The beta density, Bayes, Laplace, and Pólya

Saad Mneimneh

1 The beta density as a conjugate form

Suppose that \(k \) is a binomial random variable with index \(n \) and parameter \(p \), i.e.

\[
P(k|p) = \binom{n}{k} p^k (1-p)^{n-k}
\]

Applying Bayes’s rule, we have:

\[
f(p|k) \propto p^k (1-p)^{n-k} f(p)
\]

Therefore, a prior of the form

\[
f(p) \propto p^{\alpha-1} (1-p)^{\beta-1}
\]

is a conjugate prior since the posterior will have the form:

\[
f(p|k) \propto p^{k+\alpha-1} (1-p)^{n-k+\beta-1}
\]

It is not hard to show that

\[
\int_0^1 p^{\alpha-1} (1-p)^{\beta-1} dp = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}
\]

Let’s denote the above by \(B(\alpha, \beta) \). Therefore,

\[
f(p) = Be(\alpha, \beta)
\]

where \(Be(\alpha, \beta) \) is called the beta density with parameters \(\alpha > 0 \) and \(\beta > 0 \), and is given by:

\[
\frac{1}{B(\alpha, \beta)} p^{\alpha-1} (1-p)^{\beta-1}
\]

Note that the beta density can also be viewed as the posterior for \(p \) after observing \(\alpha - 1 \) successes and \(\beta - 1 \) failures, given a uniform prior on \(p \) (here both \(\alpha \) and \(\beta \) are integers).

\[
f(p|\alpha, \beta) \propto p^{\alpha-1} (1-p)^{\beta-1}
\]
Example: Consider an urn containing red and black balls. The probability of a red ball is p, but p is unknown. The prior on p is uniform between 0 and 1 (no specific knowledge). We repeatedly draw balls with replacement. What is the posterior density for p after observing $\alpha - 1$ red balls and $\beta - 1$ black balls?

$$ f(p|\alpha - 1 \text{ red}, \beta - 1 \text{ black}) \propto \left(\frac{\alpha + \beta - 2}{\alpha - 1} \right) p^{\alpha - 1}(1 - p)^{\beta - 1} $$

Therefore, $f(p) = Be(\alpha, \beta)$. Note that both α and β need to be equal to at least 1. For instance, after drawing one red ball only ($\alpha = 2$, $\beta = 1$), the posterior will be $f(p) = 2p$. Here’s a table listing some possible observations:

<table>
<thead>
<tr>
<th>observation</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$, $\beta = 1$</td>
<td>$f(p) = 1$</td>
</tr>
<tr>
<td>$\alpha = 2$, $\beta = 1$</td>
<td>$f(p) = 2p$</td>
</tr>
<tr>
<td>$\alpha = 2$, $\beta = 2$</td>
<td>$f(p) = 6p(1 - p)$</td>
</tr>
<tr>
<td>$\alpha = 3$, $\beta = 1$</td>
<td>$f(p) = 3p^2$</td>
</tr>
<tr>
<td>$\alpha = 3$, $\beta = 2$</td>
<td>$f(p) = 12p^2(1 - p)$</td>
</tr>
<tr>
<td>$\alpha = 3$, $\beta = 3$</td>
<td>$f(p) = 30p^2(1 - p)^2$</td>
</tr>
</tbody>
</table>

2 Laplace’s rule of succession

In 1774, Laplace claimed that an event which has occurred n times, and has not failed thus far, will occur again with probability $(n + 1)/(n + 2)$. This is known as Laplace’s rule of succession. Laplace applied this result to the sunrise problem: What is the probability that the sun will rise tomorrow?

Let X_1, X_2, \ldots be a sequence of independent Bernoulli trials with parameter p. Note that this notion of dependence is conditional on p. More precisely:

$$ P(X_1 = b_1, X_2 = b_2, \ldots, X_n = b_n|p) = \prod_{i=1}^{n} P(X_i = b_i) $$

In fact, X_i and X_j are not independent because by observing X_i, one could say something about p, and hence about X_j. This is a consequence of the Bayesian approach which treats p itself as a random variable (unknown). Let $S_n = \sum_{i=1}^{n} X_i$. We would like to find the following probability:

$$ P(X_{n+1} = 1|S_n = k) $$
Observe that:

\[P(X_{n+1} = 1|S_n = k) \]

\[= \int_0^1 P(X_{n+1} = 1|p, S_n = k)f(p|S_n = k)dp \]

\[= \int_0^1 P(X_{n+1} = 1|p)f(p|S_n = k)dp = \int_0^1 pf(p|S_n = k)dp \]

Therefore, we need to find the posterior density of \(p \). Assuming we know nothing about \(p \) initially, we will adopt the uniform prior \(f(p) = 1 \) between 0 and 1. Applying Bayes’ rule:

\[f(p|S_n = k) \propto P(S_n = k|p)f(p) \propto p^k(1-p)^{n-k} \]

We conclude that:

\[f(p|S_n = k) = \frac{1}{B(k+1, n-k+1)}p^{(k+1)-1}(1-p)^{(n-k+1)-1} \]

Finally,

\[P(X_{n+1} = 1|S_n = k) = \int_0^1 pf(p|S_n = k)dp = \frac{k + 1}{n + 2} \]

We obtain Laplace’s result by setting \(k = n \).

3 Generalization

Consider a coin toss that can result in head, tail, or edge. We denote by \(p \) the probability of head, and by \(q \) the probability of tail, thus the probability of edge is \(1 - p - q \). Observe that \(p, q \in [0, 1] \) and \(p + q \leq 1 \). In \(n \) coin tosses, the probability of observing \(k_1 \) heads and \(k_2 \) tails (and thus \(n - k_1 - k_2 \) edges) is given by the multinomial probability mass function (this generalizes the binomial):

\[P(k_1, k_2) = \binom{n}{k_1} \binom{n-k_1}{k_2} p^{k_1} q^{k_2} (1-p-q)^{n-k_1-k_2} \]

The Dirichlet density is a generalization of beta and is conjugate to multinomial. For instance:

\[f(p, q) = \frac{\Gamma(\alpha + \beta + \gamma)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\gamma)}p^{\alpha-1}q^{\beta-1}(1-p-q)^{\gamma-1} \]
4 Pólya’s urn

Pólya’s urn represents a generalization of a Binomial random variable. Consider the following scheme: An urn contains b black and r red balls. The ball drawn is always replaced, and, in addition, c balls of the color drawn are added to the urn. When $c = 0$, drawings are equivalent to independent Bernoulli processes with $p = \frac{b}{b+r}$. However, with $c \neq 0$, the Bernoulli processes are dependent, each with a parameter that depends on the sequence of previous drawings.

For instance, if the first ball is black, the (conditional) probability of a black ball at the second drawing is $\frac{b+c}{b+r+c}$. The probability of the sequence black, black is, therefore, $\frac{b}{b+c} \frac{b}{b+r+c}$.

Let X_n be a random variable denoting the number of black balls drawn in n trials. What is $P(X_n = k)$? It is easy to show that all sequences with k black balls have the same probability p_n and, therefore,

$$P(X_n = k) = \binom{n}{k} p_n$$

We now compute p_n as:

$$p_n = \frac{\prod_{i=1}^{k} \left[b + (i-1)c \right] \prod_{i=1}^{n-k} \left[r + (i-1)c \right]}{\prod_{i=1}^{n} \left[b + r + (i-1)c \right]}$$

Rewriting in terms of the Gamma function (assuming $c > 0$), we have:

$$p_n = \frac{\Gamma\left(\frac{b}{c} + k \right) \Gamma\left(\frac{c}{c} + n - k \right)}{\Gamma\left(\frac{b}{c} + \frac{c}{c} + n \right)}$$

Therefore, the important parameters are b/c and r/c. Note that we can rewrite the above as (verify it):

$$p_n = \int_0^1 p^k (1-p)^{n-k} Be\left(\frac{b}{c}, \frac{r}{c} \right) dp$$

So,

$$P(X_n = k) = \binom{n}{k} \int_0^1 p^k (1-p)^{n-k} Be\left(\frac{b}{c}, \frac{r}{c} \right) dp$$
5 Pólya’s urn generates beta

We now show that Pólya’s urn generates a beta distribution at the limit. For this, we will consider \(\lim_{n \to \infty} X_n / n \).

First note that we can write \(P(X_n = k) \) as follows:

\[
P(X_n = k) = \frac{\Gamma\left(\frac{b}{c} + \frac{r}{c} + \frac{n}{c}\right)}{\Gamma\left(\frac{b}{c}\right) \Gamma\left(\frac{r}{c}\right) \Gamma\left(\frac{n}{c} + 1\right) \Gamma\left(\frac{n}{c} + \frac{b}{c} + \frac{r}{c} + 1\right)}
\]

Using Stirling’s approximation \(\Gamma(x) \approx \sqrt{2\pi x} x^x e^{-x} \) as \(x \) goes to infinity, we can conclude that when \(x \) goes to infinity,

\[
\frac{\Gamma(x + a)}{\Gamma(x + b)} \approx x^{a-b}
\]

Therefore, when \(k \to \infty \) (but \(k \leq x \) for some \(0 < x < 1 \)),

\[
P(X_n = k) = \frac{1}{B\left(\frac{b}{c}, \frac{r}{c}\right)} k^{\frac{b}{c} - 1} (n - k)^{\frac{r}{c} - 1} n^{1 - \frac{b}{c} - \frac{r}{c}}
\]

Now,

\[
P\left(\frac{X_n}{n} \leq x\right) = P\left(\frac{X_n}{n} = 0\right) + P\left(\frac{X_n}{n} = \frac{1}{n}\right) + \ldots + P\left(\frac{X_n}{n} = \frac{\lfloor nx \rfloor}{n}\right)
\]

As \(n \) goes to infinity, \(1/n \) goes to zero; therefore:

\[
\int_0^x P\left(\frac{X_n}{n} = u\right) du = \lim_{n \to \infty} \frac{1}{n} \left[P\left(\frac{X_n}{n} = 0\right) + P\left(\frac{X_n}{n} = \frac{1}{n}\right) + \ldots + P\left(\frac{X_n}{n} = \frac{\lfloor nx \rfloor}{n}\right) \right]
\]

\[
P\left(\frac{X_n}{n} \leq x\right) = n \int_0^x P\left(\frac{X_n}{n} = u\right) du = n \int_0^x P(X_n = nu) du
\]

And since \(nu \to \infty \), we can replace \(k \) by \(nu \) in the limiting expression we obtained for \(P(X_n = k) \) to get:

\[
P\left(\frac{X_n}{n} \leq x\right) = \int_0^x \frac{1}{B\left(\frac{b}{c}, \frac{r}{c}\right)} u^{\frac{b}{c} - 1} (1 - u)^{\frac{r}{c} - 1} du
\]

It is rather interesting that this limiting property of Pólya’s urn depends on the initial condition. Even more interesting is that if \(Y = \lim_{n \to \infty} X_n/n \), then conditioned on \(Y = p \) we have independent Bernoulli trials with parameter \(p \) (stated without proof).

\[
P(X_n = k|Y = p) = \binom{n}{k} p^k (1-p)^{n-k}
\]