Problem 1: Truncated sum

(a) Check that
\[\binom{7}{0} - \binom{7}{1} + \binom{7}{2} - \binom{7}{3} = -20 = -\binom{6}{3}. \]

(b) Generalize this result to
\[\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots + \binom{n}{k} = (-1)^k \binom{n-1}{k}. \]

Solution:
\[\binom{n-1}{0} - [\binom{n-1}{0} + \binom{n-1}{1}] + [\binom{n-1}{1} + \binom{n-1}{2}] - \ldots \\
\ldots + (-1)^k [\binom{n-1}{k-1} + \binom{n-1}{k}] \]

Terms cancel out, and the only one that remains is \((-1)^k \binom{n-1}{k}\).

(c) When \(|x| < 1\), \(1 - x + x^2 - x^3 + \ldots = (1 + x)^{-1}\). Give an alternative proof of (b) by comparing the coefficients of \(x^k\) on both sides of the identity:
\[(1 + x)^{n-1} = (1 + x)^n (1 - x + x^2 - x^3 + \ldots) \]

Hint: use the binomial theorem.

Solution: By the binomial theorem, the coefficient of \(x^k\) on the left hand side is given by \(\binom{n-1}{k}\). On the right hand side, many terms produce \(x^k\), we have:
\[\binom{n}{n} x^n + \ldots + \binom{n}{k} x^k + \ldots + \binom{n}{0} x^0 (1 - x + x^2 - x^3 + \ldots) \]

The coefficient of \(x^k\) is:
\[\binom{n}{k} - \binom{n}{k-1} + \ldots + (-1)^k \binom{n}{0} \]

So,
\[\binom{n}{k} - \binom{n}{k-1} + \ldots + (-1)^k \binom{n}{0} = \binom{n-1}{k} \]
If we multiply both sides by \((-1)^k\), we get the result we want.

Problem 2: A one-to-one correspondence
Consider the function

\[f : \mathbb{Z} \to \mathbb{N} \]

where

\[f(x) = \begin{cases}
2x & x \in \mathbb{N} \\
-2x + 1 & x \not\in \mathbb{N}
\end{cases} \]

(a) Show that \(f \) is a function.

Solution: For every \(x \in \mathbb{Z} \), either \(x \in \mathbb{N} \) or \(x \not\in \mathbb{N} \). Therefore, there is at most one element \(y \) in \(\mathbb{N} \) such that \(f(x) = y \). We need to show that this \(y \) is indeed in \(\mathbb{N} \). If \(x \in \mathbb{N} \), then \(y = 2x \) is also an element of \(\mathbb{N} \). If \(x \in \{0, -1, -2, -3, \ldots\} \), then \(y = -2x + 1 > 0 \), so \(y \in \mathbb{N} \).

(b) Show that this function is onto.

Solution: Consider \(y \in \mathbb{N} \). We need to show that there exists an \(x \in \mathbb{Z} \) such that \(f(x) = y \). If \(y \) is even, then let \(x = y/2 \). Observe that \(x \in \mathbb{Z} \) and \(x \in \mathbb{N} \). Therefore, \(f(x) = 2x = y \). If \(y \) is odd, then \(y = 2(k + 1) \) where \(k \in \{0, 1, 2, \ldots\} \). Therefore, \(y = -2(-k) + 1 \). Let \(x = -k \). Observe that \(x \in \mathbb{Z} \). Therefore, \(f(x) = -2(x + 1) = y \).

(c) Show that \(f \) is one-to-one, i.e. if \(x, y \in \mathbb{Z} \) and \(x \neq y \), then \(f(x) \neq f(y) \).

Solution: Consider \(x, x' \in \mathbb{Z} \). Assume \(f(x) = f(x') \) and so \(2x = -2x' + 1 \). This means \(2(x + x') = 1 \) which is impossible. So \(f(x) \) and \(f(x') \) must be different.

(d) What do we conclude about the two sets \(\mathbb{N} \) and \(\mathbb{Z} \).

Solution: Since \(f : \mathbb{Z} \to \mathbb{N} \) is one-to-one correspondence, \(\mathbb{Z} \) and \(\mathbb{N} \) have the same size.

Problem 3: Integer solutions
Consider the system:

\[x_1 + x_2 + x_3 = 15 \]

(a) How many solutions exist if \(x_i \geq 0 \) for all \(i \)?

Solution: This is the number of ways to partition 15 among 3 parts: \(x_1 \), \(x_2 \), and \(x_3 \). This number is given by \(\binom{15 + 3 - 1}{3 - 1} \).

(b) How many solutions exist if \(x_i > 0 \) for all \(i \)? **Hint 1:** If \(x_1 > 0 \), then let \(x_1 = 1 + y_i \), where \(y_i \geq 0 \). Replace \(x_i \) by \(y_i \) and solve the system. **Hint 2:** This is similar to the case covered in the notes where every kid must receive at least one gift.

Solution: We can think of \(x_1 = 1 + x'_i \), where \(x'_i \geq 0 \). Replacing \(x_i \) by \(x'_i \), we have:

\[x'_1 + 1 + x'_2 + 1 + x'_3 + 1 = 15 \]
\[x'_1 + x'_2 + x'_3 = 12 \]
Therefore, the number of solutions to this system is \(\begin{pmatrix} 12 + 3 - 1 \\ 3 - 1 \end{pmatrix} \). Note that we can think of this transformation as a one-to-one function. Every solution \((x_1, x_2, x_3)\) corresponds uniquely to a solution \((x'_1, x'_2, x'_3)\), and vice-versa. Our function is \(f(x_1, x_2, x_3) = (x'_1, x'_2, x'_3) = (x_1 - 1, x_2 - 1, x_3 - 1) \).