
Software Design Lecture Notes

Separate Compilation of Multi-File Programs

Prof. Stewart Weiss

Separate Compilation of Multi-File Programs

1 About Compiling

What most people mean by the phrase "compiling a program" is actually two separate steps in the creation
of that program. The �rst step is proper compilation . Compilation is the translation of high level pro-
gramming instructions into machine language instructions. The input to compilation is a source code �le in
a high level language such as C or C++. Source code �les have extensions such as ".c", ".cpp", or ".cc".
The output of compilation is an object �le , which is not quite an executable �le. Object �les usually have
a ".o" or ".obj" extension.

Consider the C++ code fragment

#inc lude <iostream>
#inc lude <math . h>

us ing namespace std ;
double number ;
cout << "Enter a p o s i t i v e number here : " ;
c in >> number ;
cout << "The square root i s " << sq r t (number) << endl ;

The �rst two lines (called include directives) tell the compiler to copy the contents of the header �les
iostream and math.h into the program at those points in the �le where the include directive is written. The
third line tells the compiler to use the std namespace for resolving symbols. This is necessary because the
iostream objects cout and cin are de�ned within this std namespace. Every declaration and de�nition in
the iostream header �le is contained within the namespace known as std. A namespace is essentially just
a scope, so all of iostream has scope std.

In particular, cout and cin are really known to the world outside of the std scope by their fully scoped
names, std::cout and std::cin. If you wrote std::cout instead of cout, std::cin instead of cin,
and std::endl instead of endl, you could eliminate the need to �use� the std namespace. The "using
namespace std" instruction tells the compiler that whenever it �nds a symbol in the program that is not
de�ned in the program, it should search the std namespace in case it is de�ned there. Names like cin,
cout, and endl are called external symbols in a program because their de�nitions are not contained in the
program itself.

The inclusion of the header �les <iostream> and <math.h> in the program allows the compiler to determine
whether the names cin, cout, and sqrt are being used properly, thereby allowing it to compile the code, but
it cannot create an executable module, because the objects associated with the names cin and cout are not
de�ned in your program, nor is the code for the sqrt function. These objects are de�ned in the library �les

associated with the header �les <iostream> and <math.h>. Because the object cin is de�ned in a separate
�le and its extraction function (>�>) is de�ned in that �le also, the compiler cannot create a jump instruction
to jump to the code that does this stream extraction, because it does not have the memory address of the
start of this function. Names like cin and cout that are de�ned outside of the program module are said
to be unresolved at compile time. Figure 1 illustrates how these names are related to tghe collection of
libraries stored on the computer.

The best that the compiler can do is to create an entry in a table in the code that allows the second stage
to solve the problem. This table contains the location of every instruction in the program that refers to a

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Separate Compilation of Multi-File Programs

Prof. Stewart Weiss

name whose location is unresolved, or external, to the program. The second stage is called linking , and
it is performed by, not surprisingly, the linker . The linker's job is to �nd the unresolved names listed in
the table in the executable module and to link them to the actual objects to which they refer. To link a
name means to replace it with the address to which it refers. Of course a name cannot be associated with
an address unless the object that it names actually has an address, which implies that before the name can
be resolved, the associated object must be incorporated into the address space of the executable �le. There
is a special type of linking called dynamic linking that is an exception to this rule, but how that works is
a subject for a di�erent chapter. Static linking is the type of linking in which all code needed at runtime
is actually copied into the program.

Figure 1: Conceptualization of a Program Using a Software Library.

2 What is Separate Compilation?

A project should be organized as a collection of small �les that can be compiled individually. This is what
we mean by separate compilation . Typically, large classes are given their own �les and smaller classes
may be grouped together into a single �le. Sometimes collections of functions that are not members of any
class are placed into a separate �le. As long as each of the �les is included in the project �le, the compiler
will usually compile each of them when it is given the instruction to compile the project.

A set of functions that all provide various forms of randomization, for example, would be placed into two �les
named myrandstuff.h and myrandstuff.cpp. The myrandstuff.h �le contains the function prototypes..
Files that end in a ".h" are called header files. They are also called interface �les. They are usually
not compiled by the compiler. Instead they are included in other �les so that the compiler will have access to
the symbols de�ned in these header �les at compile time. The myrandstuff.cpp �le contains the de�nitions
of the functions de�ned in the header �le. The �les will usually have the following form.

Listing 1: myrandstu�.h

#i f n d e f MYRANDSTUFF_H
#de f i n e MYRANDSTUFF_H

// whatever header f i l e s need to be inc luded go here
// any typede f s or other type or c l a s s d e f i n i t i o n s go here

// d e s c r i p t i o n o f func1
void func1 (. . .) ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Separate Compilation of Multi-File Programs

Prof. Stewart Weiss

// d e s c r i p t i o n o f func2
void func2 (. . .) ;

// and so on

#end i f // MYRANDSTUFF_H

Listing 2: myrandstu�.cpp

#inc lude "myrandstuf f . h"

void func1 (. . .)
{

// implementation f o r func1
}

void func2 (. . .)
{

// implementation f o r func2
}

// and a l l implementation code f o r remaining func t i on s here

The main program only includes the header �les, not the .cpp �les, so that it can make reference to functions
declared there and used in .. Therefore, the main program will contain a line of the form

#include "myrandstuff.h"

among the other header �les included by it. Notice that the header �le name is enclosed in double quotes,
not angle braces. When the �le to be included is in the same directory as the program, its name should be
in double quotes.

When the compiler is run to compile the main program, it begins by calling the macro preprocessor (named
cpp). The macro preprocessor creates a temporary copy of the main program as its output. As it reads the
main program �le, it looks for lines that begin with �#�. When it sees the #include directive, it �nds the �le
that is to be included and copies it into the copy of the main program at the point at which the #include
directive was found. Every included �le is copied into this temporary copy of the main program.

Suppose that you have a second implementation �le, say mylist.cpp, that uses the functions declared or the
types de�ned in myrandstuff.h. It is possible that the header �le mylist.h needs to include myrandstuff.h.
Supoose also that the main program uses the functions declared in mylist.h. Then mylist.h has the line

#include "myrandstuff.h"

and the main program has the two lines

#include "myrandstuff.h"

#include "mylist.h"

When the compiler runs, it calls the macro preprocessor, cpp, �rst. cpp sees the #include directive to copy
myrandstuff.h and will copy the myrandstuff.h �le into its temporary copy of main. It would copy it
twice, unless we prevented it, because when it includes mylist.h, it would copy mynode.h again because
of the #include directive in that �le. But in fact we did prevent this from happening. This was why the
following three lines must appear in your header �les.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Separate Compilation of Multi-File Programs

Prof. Stewart Weiss

#ifndef MYNODE_H

#define MYNODE_H

#endif

The �rst line

#ifndef MYNODE_H

translates to �if the macro symbol MYNODE_H is not de�ned then continue reading and processing until the
matching occurrence of endif. If it does exist, then skip reading code until immediately after that matching
endif�. If there is no symbol already de�ned, then the next line

#define MYNODE_H

de�nes it, and the code is read and processed. By de�ning the symbol here, the user prevents the macro
preprocessor from reading the code reference in the mynode.h �le twice. These lines are often called a header
guard.

You can use whatever symbol you want in this directive, but it must be unique in your project. It is best
to follow a convention that ensures this uniqueness. The most common is to use the symbol consisting of
the �le name. in caps, with an underscore between the root and the extension. Some people use a leading
underscore also.

3 Compiling and Linking the Program

When a project consists of a collection of �les, some of which are header �les and their corresponding
implementation �les, and of course a single �le containing the main() function, it is compiled and linked in
a speci�c way.

Assume the project contains the �les f1.h, f2.h, f3.h, f1.cpp, f2.cpp, f3.cpp, and main.cpp and that
main.cpp includes all header �les, but that the remaining .cpp �les include only their own header �les.

The set of steps that must be taken if this is to be done manually, using g++, for example, is

g++ -c f1.cpp

g++ -c f2.cpp

g++ -c f3.cpp

g++ -c main.cpp

This creates the object �les f1.o, f2.o, f3.o, and main.o. Then the main program executable would be
created by linking these together, using

g++ -o progname main.o f1.o f2.o f3.o

which would name the executable progname. Although we call g++ a compiler, it is not actually compiling
in this last step; it is just linking the �les and create the program named progname. g++ is just one of many
components of the Gnu Compiler Collection, and it is smart enough to know that only linking is required in
this last command.

Suppose after creating the executable that you decide to make changes to f2.cpp and that you then edit the
�le f2.cpp. In this case, you only need to do two steps to rebuild the program:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Separate Compilation of Multi-File Programs

Prof. Stewart Weiss

g++ -c f2.cpp

g++ -o progname main.o f1.o f2.o f3.o

because only the object �le f2.o must be changed, and the main program needs to be relinked to it. If you
edit a header �le, such as f3.h, then you would also do two steps:

g++ -c f3.cpp

g++ -o progname main.o f1.o f2.o f3.o

because presumably f3.cpp includes f3.h with an #include directive, which means that a change to f3.h

causes a change to the temporary �le created by the preprocessor when it reads f3.cpp and hence the object
�le f3.o needs to be rebuilt, and the program relinked.

All of this can be simpli�ed by using a make�le . A make�le is a �le that is read by the make program. It
contains a set of instructions for carrying out various tasks, usually for building programs. This tutorial on
separate compilation does not cover how to create make�les, but I include one here that could be used to
keep the program progname up to date whenever any of the �les change, with minimal recompilation and
linking:

CXX := /usr/bin/g++

CXXFLAGS += -Wall -g

OBJECTS := main.o f1.o f2.o f3.o

all: progname

progname: $(OBJECTS)

<TAB>$(CXX) $(CXX_FLAGS) -o progname $(OBJECTS)

main.o: f1.h f2.h f3.h

clean:

<TAB>$(RM) $(OBJECTS)

The <TAB> means that there should be a literal tab character in this position. Anything else and make will
not work. To build the program or update it, one just types "make" on the command line in the directory
containing this make�le and the program �les. The make�le should be named either makefile or Makefile.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

	About Compiling
	What is Separate Compilation?
	Compiling and Linking the Program

