the value of its right hand side operand is the contents of the operand , but

the value of the left hand side operand is the location of the operand . In other words, putting a variable on the right hand

side of "=" causes its value to be extracted whereas putting it on the left hand side causes its location to be found.

The lvalue of a variable is its location. The rvalue is its contents. lvalue and rvalue are just abstractions; they are not

really stored anywhere, but they help to make things clearer.

8

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

print the same value because y is just a pseudonym, another name, for x. If we increment x and output the
value of y, we will see it has changed as well:

x++;

cout <�< y;

and we can increment y and output the value of x and see that it has also changed.

y++;

cout <�< x;

The &-operator used in this way creates a reference variable :

type & identifier = variable;

makes the identi�er a reference to the variable. The reference variable type must be the same as type of the
variable whose address is being assigned to it.

char c;

char & refTochar = c;

int x;

int & refToint = x;

are two valid reference declarations, but not this:

char c;

int & cref = c;

because cref is of type int& and it should be of type char&. It does not matter whether there is space to
the left or right of the &-operator. The following three statements are equivalent:

int& y = x;

int & y = x;

int &y = x;

We can use reference variables as parameters of functions. They are then known as call-by-reference

parameters.

Examples

void swap (i n t & x , i n t & y)
// r e p l a c e s x by y and y by x
{

i n t temp = x ;
x = y ;
y = temp ;

}

i n t main ()
{

9

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

i n t a = 10 ;
i n t b = 20 ;
swap (a . b) ;
cout << a << " " << b << endl ;
r e turn 0 ;

}

This program will print 20 and then 10 because swap(a,b) caused the values of a and b to be swapped. This
is because x is just another name for a in swap() and y is another name for b. Each assignment statement
in swap() is actually altering the values of a and/or b.

void cas tActor s (s t r i n g & Romeo ,
s t r i n g & Ju l i e t)

{
Romeo = "Leonardo DiCaprio " ;
J u l i e t = " C la i r e Danes " ;

}

i n t main ()
{

s t r i n g lead_male_role ;
s t r i n g lead_female_role ;

ca s tActor s (lead_male_role , lead_female_role) ;
cout << "Romeo w i l l be played by " << lead_male_role << "\n " ;
cout << " Ju l i e t w i l l be played by " << lead_female_role << "\n " ;
re turn 0 ;

}

In this second example, the strings in the main program have no initial value but after the call to castActors(),
they are given values. Call-by-reference parameters are the key to writing functions that must give values
to multiple variables, such as functions that initialize many variables.

Overloading Functions

Functions can be overloaded in C++, but not in C. Simply put, it means that the same name can be used
for two di�erent functions, provided that the compiler can distinguish which function is being called when it
tries to compile the code. This can be convenient sometimes, but most of the time there is little need for this
feature of C++. Nonetheless, because you may be called upon to read a program that contains overloaded
functions, I discuss them very brie�y here.

The rule sounds simple at �rst: The same name can be used for two di�erent functions provided that they
have a di�erent number of formal parameters, or they have one or more formal parameters of di�erent types.
So these are valid overloads:

int max(int a, int b);

int max(int x, int y, int z);

and so are these:

void sort(int & x, int & y);

void sort(double & x, double & y);

because the �rst pair have a di�erent number of parameters and the second pair have di�erent types for
their parameters.

These are not valid overloads:

10

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

int max(int a, int b);

long max(int x, int y);

because they only di�er in their return type. (The names of the parameters are irrelevant.) These are not
valid either:

void sort(int & x, int & y);

void sort(int x, int y);

because the types are the same and kind of parameter passing is not used to distinguish them.

Overloading can get complicated because of type casting and type conversion. If you have two functions
such as

void foo(int x, double y);

void foo(double x, int y);

and your program makes the call

foo(1,2);

which one should the compiler use? Guess what? It can't really decide either, so it generates an error.
Unless you have a good reason to overload function names, it is best to avoid it.

Default Arguments

C++, and not C, lets you assign default values to the call-by-value parameters of a function, in right to
left order. In other words, you can declare a function so that the rightmost parameters have default values,
as in the following example:

string repeatedstr(string str, int numcopies = 1);

The calling program can omit the second argument, in which case numcopies will be assigned 1:

cout <�< repeatedstr(�*�);

will print a single '*' whereas

cout <�< repeatedstr(�*�, 10);

will print ten of them.

Note: You can not assign default values to call-by-reference parameters.

You can have any number of default arguments but the rule is that a parameter can only have a default
argument if the parameter to its right has one. So these are valid:

void foo(int a, int b, int c = 1, int d = 2, int e = 3);

void bar(int a, int b, int c = 1);

but not these

11

Software Design Lecture Notes
Creating Functions in C/C++

Prof. Stewart Weiss

void foo(int a = 1, int b);

void bar(int a = 1, int b = 2, int c);

Moreover, you can run into problems with overloading and default arguments, as in the following:

void f(int x, int y, int z = 1);

void f(int x, int y);

If the program calls f(1,2), is it the �rst or the second function that will be invoked? Guess what? The
compiler can't know either, so it generates an error.

The C++ iostream library has two prototypes for getline():

istream& getline (istream& is, string& str, char delim);

istream& getline (istream& is, string& str);

Do you think it is overloaded, or do you think that getline() is really de�ned with the header

istream& getline (istream& is, string& str, char delim = '\n');

What do you think is the better solution?

The real bene�t of being able to assign default values to parameters comes with class constructors, a topic
that will be covered when we get to classes. My advice is that you avoid overloading unless you have a really
good reason to use it.

12

