

Toward Spoken Dialogue as Mutual Agreement

Susan L. Epstein1,2, Joshua Gordon4, Rebecca Passonneau3, and Tiziana Ligorio2

1Hunter College and 2The Graduate Center of The City University of New York, New York, NY USA
3Center for Computational Learning Systems and 4Department of Computer Science, Columbia University New York NY USA

susan.epstein@hunter.cuny.edu, becky@cs.columbia.edu, joshua@cs.columbia.edu, tligorio@gc.cuny.edu

Abstract

This paper re-envisions human-machine dialogue as a set of
mutual agreements between a person and a computer. The
intention is to provide the person with a habitable experi-
ence that accomplishes her goals, and to provide the com-
puter with sufficient flexibility and intuition to support
them. The application domain is particularly challenging:
for its vocabulary size, for the number and variety of its
speakers, and for the complexity and number of the possible
instantiations of the objects under discussion. The brittle
performance of a traditional spoken dialogue system in such
a domain motivates the design of a new, more robust social
system, one where dialogue is necessarily represented on a
variety of different levels.

Introduction
A spoken dialogue system (SDS) has a social role: it sup-
posedly allows people to communicate with a computer in
ordinary language. A robust SDS should support coherent
and habitable dialogue, even when it confronts situations
for which it has no explicit pre-specified behavior. To en-
sure robust task completion, however, SDS designers typi-
cally produce systems that make a sequence of rigid de-
mands on the user, and thereby lose any semblance of nat-
ural dialogue. The thesis of our work is that a dialogue
should evolve as a set of agreements that arise from joint
goals and the collaboration of communicative interaction
(Clark and Schaefer, 1989). The role of metacognition here
is to use both self-knowledge and learning to represent dia-
logue and to enhance the SDS. As a result, dialogue should
become both more habitable for the person and more suc-
cessful for the computer. This paper discusses the chal-
lenges for an SDS in an ambitious domain, and describes a
new, metacognitively-oriented system under development
to address the issues that arise in human-machine dialogue.
 Our domain of investigation is the Heiskell Library for
the Blind and Visually Impaired, a branch of The New
York Public Library and part of The Library of Congress.
Heiskell’s patrons order their books by telephone, during

Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

conversation with a librarian. The volume of calls from its
5028 active patrons, however, promises to outstrip the ser-
vice currently provided by its 5 librarians.
 The next section of this paper describes the challenges
inherent in spoken dialogue systems. Subsequent sections
describe a traditional SDS architecture, demonstrate the
brittle behavior of an SDS built within it, and re-envision a
new SDS within the structure of a cognitively-plausible ar-
chitecture. The paper then posits a paradigm that endows
human-machine dialogue with metacognition, explains
how metacognition is implemented in this re-envisioned
system, and reports on the current state of its development.

Challenges in SDS Implementation
The social and collaborative nature of dialogue challenges
an SDS in many ways. The spontaneity of dialogue gives
rise to disfluencies, where a person repeats or interrupts
herself, produces filled pauses or false starts and self-
repairs. Disfluencies play a fundamental role in dialogue,
as signals for turn-taking (Gravano, 2009; Sacks, Schegloff
and Jefferson, 1974) and for grounding to establish shared
beliefs about the current state of mutual understanding
(Clark and Schaefer, 1989). Most SDSs handle the content
of the user’s utterances, but do not fully integrate the way
they address utterance meaning, disfluencies, turn-taking
and the collaborative nature of grounding.
 During dialogue, people simultaneously manage turn-
taking and process speech. The complexity of speech rec-
ognition for multiple speakers, however, requires the SDS
to have an a priori dialogue strategy that determines how
much freedom it offers the user. An SDS that maintains
system initiative completely controls the path of the dia-
logue, and dictates what the person may or may not say
during her turn. (“SAY 1 FOR ORDERS, SAY 2 FOR
CUSTOMER SERVICE, OR…”). In contrast, habitable dialogue
requires mixed initiative, where the user and the system
share control of the path the dialogue takes. Of course,
mixed initiative runs the risk that the system will find itself
in a state unanticipated by its designer, and no longer re-
spond effectively and collaboratively. Because fallback re-
sponses (e.g., asking the user to repeat or start over) are
brittle, current mixed-initiative systems pre-specify how

much initiative a user may take, and restrict that initiative
to specific kinds of communicative acts.
 An SDS receives a continuous stream of acoustic data.
Automated Speech Recognition (ASR) translates it into
discrete linguistic units (e.g., words and phonemes) repre-
sented as text strings. Such continuous speech recognition
over a large vocabulary for arbitrary speakers presents a
major challenge. The Heiskell Library task includes 47,665
distinct words from titles and author names, with a target
user population that varies in gender, regional accent, na-
tive language, and age. Moreover, telephone speech is sub-
ject to imperfect transmission quality and background
noise. For example, the word error rate (WER) for Let’s Go
Public! (Raux et al., 2005) went from 17% under con-
trolled conditions to 68% in the fielded version.
 Speech engineering for a specific application can reduce
WER, but dialogue requires more than perfect transcrip-
tion; it requires both the speaker’s meaning and her intent.
Once it has recognized the other’s intent, a dialogue par-
ticipant must also respond appropriately. An SDS tries to
confirm its understanding with the user through the kinds
of grounding behaviors people use with one another. Repe-
tition of the other’s words, along with a request for agree-
ment, is a traditional form of grounding, albeit annoying in
an SDS. An SDS that reports, “I HEARD YOU SAY THE
GRAPES OF WRATH. IS THAT CORRECT?” seeks explicit con-
firmation for its ASR output. Although explicit confirma-
tion guarantees that the ASR transcribed the sound cor-
rectly, it soon annoys the user. Implicit confirmation (e.g.,
“STEINBECK IS A POPULAR AUTHOR”), or even no confirma-
tion at all, makes conversation more habitable. Yet any
grounding other than explicit confirmation runs the risk
that the SDS will misunderstand the user, and thereby
compromise its correctness.
 Finally, a habitable SDS must understand turn-taking
behaviors, including when the user wants to interrupt and
seize the next turn, and when the user is willing to cede the
current turn. An SDS that allows mixed initiative must still
rely on simplistic approaches to turn-taking because it can-
not distinguish between a signal that the user is still listen-
ing) and a genuine confirmation. This limits the range of
grounding behaviors that can be implemented.

A Traditional SDS Architecture
Many contemporary SDSs have a pipeline-like architecture
similar to that of Olympus, shown in Figure 1 (Bohus et al.,
2007; Bohus and Rudnicky, 2003). The person at the left
provides spoken input. As segments of acoustic data are

completed, the audio manager (Raux and Eskenazi, 2007)
forwards them to the ASR module, which transcribes the
speech segment into a text string of words from its vocabu-
lary. The text string is forwarded to the natural language
understanding (NLU) module, which produces one or more
semantic representations of it. The NLU identifies the ob-
jects of interest and their likely values. For example, the
NLU might identify the string “SAMUEL COLERIDGE” ei-
ther as the title of a biography or as an author, and the
string “I’D LIKE TO STOP NOW” as either a request to termi-
nate the dialogue or as a book request. Together, the ASR
and the NLU interpret what has been said.
 The NLU forwards the semantic representations it con-
structs to a confidence annotator, which scores them. Scor-
ing is based on a variety of knowledge sources, including
ASR confidence scores on the individual words, and how
many words could not be included in the semantic interpre-
tation. The highest-scoring interpretation is forwarded to
the dialog manager, which determines what to do next. A
strong match to data in a knowledge source supports and
completes the semantic interpretation. In CheckItOut, the
system we constructed for the Heiskell task within the
Olympus framework, the RavenClaw dialogue manager
may request information from its Domain Reasoner (DR)
module. CheckItOut’s DR queries a knowledge source
backend with the semantic representation.
 CheckItOut relies on Phoenix, a semantic parser for
NLU that implements a set of context-free grammars
(CFGs). Because it can omit words in the ASR from the fi-
nal parse, Phoenix is robust to recognition errors. The rules
for CheckItOut’s book title CFG were automatically pro-
duced from full syntactic parses of Heiskell’s book titles,
with a broad coverage dependency parser (Bangalore et al.,
2009). Rules modeled on syntactic parses provide linguis-
tically-motivated constraints on word order, parts of
speech, and constituent structure. They also make mean-
ingful parses that are robust to misrecognized words more
likely.
 When the WER is high, the text string passed to the DR
may match several choices in the backend nearly as well.
For example, the ASR string “ROLL DWELL” elicited three
returns: CROMWELL, ROBERT LOWELL, and ROAD TO
WEALTH. Whether or not it uses the DR, the dialog man-
ager eventually decides what to communicate to the user.
That decision is forwarded to the natural language genera-
tor (NLG), which uses templates to produce text. For ex-
ample, the dialogue manager might decide to confirm one
of the titles returned from the database, and the NLG might
use the template “Did you say x?” to produce “DID YOU

Figure 1: A schematic for Olympus, a traditional SDS architecture.

SAY ‘ROAD TO WEALTH’?” The text-to-speech (TTS) mod-
ule then transforms the text from the NLG into speech, the
system’s spoken participation in dialogue.

Brittle Behaviors from an SDS
The examples in this section are portions of dialogues from
CheckItOut, one of 12 research dialogue systems built at
half a dozen sites using the Olympus/RavenClaw frame-
work. Each of them required the construction of a domain-
specific dialogue task tree to guide its decisions, and a do-
main-specific DR if they accessed a backend database.
(CheckItOut’s databases detail Heiskell’s books,
anonymized patrons, and their transaction history). As an
Olympus/RavenClaw application, CheckItOut also has ac-
cess to domain-independent error handling.
 Users may order as many as four books, and do so by
book number, title, or author (for which CheckItOut then
offers a choice of popular titles). The difficulties Check-
ItOut encounters motivated the metacognitive approach
that is the focus of this paper. In the examples below,
CheckItOut’s generated speech appears in italics, with
punctuation added for clarity.
Example 1: Too much separation between speech rec-
ognition and semantic processing
NEXT BOOK?
 .ALLAN. STEELE
DID YOU SAY SHELBY STEELE?
 NO
I’M SORRY. I MUST HAVE MISUNDERSTOOD YOU. NEXT BOOK?
 .ALLAN. STEELE
DID YOU SAY SHELBY STEELE?
CheckItOut tries to recognize only the intended concept,
based on the semantic interpretation of the current recogni-
tion hypothesis. The periods indicate low recognition con-
fidence on ALLAN; it does not appear in the semantic inter-
pretation. STEELE parsed as an author name, however, so
the backend returned the most prolific Steele: Shelby.
CheckItOut is unaware when a second recognition hy-
pothesis is identical to the first. A metacognitive system
with the appropriate data structures could respond differ-
ently when user repetition accompanies low confidence in
recognition.
Example 2: Inability to backtrack to arbitrary points in
the dialogue. If the system has misunderstood, users are
told to respond with “That is not what I said.”
NEXT BOOK?
 THAT IS NOT WHAT
“THIS JUST IN: WHAT I COULDN’T TELL YOU ON TV” IS
AVAILABLE.
 THAT IS NOT LITERALLY
“I’M NOT REALLY HERE” IS AVAILABLE. NEXT BOOK?
 THAT IS NOT LITERALLY
I’M SORRY. I THOUGHT YOU SAID, “I’M NOT REALLY HERE,”
BUT YOU ALREADY ORDERED IT. NEXT BOOK?
The user now has two books she did not want because the
“wrong book” signal has been misunderstood three times
as a title. Now she must either accept the error or start the

dialogue over. Backtracking to redo a portion of the dia-
logue depends on both knowledge of the specific dialogue
task structure and on domain-independent knowledge
about repairing misunderstandings. RavenClaw provides
domain-independent error handling strategies, and offers
support for limited restructuring of its agenda. Its DM,
however, only has limited information about recent utter-
ances. At each step in the pipeline from ASR to NLU to
DM, information is lost that may have been necessary to
make good decisions. (For example, the speech rate of the
utterance is unavailable to the DM.) Here, CheckItOut
cannot tell whether it has misunderstood the speaker’s
words (here, recognizing the wrong title) or her intent
(here, telling CheckItOut that it has made an error).
Example 3: Inability to perform incremental semantic
interpretation. In the early part of the dialogue, the sys-
tem identifies a user by her area code and telephone num-
ber. (CheckItOut does not use caller ID.)
CAN I HAVE THE PHONE NUMBER?
 NINE NINE FIVE
SORRY, I DIDN’T UNDERSTAND YOU.
 SEVEN FOUR THREE THREE
I’M TRYING TO IDENTIFY YOU. I HAVE YOUR AREA CODE.
PLEASE SAY YOUR PHONE NUMBER.
 NINE NINE FIVE SEVEN FOUR
SORRY, I DIDN’T UNDERSTAND YOU…
The ASR had captured different portions of the 8-digit
telephone number. It could have composed the first two re-
sponses, or certainly composed all three, to produce a rea-
sonable (and correct) guess: 995-7433. It cannot, however,
move incrementally toward an interpretation of the first us-
er utterance.
Example 4: Over-reliance on sequential processing be-
fore access to domain knowledge. Unlike most spoken
dialogue systems, CheckItOut relies on voice search. This
makes it possible to leverage domain knowledge for re-
solving noisy ASR (Passonneau et al., 2010a). In the
Olympus/RavenClaw architecture, however, NLU precedes
backend database queries, so CheckItOut applies a variant
of voice search after parsing.
 NEXT BOOK?
 THUD A DEVIL WHERE SPADA
I DIDN’T UNDERSTAND YOU. PLEASE SAY THE NAME OF THE
BOOK.
Here the NLU produced a single interpretation with two
concepts: a book title beginning “THUD,” and an author
named SPADA. Neither concept produces a match under
voice search. If the full text string had been submitted to
voice search prior to NLU, however, “The Devil Wears
Prada” would have been returned, correctly.
 A social system must not only be correct but also con-
sider the impression it makes upon the user. The
PARADISE framework for dialogue evaluation models
user satisfaction (measured, for example, by user question-
naires) (Walker, 1997). Its metrics address both task suc-
cess and costs, such as number of turns, number of correc-
tions from the user, and number of rejections by the user.
By those standards, CheckItOut certainly warrants im-

provement. By its lack of reference to dialogue history and
its inability to piece information together, CheckItOut ap-
pears inattentive to the conversation as a whole. Because of
the pipeline, CheckItOut may overlook reasonable alterna-
tives and be unable to retreat to others when its first choice
fails. The resultant errors frustrate the user and make the
system brittle.

Re-envisioning the SDS
This section envisions an SDS that is responsive to a broad
range of WERs. The input to this system is knowledge
from the backends, acoustic energy (speech) from the user,
and confirmations of speech fragments from the system
that went uninterrupted. System output is from the TTS.
 Rather than focus on what it needs from the user to ac-
complish its task, this new system will support the social
and collaborative nature of dialogue. Rather than box func-
tions into separate modules as in Figure 1, its processes
may execute in parallel and collaborate with or interrupt
one another. Like a person, the resultant system will listen
and interpret at once, anticipate, and process interruptions,
all to achieve agreements with the user. Here, an agree-
ment binds a value to a variable of interest (e.g., an area
code), and dialogue is envisioned as exchanges that arrive
at a set of mutual agreements.
 Our proposed SDS has metaknowledge about dialogue.
It knows that it is engaged in dialogue with another
speaker, and that speakers take turns. It also knows the dia-
logue’s history (record of what has transpired thus far), and
has an agenda (a pre-specified set of agreements). Each
agreement may be thought of as a subdialogue, and the
agenda may be fully or partially ordered. For example, the
library agenda has agreements for participation in the dia-
logue, user identification, some number of book requests,
an order summary, and a farewell. The SDS maintains the
agenda, and represents each agreement as one or more tar-
gets, items on which to agree. For example, the targets for
the user identification agreement are area code, telephone
number, name, and address. When all the targets in an
agreement have been met, the SDS selects another agree-
ment. When the entire agenda has been satisfied, the SDS
terminates the dialogue.
 Ideally, a target is satisfied by a single pair of turns, one
for the SDS and one for the user. For example, the SDS re-
quests an area code and the user provides it; or the user vo-
lunteers an area code, and the SDS knows what to do with
it. Each turn has an intent (what it tries to convey) and an
expectation (what it expects to hear). For example, when
the system requests an area code, its intent is to ask a
question and its expectation is that it will receive a valid
one in its database. In turn, when the user says “212,” her
intent is to provide her area code, and her expectation is
that the system will understand what she has said.
 To demonstrate that a social agreement has been
reached, the SDS must provide evidence to the user of its
interpretations, and accept evidence from the user of hers.
(Since it manages the agenda, the SDS always knows its

own intent and expectation, but it must infer the user’s in-
tent.) After each user turn, the SDS compares its expecta-
tion from its own previous turn to the most recent ASR
output. When that expectation has been met, the SDS
grounds the target binding and then selects the next target
in the agreement. When that expectation is not met, the
SDS sets aside the agenda until the discrepancy is resolved.
 Our new SDS, FORRSooth, provides all the functional-
ity of a traditional SDS. In a spirit similar to Olympus, we
provide modular interfaces for internal components, in-
cluding speech recognizers and synthesizers. In this para-
digm, however, interaction management, recognition, un-
derstanding, confidence, decision making, domain reason-
ing, text generation, and speech production are no longer
sequential. Instead, they are interleaved with the assistance
of a cognitively-plausible architecture.

FORR and FORRSooth
FORR (FOr the Right Reasons) is a domain-independent,
architecture for learning and problem solving (Epstein,
1994). FORR is intended for a domain in which a sequence
of decisions solves a problem. Robust and effective FORR-
based systems include Hoyle the game learner (Epstein,
2001), Ariadne the simulated pathfinder (Epstein, 1998),
and ACE the constraint solver (Epstein, Freuder and
Wallace, 2005). Each of them is intended for a particular
domain, such as game playing or pathfinding. FORRSooth
is a FORR-based SDS, one intended for dialogue.

Knowledge
A FORR-based system relies on knowledge to support its
decision making. In addition to traditional knowledge
bases (e.g., the backend in CheckItOut), a FORR-based
program uses descriptives. A descriptive is a shared data
structure that is computed on demand, refreshed only when
required, and referenced by one or more reasoning proce-
dures. Some descriptives (e.g., time on task) are computed
by FORR itself. Most descriptives, however, are domain-
dependent. For the dialogue domain, these include the dia-
logue-specific metaknowledge described above: the dia-
logue history, the agenda, the agreements, their targets, and
turn-taking. There are also descriptives for text strings
from the ASR, parses, confidence levels, and backend re-
turns. Others include user satisfaction, system accuracy,
and computation times.
 FORR enables FORRSooth to have a set of alternative
actions under consideration. This permits FORRSooth to
entertain multiple hypotheses about what the user said si-
multaneously. The agenda determines the kind of actions
to be considered at any point in the dialogue. For example,
if FORRSooth has just received confirmation of its current
expectation, it can choose among a variety of grounding
actions.

Decision making
Another reason that FORRSooth is FORR-based is that it

is impossible to specify in advance the correct response to
every user utterance. Instead, FORR combines the output
from a set of domain-specific procedures called Advisors to
decide how to respond. Each Advisor embodies a rationale
for a particular kind of decision: matching, grounding, or
error handling. Examples appear in Table 1. In Figure 1,
the dialogue manager made these decisions alone, typically
with a fixed set of rules or a function learned offline.
 FORR organizes its Advisors into a 3-tier hierarchy.
Tier-1 Advisors are reactive and guaranteed to be correct,
such as Perfect and Implicit-1 in Table 1. Tier-1 Advisors
relevant to the decision type (matching, grounding, or error
handling) are consulted in the order specified by the sys-
tem designer.
 Tier-2 Advisors are situation-based, that is, they respond
to a pre-specified trigger. For example, in FORRSooth the
trigger “expectation not met three consecutive times on this
target” could alert some tier-2 Advisors that manage error
handling. Once triggered, a tier-2 Advisor may specify a
(possibly partially ordered) set of targets. Examples in-
clude AlternativeID and Assemble in Table 1.
 Tier-3 Advisors are heuristics; they are consulted to-
gether and their opinions are combined to produce a deci-
sion. Output from a tier-3 Advisor is a set of comments,
each of which pairs an action with a strength that indicates
support for or opposition to that action. Note, for example,
the variety of rationales in Table 1 that support particular
backend returns from voice search. An Advisor may pro-
duce any number of comments, each on a different action.
 When FORRSooth decides to speak, its agenda provides
the current target to the hierarchy of Advisors, and indi-
cates whether it is time to match or ground. The Advisors
decide what to say. If any tier-1 Advisor can do so, no fur-
ther Advisors are consulted and that action is taken. For
example, Implicit-1 might decide to say “WE HAVE THAT.”
If no tier-1 Advisor determines an action, control moves to

tier 2. When a triggered tier-2 Advisor produces a set of
targets (a subdialogue), it includes instructions on when to
terminate the subdialogue. The system then revises the
agenda to make the subdialogue its top priority. After any
such revision, the hierarchy is consulted again from the
top. The tier-1 Advisor Enforcer ensures appropriate sub-
dialogue execution, suspension, and termination based
upon instructions embedded in the subdialogue by its tier-2
creator. Finally, if neither tier 1 nor tier 2 makes a decision,
control passes to tier 3. Tier-3 Advisors are likely to dis-
agree on what to do. Conflicts among them are resolved by
voting, which tallies a weighted combination of comment
strengths for and against each action. The action with the
highest score is chosen. Advisors’ weights are learned.
 FORR’s Advisor hierarchy is a highly modular structure.
It is easy to add Advisors as decision-making rationales are
identified. (Thus far, the vast majority of FORRSooth’s
Advisors are dialogue-specific, but not application-
specific, that is, they would serve for applications other
than the Heiskell Library task.) Moreover, the rationales
that underlie individual Advisors reflect behaviors we have
observed when people succeed at a similar task, as de-
scribed in the next section.

Human Skill Influences SDS Design
FORRSooth was inspired by behavior observed when peo-
ple matched ASR output to book titles (Passonneau,
Epstein and Gordon, 2009). Undergraduates were each
given the ASR that resulted from 50 titles spoken by a sin-
gle individual, along with a text file containing all 71,166
Heiskell titles. They were asked to match each ASR string
to a title. There was no time limit, and they could search in
any way they chose. Despite the fact that only 9% of the ti-
tles were rendered correctly by the ASR, the subjects’ ac-
curacy ranged from 67.7% to 71.7%.

Table 1: Some of FORRSooth’s Advisors. Only those with an asterisk (*) are specific to the Heiskell Library task.

Tier Advisor Decision type Rationale
1 Perfect Match ASR string had a perfect match from the backend, so return it.
1 Implicit-1 Ground ASR string had a perfect match from the backend, so ground implicitly.
1 Enforcer All If a subdialogue exists, process it.
1 NoRepeat Error handling Same utterance twice in a row, so do not ask the user to repeat.
2 Assemble Match > 2 attempts on target, so guess combinations of those responses.
2 AlternativeID Error handling > 3 consecutive non-understandings, so ask the user for the author or number.
2 NotWhatSaid Error handling If “that’s not what I said,” reconsider recent variable bindings in reverse order.
3 Popular Match Select returns from the backend with the highest circulation frequency.
3 FavoriteGenre Match *Select books with the user’s favorite genre.
3 FavoriteAuthor Match *Select books by the user’s favorite author.
3 SoundsLike Match The return sounds like the ASR text string.
3 SpelledLike Match The return is spelled like the ASR text string.
3 FirstWord Match The return matches the first word in the ASR text string.
3 JustMatch Match The return matches the ASR text string.
3 Parse Match The return matches a parse.
3 UnusualWord Match The return contains an unusual word in the ASR text string.
3 Explicit-3 Ground This was difficult to understand, so ground explicitly.
3 Implicit-3 Ground This dialogue is unusually long, so ground implicitly.

In a second experiment, we sought to understand the
mechanism underlying that skill. In this experiment, pairs
of undergraduate computer science majors spoke Heiskell
book titles to one another through a speech recognizer. One
person played the role of user and the other was the sub-
ject. The experiment was designed to make the speech
more like dialogue than the reading of a list. For further de-
tails, see (Passonneau et al., 2010b).

The subject sat at a graphical user interface and served
as the dialogue manager in Figure 1. She could see the
ASR string and could query the full Heiskell database with
it. (To evaluate the quality of a match against the ASR, we
adapted the Ratcliff/Obershelp similarity metric: the ratio r
of the number of matching characters to the total length of
both strings (Ratcliff and Metzener, 1988).) Up to 10
matches, in descending order by (concealed) match score
were displayed in response to a query. Words in the returns
that matched a query word appeared darker on the screen.
The subject was then expected, in real time, to select the ti-
tle that had been requested, ask a question that might help
her choose, or give up on matching that request. Over sev-
eral weeks, each of the seven subjects requested 100 titles
from every other subject, 4200 title requests in all.
 Had a subject simply selected the first (i.e., top-scoring)
return, she would have been accurate 65% of the time. Our
subjects’ accuracy, however, ranged from 69.5% to 85.5%.
To find rationales for our Advisors, we sought the factors
that supported our subjects’ decisions. We extracted train-
ing samples from the data, and learned decision trees that
modeled individual subjects’ actions well (0.60 ≤ F ≤
0.89). Linear regression and logistic regression models had
similar results. Key features in these trees will become Ad-
visor rationales: the number and scores of the returns, the
frequency with which the subject had been correct on the
last three titles, the maximum number of contiguous exact
word matches between a return and the ASR string (aver-
aged across candidates), and the Helios confidence score.
(Confidence scores, metrics on matches, and success on ti-
tles other than the last one did not appear on the GUI.) The
tree for our top-scoring subject also used the length of the
ASR string first to choose a decision strategy.

Metacognition for an SDS
Our version of the paradigm for metacognition established
by Cox and Raja (Cox and Raja, 2007) appears in Figure 2.
Only the speech from the user, the speech from the system,
and the backend returns lie at the object level. Knowledge
about that speech, represented as descriptives, supports
both reasoning at the object level and metareasoning. The
object layer contains FORRSooth’s Advisors for ground-
ing, matching, and error handling. Grounding strategies
range from simple confirmations to subdialogues. Based on
dialogue confidence and history, tier-1 Advisors make fast
and obvious decisions, tier-2 Advisors propose clarifica-
tion dialogues, and tier-3 Advisors support a specific ac-
tion. In this way, easy choices are made quickly, and diffi-
cult ones take a little longer.

 FORRSooth has a clear metacognitive orientation, that
is, it reasons about which decision algorithms to use and
about its own level of understanding. The metacognitive
features of our re-envisioned SDS replace the “react to
speech” paradigm of Figure 1 with “establish a set of mu-
tual agreements.” The comparison of expectation with re-
sponse, and the determination to establish common beliefs
provide metalevel control that gives error handling priority
over the establishment of additional agreements.
 By design, FORRSooth is mixed initiative. Its reactive
interaction manager mediates between the continuous, real-
time nature of dialogue and the discrete reasoning of the
Advisors in the object layer. The interaction manager
transmits utterances between the user and the system. It al-
so updates the descriptive for spoken input when the user
stops speaking.
 The second experiment above provided clear evidence
that a robust SDS requires awareness of both its perform-
ance and its knowledge. For performance, recall that our
subjects consistently used their recent task success to make
choices. An SDS should gauge and use its self-confidence,
as measured by system accuracy and user feedback on the
last n requests or dialogues. There are many plausible ways
to integrate self–confidence into Advisors in every cate-
gory. For example, it can be a factor for consideration in
tier 3, or mandate more caution than would otherwise be
exercised in tier 1. Metareasoning can also address confi-
dence in individual values. For example, the way a deci-
sion is grounded should depend in part upon the confi-
dence with which the match was made.

Another form of metacognition is knowing when you do
not know. This explains the striking difference in the sec-
ond experiment between our two most proficient subjects
(85.5% and 81.3%) and the other five (69.5% to 73.46%).
The two more proficient subjects knew when to ask a ques-
tion. When the query returns were all poor matches, these
two asked questions far more often than the others.
 Learning is essential in FORRSooth. The system will
learn weights for its many (likely contradictory) tier-3 Ad-
visors. The weight-learning algorithm will reward Advi-
sors that support good decisions and penalize those that
make poor ones. Reinforcement size will reflect Advisors’
relative success modeled on criteria from PARADISE. In
FORR, a benchmark Advisor for each kind of action makes
random comments. Benchmark Advisors do not participate
in decision-making, but they do acquire learned weights.
After sufficient experience, FORRSooth will not consult
any Advisor whose weight remains consistently lower than
that of its benchmark.
 FORRSooth has many derived descriptives, but only

Figure 2: Metacognition and the FORR architecture.

three for ground-level information: speech from the user,
uninterrupted speech from the system, and backend
matches. Its other descriptives serve the reasoning level
about what to say next, and support metareasoning about
the Advisors and how they are organized. These descrip-
tives include the agenda (whose default value is the set of
agreements and their targets), the task history, and whose
turn it is to speak, as well as confidence measures, Advisor
weights, and various computations based on user input and
the backend data (e.g., possible matches or parses). As
weights are learned, a descriptive no longer referenced by
any Advisor is no longer computed. Thus, the SDS gauges
and exploits the usefulness of its own knowledge and ra-
tionales.
 A FORR-based system is, by construction, boundedly
rational. Advisors have a limited amount of time in which
to construct their comments. FORR gauges their utility
(accuracy per CPU second consumed). Weight learning
can then consider utility as well as accuracy.
 FORRSooth’s dialogue proficiency will be gauged by
task success and efficiency metrics similar to those of the
PARADISE framework. The Advisors in Table 1 manage
the difficulties raised earlier in this paper far better than
CheckItOut did. NoRepeat addresses Example 1, NotWhat-
Said handles Example 2, and Assemble deals with Example
3. Once appropriate weights are learned, Example 4 should
be addressed by JustMatch.

Related and Future Work
Mixtures of heuristics have often been shown to enhance
decision quality when they are weighted (Minton et al.,
1995; Nareyek, 2003) or form a portfolio (Gagliolo and
Schmidhuber, 2007; Gomes and Selman, 2001; Streeter,
Golovin and Smith). FORR learns such a mixture, but it
also learns which knowledge to compute to support it. Fur-
thermore, it can reorganize its Advisors to speed its deci-
sions (Epstein, Freuder and Wallace, 2005).
 The dialogue manager of Figure 1 is a set of rules (in
RavenClaw, represented as a tree) that anticipates paths a
dialogue might take and relies on domain-independent er-
ror-handling protocols (Bohus and Raux, 2009). When the
dialogue veers away from those predictions, the SDS be-
comes brittle. Rather than anticipate all possibilities,
FORRSooth expects to learn appropriate behavior. Be-
cause they should impact one another, FORRSooth incor-
porates many functionalities of an SDS in addition to that
of the traditional dialogue manager.
 The traditional SDS’s partition of hearing, reasoning,
and speaking into separate components makes an inte-
grated approach to reasoning and learning more difficult.
As a result, machine learning has typically been restricted
to the design phase. For example, some research has
viewed dialog management as a Partially Observable
Markov Decision Process, and learned a policy for it by re-
inforcement learning on a corpus (Levin, Pieraccini and
Eckert, 2000; Williams and Young, 2007). In contrast,

FORRSooth’s metareasoning allows it to learn weights for
its tier-3 Advisors online, so that it improves as it is used.
 ALFRED, a task-oriented dialogue agent, addresses
miscommunication from ambiguous references, including
incompatible or contradictory user intentions and unknown
words (Anderson, Josyula and Perlis, 2003). In contrast,
FORRSooth manages non-understandings specific to spo-
ken dialogue, particularly those stemming from recognizer
noise or speech disfluency. Meta-reasoning in ALFRED is
controlled by a formalism that augments inference rules
with a constantly evolving measure of time. Knowledge
about the environment, including perceptions of user utter-
ances and the system’s beliefs about those utterances, are
represented in an associated knowledge base of first-order
formulae. In contrast, FORR integrates multiple reasoning
processes, and represents the passage of time as values for
historical descriptives.
 Matching Advisors consider parsing, voice search, and
dialogue history. In a traditional SDS, the NLU maps the
words to concepts. In FORRSooth, however, there are mul-
tiple descriptives (e.g., kind of utterance, possible parses,
dialogue history) that a matching Advisor can reference to
make a recommendation. (This is analogous to an NLU
that employs multiple representations, such as (Gupta et
al., 2006).) The tier-1 matching Advisor Perfect detects a
perfectly matched title and returns it, without ever parsing.
A tier-2 matching Advisor might trigger by some failure to
understand, produce a subdialogue that combines multiple
hypotheses from the dialogue history, and then ask “Did
you mean x?” for each of them. A tier-3 matching Advisor
could consider the number of possible parses or the voice
search score (or some other rationale) to identify a match.
 Domain-independent error-handling strategies in Ra-
venClaw have been studied extensively (Bohus, 2007).
That approach learns a confidence function for concepts
from labeled training instances, updates its belief in only
the current concept, and then either confirms the concept or
repeats the error handling. In FORRSooth, however, we
expect to record confidence on many descriptives’ values.
FORRSooth’s error handling includes reactive Tier-1 Ad-
visors (e.g., NoRepeat), tier-2 Advisors that propose clari-
fication dialogues (e.g., AlternativeID), and tier-3 heuris-
tics. Those heuristics may comment to prompt the user to
repeat or rephrase her last utterance, or select an alternative
way to request the information.
 There is deliberately no commitment in FORRSooth to a
fully-ordered agenda or to fully-ordered targets for an
agreement. This provides considerable tolerance for mixed
initiative that might simplify the system’s task. (For exam-
ple, while the system is assembling guesses, the user could
repeat a title for which the match score is good.) Subdia-
logues are paused and resumed in a similar fashion.
 FORRSooth is intended to be an SDS, not a book-
ordering system; only its backend and a few of its error-
handling Advisors are domain-specific. Building an SDS in
FORR allows the system designer to entertain multiple
heuristic rationales, and permits the system to learn from
its experience what would be a good combination of them

for the task at hand. The focus of current development is
weight learning based on PARADISE metrics, novel ways
for the system to guess at what a user means (as in the tel-
ephone number of Example 3), and novel error-handling
subdialogues. Meanwhile, FORRSooth is already proving
its robustness and habitability in preliminary trials.

Acknowledgements
This research was supported in part by the National Sci-
ence Foundation under awards IIS-084966, IIS-0745369,
and IIS-0744904.

References
Anderson, M. L., D. Josyula and D. Perlis 2003. Talking to
computers. In Proc. of the Workshop on Mixed Initiative
Intelligent Systems. In Proc. of IJCAI Workshop on Mixed
Initiative Intelligent Systems.
Bangalore, S., P. Bouillier, A. Nasr, O. Rambow and B.
Sagot 2009. MICA: a probabilistic dependency parser
based on tree insertion grammars. . Application Note. Hu-
man Language Technology and North American Chapter
of the Association for Computational Linguistics: 185-188.
Bohus, D. 2007. Error Awareness and Recovery in
Conversational Spoken Language Interfaces. Computer
Science. Pittsburgh, Carnegie Mellon University. Ph.D.
Bohus, D. and A. Raux 2009. The RavenClaw dialog
management framework: Archictecture and systems.
Computers in Speech and Language 23(3): 332-361.
Bohus, D., A. Raux, T. K. Harris, M. Eskenazi and A. I.
Rudnicky 2007. Olympus: an open-source framework for
conversational spoken language interface research. In
Proc. of Bridging the Gap: Academic and Industrial
Research in Dialog Technology workshop at HLT/NAACL.
Bohus, D. and A. I. Rudnicky 2003. RavenClaw: Dialog
Management Using Hierarchical Task Decomposition and
an Expectation Agenda. In Proc. of Eurospeech 2003.
Clark, H. H. and E. F. Schaefer 1989. Contributing to
discourse. Cognitive Science 13: 259-294.
Cox, M. T. and A. Raja 2007. Metareasoning: A
Manifesto, Technical Report. , BBN Technologies.
Epstein, S. L. 1994. For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18(3): 479-511.
Epstein, S. L. 1998. Pragmatic Navigation: Reactivity,
Heuristics, and Search. Artificial Intelligence 100(1-2):
275-322.
Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial
on Hoyle. Machines That Learn to Play Games. Fürnkranz,
J. and M. Kubat. Huntington, NY, Nova Science: 153-178.
Epstein, S. L., E. C. Freuder and R. J. Wallace 2005.
Learning to Support Constraint Programmers.
Computational Intelligence 21(4): 337-371.

Epstein, S. L. and S. Petrovic In press. Learning a Mixture
of Search Heuristics. Metareasoning: Thinking about
thinking, MIT Press.
Gagliolo, M. and J. Schmidhuber 2007. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4): 295-328.
Gomes, C. P. and B. Selman 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2): 43-62.
Gravano, A. 2009. Turn-Taking and Affirmative Cue
Words in Task-Oriented Dialogue. Department of
Computer Science. New York, Columbia University. Ph.D.
Gupta, N., G. Tur, D. Hakkani-Tur, S. Bangalore, G.
Riccardi and M. Gilbert 2006. The AT&T spoken language
understanding system. IEEE Transactions on Audio,
Speech, and Language Processing 14(1): 213-222.
Levin, E., R. Pieraccini and W. Eckert 2000. A Stochastic
Model of Human-Machine Interaction for Learning Dialog
Strategies. IEEE Trans. on Speech and Audio Processing
8(1): 11-23.
Minton, S., J. A. Allen, S. Wolfe and A. Philpot 1995. An
Overview of Learning in the Multi-TAC System. In Proc.
of First International Joint Workshop on Artificial
Intelligence and Operations Research, Timberline.
Nareyek, A. 2003. Choosing Search Heuristics by Non-
stationary Reinforcement Learning. Metaheuristics:
Computer Decision-Making. Resende, M. G. C. and J. P.
deSousa. Boston, Kluwer: 523-544.
Passonneau, R., S. L. Epstein and J. B. Gordon 2009. Help
Me Understand You: Addressing the Speech Recognition
Bottleneck. In Proc. of AAAI Spring Symposium on Agents
that Learn from Human Teachers, Palo Alto, CA, AAAI.
Passonneau, R. J., S. L. Epstein, T. Ligorio, J. Gordon and
P. Bhutada 2010a. Learning about Voice Search for
Spoken Dialogue. In Proc. of NACL.
Ratcliff, J. W. and D. Metzener 1988. Pattern Matching:
The Gestalt Approach, Dr. Dobb's Journal.
Raux, A. and M. Eskenazi 2007. A Multi-layer architecture
for semi-synchronous event-driven dialogue management.
In Proc. of IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU 2007), Kyoto.
Raux, A., B. Langner, A. W. Black and M. Eskenazi 2005.
Let's Go Public! Taking a spoken dialog system to the real
world. In Proc. of Interspeech 2005 (Eurospeech), Lisbon.
Sacks, H., E. A. Schegloff and G. Jefferson 1974. A
simplest systematics for the organization of turn-taking for
conversation. Language 50(4): 696-735.
Streeter, M., D. Golovin and S. F. Smith 2007. Combining
multiple heuristics online. In Proc. of AAAI-07, 1197-1203.
Walker, M. A., D. J. Littman, C. A. Kamm and A. Abella
1997. PARADISE: A framework for evaluation of spoken
dialog agents. In Proc. of 35th Annual Meeting of the
Association for Computational Linguistics, Madrid, Spain.
Williams, J. and S. Young 2007. Partially Observable
Markov Decision Processes for Spoken Dialog Systems ,
vol. 21, no. 2, pp. 231–422,. Computer Speech and
Language 21(2): 231-422.

