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1 Introduction

The Inclusion-Exclusion Principle is typically seen in the context of combinatorics or probability theory. In
combinatorics, it is usually stated something like the following:

Theorem 1 (Combinatorial Inclusion-Exclusion Principle). Let A1, A2, . . . , An be �nite sets. Then

∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ =

n∑
i1=1

|Ai1 | −
n−1∑
i1=1

n∑
i2=i1+1

|Ai1 ∩Ai2 |+
n−2∑
i1=1

n−1∑
i2=i1+1

n∑
i3=i2+1

|Ai1 ∩Ai2 ∩Ai3 | −

· · · +
n−k+1∑
i1=1

. . .

n∑
ik=ik−1+1

(−1)k−1 |Ai1 ∩Ai2 ∩ . . . ∩Aik |+

· · ·+ (−1)n−1 |A1 ∩ · · · ∩An| . (1)

To illustrate, when n = 3, this reduces to

∣∣∣∣ 3⋃
i=1

Ai

∣∣∣∣ =

3∑
i=1

|Ai| −
2∑

i=1

3∑
j=i+1

|Ai ∩Aj |+ |A1 ∩A2 ∩A3| .

Eq. (1) is more succinctly written as ∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ = ∑
S⊆U

(−1)|S|−1
⋂
j∈S

Aj (2)

where U = {1, 2, . . . , n}.

Example. Suppose we ask how many integers less than 120 are relatively prime to it1. Since 120 has prime
factors 2, 3, and 5, any number that is relatively prime to it is not a multiple of any of these. We can solve
this using the Inclusion-Exclusion Principle as follows. Let A = {1, 2, . . . , 120}, the set of integers from 1 to
120. Let S1 be the multiples of 2 in A, S2 be the multiples of 3 in A, and S3 be the multiples of 5 in A. The
set of numbers relatively prime to 120 are the numbers not in S1 ∪ S2 ∪ S3, so there are 120− |S1 ∪ S2 ∪ S3|
many of them. By the theorem,∣∣∣∣ 3⋃

i=1

Si

∣∣∣∣ =

3∑
i=1

|Si| −
2∑

i=1

3∑
j=i+1

|Si ∩ Sj |+ |S1 ∩ S2 ∩ S3|

A set such as S1 obviously has 120/2 = 60 elements. Since a set such as S1 ∩ S2 is the set of numbers that
are multiples of both 2 and 3, it is the set of multiples of 6, and has 120/6 = 20 elements. Applying this
idea to the formula, we get

1 The number of integers prime to a given number n is called the totient or indicator of n and is denoted φ(n). This is known
as Euler's φ function. There is a direct formula that Euler discovered: if n =

∏m
i=1 p

αi
i then φ(n) =

∏m
i=1 p

αi−1(pi − 1) .

1
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∣∣∣∣ 3⋃
i=1

Si

∣∣∣∣ =

3∑
i=1

|Si| −
2∑

i=1

3∑
j=i+1

|Si ∩ Sj |+ |S1 ∩ S2 ∩ S3|

= (60 + 40 + 24)− (20 + 12 + 8) + 4

= 124− 40 + 4

= 88

so there are 120− 88 = 32 numbers less than 120 that are relatively prime to it.

2 Generalized Inclusion-Exclusion Principle

The Inclusion-Exclusion Principle actually has a more general form, which can be used to derive the proba-
bilistic and combinatorial versions. This general form, however, is more broadly applicable (which is why it
is �more general.�) It follows.

Theorem 2. Let S be a set of N elements and let g and f be functions from the powerset of S into the real

numbers with the property that, for any subset A ⊆ S

g(A) =
∑
S′⊆A

f(S′).

Then

f(A) =
∑
S′⊆A

(−1)|A|−|S
′|g(S′).

Remark. The theorem takes a while to absorb. Restating it informally, what it says is that if there are two
functions f and g, each of which is de�ned on subsets of a set S, having the property that g(A) is always the
sum of the function f applied to every subset of A, including A itself, then it turns out that f(A) can also
be expressed as an alternating sum of the function g applied to every subset of A, where what determines
whether or not g(S′) is added or subtracted from the sum is whether it has an even or an odd number of
elements.

Proof. Assume that f and g are functions from the powerset of S into the reals and that, for any subset
A ⊆ S

g(A) =
∑
S′⊆A

f(S′). (3)

We show by induction on the cardinality of A that

f(A) =
∑
S′⊆A

(−1)|A|−|S
′|g(S′). (4)

To start, let |A| = 0. Then A is the empty set and has no subsets other than itself. Since the premise is true
for this A, g(∅) = f(∅). Therefore, f(∅) = g(∅) = (−1)|∅|−|∅|g(∅), so the conclusion is true when |A| = 0.

We now assume that the hypothesis is true for all sets B such that |B| < n, and we let A be a set of
cardinality n. We need to show that if

g(A) =
∑
S′⊆A

f(S′) (5)

then Eq. (4) is true. Let us rewrite (5) as follows:

g(A) =
∑
S′⊂A

f(S′) + f(A).

Any set S′ such that S′ ⊂ A is strictly smaller than A, so |S′| < n and the induction hypothesis applies to
it. Therefore for each such S′,

f(S′) =
∑
T⊆S′

(−1)|S
′|−|T |g(T ) (6)
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Substituting Eq. (6) into (5), we get

g(A) =
∑
S′⊂A

∑
T⊆S′

(−1)|S
′|−|T |g(T ) + f(A). (7)

Subtracting and rearranging Eq. (7), we get

f(A) = g(A)−
∑
S′⊂A

∑
T⊆S′

(−1)|S
′|−|T |g(T )

=
∑
S′⊂A

∑
T⊆S′

(−1)1+|S
′|−|T |g(T ) + g(A). (8)

Let T be a �xed subset in the sum and assume that |T | = r. Since T ⊂ A and |A| = n, r < n. Although
T occurs only once in the inner sum

∑
T⊆S′(−1)1+|S

′|−|T |g(T ), it may occur multiple times in the entire
expression, because it may be a subset of multiple subsets S′ ⊂ A. We now do some counting.

There are n − r elements of A that are not in T . Each of these may be independently included or not
in a subset containing T . Therefore, there are 2(n−r) subsets of A that contain T . One of these is A itself.
Since we are enumerating only the proper subsets of A, we have to exclude A from the count, so there are
2(n−r) − 1 proper subsets S′ such that T ⊆ S′.

Claim 3. Let A be a set such that |A| = n. Then A has 2n/2 subsets of even cardinality and 2n/2 subsets of
odd cardinality.

Proof. This is easy to prove by induction on the cardinality of A.

Claim 4. Let A be a set such that |A| = n and let T be a subset of A such that |T | = r. Then A − T has
2(n−r)/2 subsets of even cardinality and 2(n−r)/2 subsets of odd cardinality.

Proof. This follows from Claim 3.

Claim 5. Let A be a set such that |A| = n and let T be a subset of A such that |T | = r. Then there are
2(n−r)/2 subsets of A of even cardinality that contain T , and 2(n−r)/2 subsets of A of odd cardinality that
contain T .

Proof. There is a one-to-one correspondence between the subsets of A− T and the subsets of A containing
T : for each subset S′ of A−T , there is a unique S′T = S′ ∪T , and for each S′T containing T , the set S′T −T
is a unique subset of A− T . By Claim 4, the claim is proved.

Claim 6. Let A be a set such that |A| = n and let T be a subset of A such that |T | = r. Let M = 2(n−r).
If n is odd, then there are M/2 proper subsets of A of even cardinality and (M/2) − 1 proper subsets of A
of odd cardinality containing T . If n is even, then there are M/2 proper subsets of A of odd cardinality and
(M/2)− 1 proper subsets of A of even cardinality containing T .

Proof. The proper subsets of A do not include A. Since the number of even and odd subsets is equal when
A is included, then if n is odd, there is one fewer odd subset than even ones, and if n is even, there is one
fewer even subset than odd.

Consider the coe�cient (−1)1+|S′|−|T | of g(T ) in Eq. (8). It is either +1 or −1. For a �xed subset T , this
depends only on whether |S′| is even or odd. Claim 6 established that, for �xed T , the number of subsets S′

containing T and of even cardinality di�ers from the number of those with odd cardinality by exactly one.
Therefore, all but one of the terms

(−1)1+|S
′|−|T |g(T )

will cancel out, leaving either +g(T ) or −g(T ). Suppose r is even, then

(−1)1+|S
′|−|T |g(T ) = (−1)1+|S

′|g(T ).
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If |S′| is even, (−1)1+|S′| = −1 and if |S′| is odd, then (−1)1+|S′| = 1. Therefore, if the number of even
subsets S′ is one greater than the number of odd subsets S′, then the sum of the coe�cients of all terms
containing g(T ) is −1, and if the number of even subsets is one less, then the coe�cient is +1. Claim 6 shows
that when n is odd, there is one more even subset than odd subset and so the sum of the coe�cients is −1.
When n is even, there is one more odd subset than even, and so the sum of the coe�cients is 1. Therefore,
when r is even and n is odd, the coe�cient of g(T ) is −1 and when r is even andn is even, the coe�cient of
g(T ) is +1.

On the other hand, when r is odd,

(−1)1+|S
′|−|T |g(T ) = (−1)|S

′|g(T )

and the signs reverse, so when n is even and r is odd, the coe�cient of g(T ) is −1 and when n is odd and r
is odd, the coe�cient of g(T ) is 1. In short, the coe�cient of g(T ) is (−1)|A|−|T | . Therefore

f(A) =
∑
S′⊂A

∑
T⊆S′

(−1)1+|S
′|−|T |g(T ) + g(A)

=
∑
T⊂A

(−1)|A|−|T |g(T ) + g(A)

=
∑
T⊆A

(−1)|A|−|T |g(T ).

This is exactly what we needed to prove, so by the axiom of induction, the theorem is proved.

3 The Combinatorial Version as an Instance of the General Version

We now show that Theorem 1 is an instance of Theorem 2. We introduce some notation.

Notation. If A and B are sets, then A−B is the set of all elements in A that are not in B. This is sometimes
called the set di�erence between A and B, or the complement of B in A. For example, {1, 2, 3, 4, 5} −
{3, 4, 6, 7} = {1, 2, 5}. When all of the sets being considered are subsets of some larger, �xed universe of
discourse U , then we de�ne, for each set S, the complement of S in U , denoted S, by S = U − S. When the
universe is understood, for simplicity we call S the complement of S.

Suppose that A1, A2, A3, . . . , An is a collection of �nite sets. Let A =
⋃

Ai. Let U = {1, 2, 3, . . . , n}. The
set U will act as our universe. Let S be a subset of U and de�ne the function

F (S) =


⋂
j∈S

Aj −
⋃
j∈S

Aj S 6= U

∅ S = U

For example, let n = 6 and let S = {3, 4, 5}. Then S = {1, 2, 6} and F (S) = (A1 ∩A2 ∩A6) −
(A3 ∪A4 ∪A5). In other words, F (S) is the set of all elements, each of which is in A1, A2, and A6 but not
in any of A3, A4, or A5.

a

f

b

c

d

e g

A1 A2

A3

Fig. 1: Example
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If it seems at �rst that F () is an arcane function with little practical value, then consider the following
example, illustrated by Figure 1. Let A1 = {a, d, e, f}, let A2 = {b, d, f, g}, and let A3 = {c, e, f, g}.
Let U = {1, 2, 3}. Consider the subset S = {1, 3} of U. For this subset, F (S) = A2 − (A1 ∪A3) =
{b, d, f, g}− {a, d, e, f, c, g} = {b}. Notice that {b} is exactly that part of A2 not in any other set. Note that
F ({1}) = (A2 ∩ A3) − A1 = {f, g} − {a, d, e, f} = {g}, which is the element in another distinct region of
the �gure. The function F () is actually creating a partition of the set of all elements, with each cell of that
partition corresponding to each one of the 2n subsets of U . This is the essence of the next two lemmas.

Lemma 7. If S1 ⊆ U and S2 ⊆ U and S1 6= S2, then F (S1) ∩ F (S2) = ∅.

Proof. Since S1 6= S2, there is a number m such that 1 ≤ m ≤ n and either m ∈ S1 and m /∈ S2, or m ∈ S2

and m /∈ S1. Without loss of generality, we can assume that m ∈ S1 and m /∈ S2. Suppose that the theorem
is false and that F (S1) ∩ F (S2) 6= ∅ Let x ∈ F (S1) ∩ F (S2). Since x ∈ F (S1),

x ∈
⋂
j∈S1

Aj −
⋃
j∈S1

Aj .

This implies that

x /∈
⋃
j∈S1

Aj

Since m ∈ S1, this implies in turn that
x /∈ Am. (9)

Since x ∈ F (S2),

x ∈
⋂
j∈S2

Aj −
⋃
j∈S2

Aj

which implies, in particular, that

x ∈
⋂
j∈S2

Aj .

Sincem /∈ S2, m ∈ S2 and so x ∈ Am. But this contradicts (9) above, so we have reached a contradiction.
Therefore F (S1) ∩ F (S2) = ∅ and the lemma is proved.

Lemma 8. For each x ∈ A, there exists a set S ⊆ U such that x ∈ F (S).

Proof. Let x ∈ A. Then x is in at least one of the sets Ai. Let S be the set of all numbers j such that
x /∈ Aj . If x is a member of all sets Aj then S = ∅. Since x /∈ Aj for all j ∈ S,

x /∈
⋃
j∈S

Aj (10)

Suppose k is a number such that k /∈ S. Consider the set Ak. Since k /∈ S, Ak must contain x. This is true
for all of the sets Ak for which k /∈ S. In other words, for all k ∈ S, x ∈ Ak. Therefore

x ∈
⋂
k∈S

Ak (11)

Eqs. (10) and (11) combined show that

x ∈
⋂
j∈S

Aj −
⋃
j∈S

Aj .

which implies that
x ∈ F (S)

proving the lemma.
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Lemmas 7 and 8 together show that, for each element x of A, there is a unique S ⊆ U such that x ∈ F (S).
Therefore, the sum of the cardinalities of the sets F (S) ranging over all subsets S ⊆ U equals the number of
elements in A, i.e., ∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ = ∑
S⊆U

|F (S)|.

Let f be de�ned by

f(S) =
∣∣∣F (S)

∣∣∣. (12)

and let g be de�ned by

g(S) =


∣∣∣∣ ⋂
j∈S

Aj

∣∣∣∣ S 6= U∣∣∣∣ n⋃
j=1

Aj

∣∣∣∣ S = U

(13)

Then
g(U) =

∑
S⊆U

f(S).

By Theorem 2,

f(U) =
∑
S⊆U

(−1)|U |−|S|g(S)

Since f(U) = |F (U)| = 0,

0 =
∑
S⊆U

(−1)|U |−|S|g(S)

=
∑
S(U

(−1)|U |−|S|g(S) + g(U)

which implies that

g(U) =
∑
S(U

(−1)|U |−|S|−1g(S)

Substituting (),

∣∣∣∣ n⋃
j=1

Aj

∣∣∣∣ =
∑
S(U

(−1)|U |−|S|−1g(S) (14)

The right-hand side of (14) is a sum over all subsets of U except for U itself. For any subset S 6= U , let

T = S. Then S = T . Since |T | = |U | − |T |, |U | − |T | − 1 = |T | − 1. Also, g(T ) =

∣∣∣∣ ⋂
j∈T

Aj

∣∣∣∣. Therefore
(−1)|U |−|S|−1g(S) = (−1)|U |−|T |−1g(T )

= (−1)|T |−1
∣∣∣∣⋂
j∈T

Aj

∣∣∣∣
If Eq. (14) is true when the right-hand side ranges over all subsets of U except U , then if we replace the
subsets by their complements, Eq. (14) will be true when the right-hand side ranges over all subsets except
U = ∅. Therefore,
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∣∣∣∣ n⋃
j=1

Aj

∣∣∣∣ =
∑
∅6=T⊆U

(−1)|T |−1
∣∣∣∣⋂
j∈T

Aj

∣∣∣∣ (15)

and replacing the variable T by S we see that this is identical to Eq. (2). This proves that the combinatorial
version of the IEP is just a special case of Theorem 2.


