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Abstract. Problem solvers have at their disposal many heuristics that may sup-
port effective search. The efficacy of these heuristics, however, varies with the
problem class, and their mutual interactions may not be well understood. The
long-term goal of our work is to learn how to select appropriately from among a
large body of heuristics, and how to combine them into a weighted mixture that
works well on a specific class of problems. During learning, search heuristics’
weights are used to solve a problem and then updated based on their subsequent
performance. This paper proposes and demonstrates a variety of ways to gauge
and adapt search performance, and shows how their application can improve
subsequent search performance.
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1. Introduction

A program that uses the results of its own search experience to modify its subsequent
behavior does adaptive search. Such an approach permits the program to tailor its
algorithm to the task at hand. In particular, given a set of search heuristics of un-
known quality and a class of putatively similar hard problems, our goal is to learn to
solve those problems well. The thesis of our work is that adaptive search for a class of
constraint satisfaction problems can provide improved performance. This paper de-
scribes several techniques that gauge search performance on constraint satisfaction
problems and learn to improve it.

Machine learning experiments require both training examples and performance
criteria. Given a set of problems, an autonomous learner monitors its performance to
direct its own learning. Such a learner has two particular burdens: it must create its
own examples and gauge its own performance. A training example here is a search
decision of unknown quality. As a result, it is important to gauge the performance of
the learner on the particular problem where the example arose. Autonomous learning
also requires continuous self-evaluation: Is the program doing well? Has it learned
enough? Should it start over? Given a training example, the learning algorithms de-
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scribed here reinforce heuristics that prove successful on a set of problems and dis-
courage those that do not. Our program represents its learned knowledge about how to
solve problems as a weighted sum of the output from some subset of its heuristics.
Thus this learner’s task is both to choose the best heuristics, and to weight them ap-
propriately.

After some basic definitions and a discussion of related work, this paper demon-
strates the varied efficacy of individual constraint solving metrics and the potential
power available from a mixture of heuristics. It then describes a weighted mixture
decision process, explains how our learner extracts training examples from its search
experience, and discusses several ways to gauge performance. The paper goes on to
detail the experimental design, and to describe some new techniques, each illustrated
by an appropriate experiment. Finally, it summarizes our results on effective self-
adaptation and plans for future work.

2. Background and related work

A constraint satisfaction problem (CSP) is a set of variables, each with a domain of
values, and a set of constraints, expressed as relations over subsets of those variables.
A solution to a CSP is an instantiation of all its variables that satisfies all the con-
straints. A problem class is a set of CSPs with the same characterization. For exam-
ple, CSPs in model B are characterized by <n, m, d, t>, where n is the number of vari-
ables, m the maximum domain size, d the density (fraction of edges out of n(n-1)/2
possible edges) and t the tightness (fraction of possible value pairs that each constraint
excludes) [1]. In a binary CSP, each constraint is on at most two variables. A binary
CSP can be represented as a constraint graph, where vertices correspond to the vari-
ables (labeled by their domains), and each edge represents a constraint between its
respective variables.

Real-world problems typically have non-random structure. A randomly generated
problem class may also mandate specific structure for its problems. For example, each
of the composed problems used here consists of a subgraph (its central component)
loosely joined to one or more additional subgraphs (its satellites) [2].

Traditional CSP search makes a sequence of decisions that instantiates the vari-
ables in a problem one at a time with values from their respective domains. After each
value assignment, some form of inference detects values that are incompatible with
the current instantiation. The work reported here uses the MAC-3 algorithm to main-
tain arc consistency during search [3]. MAC-3 temporarily removes currently unsup-
portable values to calculate dynamic domains that reflect the current instantiation. If
every value in any variable’s domain is inconsistent (violates some constraint), the
current partial instantiation cannot be extended to a solution, so some retraction
method is applied. Here we use chronological backtracking, which prunes the subtree
(digression) rooted at an inconsistent node (assignment of a value to a variable) and
withdraws the most recent value assignment(s).

Search for a CSP solution is an NP-complete problem; the worst-case cost is expo-
nential in n for any known algorithm. Often, however, a CSP can be solved with a
cost much smaller than the worst case. Although CSPs in the same class are ostensi-
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bly similar, there is evidence that their difficultly may vary substantially for a given
search algorithm [4].

There are only two kinds of search choices here: select a variable or select a value
for a variable. Constraint researchers have devised a broad range of variable-ordering
and value-ordering heuristics to speed search. Each heuristic relies on its own metric,
a measure that the heuristic either maximizes or minimizes when it makes a decision.
Min domain and max degree are classic examples of these heuristics. (A full list of the
heuristics referenced here appears in the Appendix.) The metric may rely upon dy-
namic and/or learned knowledge. Each such heuristic may be seen as expressing a
preference for choices based on the scores returned by its metric. As demonstrated in
the next section, however, no single heuristic is “best.” Our research therefore seeks a
combination of heuristics.

There are several reasons why a combination of heuristics (known in the mixture
literature as experts) can offer improved performance, compared to a single expert
[5]. If no single expert is best on all the problems, a combination of experts could
enhance the accuracy and reliability of the overall system. On limited training data,
different candidate heuristics may appear equally accurate. In this case, one could
better approximate the unknown, correct heuristic by averaging or mixing candidate
heuristics, rather than selecting one [6]. For supervised learning algorithms, the per-
formance of such a mixture of experts has been theoretically analyzed in comparison
to the best individual expert. Under the worst-case assumption, even when the best
expert is unknown (in an online setting), mixture-of-experts algorithms have been
proved asymptotically close to the behavior of the best expert [7].

Several learning approaches benefit from a mixture of CSP search heuristics.
Multi-TAC selects the best individual heuristic and combines it with each of the oth-
ers in turn, using the second only as a tiebreaker. In this way Multi-TAC creates sev-
eral layers of tie-breakers, until no further improvement is obtained [8]. Distributed
CSPs can benefit from cooperation and competition of parallel searches led by differ-
ent heuristics [9]. In contrast, for each search decision the solver described here con-
sults all its chosen heuristics.

Table 1. Average number of nodes explored by traditional variable-ordering heuristics (with
lexical value ordering) on 50 problems from each of 3 classes. The best performance by a
single heuristic (in bold) and the worst (in italics) vary with the problem class.

Heuristic <30, 8, 0.26, 0.34> <20, 30, 0.444, 0.5> <50, 10, 0.38, 0.2>
min domain 368.30 7,862.68 33,270.72
max degree 147.06 4,530.72 35,978.20
max forward degree 162.96 9,123.04 35,258.26
min domain/degree 146.96 3,145.30 22,608.18
max weighted degree 162.76 5,139.34 24,554.34
min dom/dynamic deg 134.06 2,992.56 19,947.24
min dom/weighted deg 130.20 3,134.70 19,608.02
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3. Why learning is necessary

Selection of appropriate heuristics from the many touted in the constraint literature is
non-trivial. Table 1 illustrates that even well-trusted individual heuristics vary dra-
matically in their performance on different classes. Although all the problems used
throughout this paper have at least one solution, we control resources with a step limit
that imposes an upper bound on the number of variable selections and value selections
during search on a given problem. Performance is measured in the size of the search
tree, that is, the average number of nodes visited during search .

A dual for a heuristic reverses the import of its metric (e.g., max domain is the dual
of min domain). Duals of popular heuristics can be superior to traditional heuristics on
real-world problems and on problems with non-random structure [10-12]. Consider,
for example, a composed problem whose central component is substantially larger,
looser (has lower tightness), and sparser (has lower density) than its satellite. Once a
solution to the subproblem defined by the satellite is found, it is relatively easy to
extend that solution to the looser and sparser central component. In contrast, if one
extends a partial solution for the subproblem defined by the central component to the
satellite variables, inconsistencies eventually arise deep within the search tree. Typi-
cally such problems are either solved with minimal backtracking or go unsolved after
hundreds of thousands of steps.

Despite the low density of the central component in such a problem, its variables’
degrees are often larger than those in the significantly smaller satellite. This proves
particularly challenging for some traditional heuristics. For example, max degree
(prefer variables with the largest degree in the constraint graph) tends to select vari-
ables from the much larger central component first, and therefore fails to solve many
such problems within a reasonable step limit. In contrast, the decidedly untraditional
min degree heuristic tends to prefer variables from the small satellite and thereby
detects inconsistencies much earlier. Table 2 shows how traditional heuristics and
their duals fare on one class of composed problems. Surprisingly, the duals can do
better. We emphasize that the characteristics of such composed problems are often
found in real-world problems. To achieve good performance without knowledge
about a problem’s structure, therefore, it is advisable to consider many popular heu-
ristics along with their duals.

Table 2. Average number of nodes explored by 3 traditionally good heuristics (in italics) and
their duals on 50 composed problems (described in the text) under a 100,000-step limit. Ob-
serve how much better the duals can perform on problems from this class.

Heuristic Percentage solved Nodes
max degree 82% 14,746.34
min degree 100% 34.20
min domain/degree 86% 11,882.22
max domain/degree 92% 8,409.10
max weighted degree 100% 55.22
min weighted degree 100% 34.74
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A good mixture of heuristics can outperform even the best individual heuristic, as
Table 3 demonstrates. The first line shows the best performance achieved by any
traditional single heuristic from Table 1. The second line of Table 3 show that a good
pair of heuristics, one for variable ordering and the other for value ordering, can per-
form significantly better than an individual heuristic. Nonetheless, the identification
of such a pair is not trivial. For example, two outstanding variable-ordering heuristics
from Table 1, min domain/dynamic degree and max weighted degree benefit differ-
ently when coupled with a good value-ordering heuristic, max product domain value.
The last line of Table 3 demonstrates that a customized combination of more than two
heuristics can further improve performance. This paper furthers work on the auto-
matic identification of particularly effective mixtures.

4. Solving with a mixture of heuristics

When ACE (the Adaptive Constraint Engine) learns to solve a class of CSPs, it cus-
tomizes a weighted mixture of heuristics for the class [13]. ACE is based on FORR,
an architecture for the development of expertise from multiple heuristics [14]. ACE’s
search algorithm (in Figure 1) alternately selects a variable and then selects a value
for it from its domain. The size of the resultant search tree depends upon the order in
which values and variables are selected.

Heuristics are implemented by procedures called Advisors. ACE’s Advisors are or-
ganized into three tiers. Tier-1 Advisors make correct decisions without any heuris-
tics. If any of them comments positively on a choice, it is executed. (For example,
Victory recommends any value from the domain of the last unassigned variable. Since
inference has already removed inconsistent values, any remaining value produces a
solution.) Tier-2 Advisors address subgoals; they are outside the scope of this paper.
The decision-making described here focuses on the Advisors in tier 3. All the tier-3
Advisors are consulted together. As in Figure 1, their output is combined to make a
decision by voting, which chooses the action with the greatest sum of weighted
strengths. Each tier-3 Advisor’s heuristic view is based on a descriptive metric. For
each metric, there is a dual pair of Advisors, one that favors smaller values for the

Table 3. Search tree size under individual heuristics and under mixtures of heuristics on three
classes of problems. Note that each class has its own particular combination of more than two
heuristics that performs better (in bold).

Mixture <30, 8, 0.26, 0.34> <20, 30, 0.444, 0.5> <50, 10, 0.38, 0.2>
The best representation
from Table 1 130.2 2,992.5 19,608.0
min dom/dynamic degree +
max product domain value 96.2 2,088.4 9,721.9
max weighted degree +
 max product domain value 125.6 3,337.0 17,449.1

Mixture found by ACE 90.3 1,923.9  7,887.1
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metric and one that favors larger values. Typically, only one of them is reported in
literature as a heuristic.

5. Learning from search experience

Given a class of binary, solvable problems, ACE's goal is to select Advisors and learn
weights for them so that the decisions supported by the largest weighted combination
of strengths lead to effective search. Our learning scenario specifies that the learner
seeks only one solution to one problem at a time, and learns only from problems that
it solves. There is no information about whether a single different decision might have
produced a far smaller search tree. This is therefore a form of incremental, self-
supervised reinforcement learning based only on limited search experience and in-
complete information. Moreover, a particular heuristic may be a good choice for some
decisions but a poor choice for many others in the same problem.

As a result, any weight-learning algorithm for ACE must select decisions from
which to learn, determine what constitutes a heuristic’s support for a decision, and
specify a way to assign credits and penalties. ACE has two approaches to weight
learning: Digression-based Weight Learning (DWL) [13] and Relative Support
Weight Learning (RSWL) [15]. It uses them to update the weights of its tier-3 Advi-
sors.

From which decisions should one learn?
Both weight-learning algorithms glean training instances from their own (likely im-
perfect) successful searches. As in Figure 2, positive training instances are those
made along an error-free path extracted from a solution trace. Negative training in-
stances are value selections that led to a digression, as well as variable selections
whose subsequent value assignment fails. (Given correct value selections, any vari-

Search (p, Avar , Aval )
Until problem p is solved or the allocated resources are exhausted

Select unvalued variable v

 

Select value d for variable v from v’s domain Dv

 Correct domains of all unvalued variables *inference*
  Unless domains of all unvalued variables are non-empty

return to a previous alternative value *retraction*

Fig. 1. Search in ACE with a weighted mixture of variable Advisors from Avar , and value
Advisors from Aval . w(A) is the weight of Advisor A; s(A, c) is the support of Advisor A for
choice c.

  

€ 

v = argmax
c∈V

w(A) ⋅ s(A,c)
A∈Avar

∑

  

€ 

d = argmax
c∈Dv

w(A) ⋅ s(A,c)
A∈Aval

∑
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able ordering can produce a backtrack-free solution; we deem a variable selection
inadequate if the subsequent value assignment to that variable failed.) Decisions made
within a digression do not become training instances.

What constitutes a heuristic’s support of a decision?
Under DWL, an Advisor is said to support only decisions to which it assigned the
highest strength. In contrast, RSWL considers all recommendation strengths. The
relative support of an Advisor for a choice is the normalized difference between the
strength the Advisor assigned to that choice and the average strength it assigned to all
available choices. For RSWL, an Advisor supports a choice if its relative support for
that choice is positive, and opposes it if its relative support is negative.

How should one determine credits and penalties?
As in Figure 3, credits are given to heuristics that support positive training instances
and penalties are given to heuristics that support negative training instances. For both
DWL and RSWL, an Advisor’s weight is the averaged sum of the credits and penal-

Fig. 2. The extraction of positive and negative training instances from the trace of a successful
CSP search.

Learn Weights
Until termination of the learning phase

Identify learning problem p
Search (p, Avar, Aval )
If p is solved

for each training instance t from p
for each Advisor A such that s(A, t) > 0

when t is a positive training instance increase w(A) *reward*
when t is a negative training instance decrease w(A) *penalize*

else when full restart criteria are satisfied
 initialize all weights to 0.05

Fig. 3. Learning with random subsets of Advisors from A. The Search algorithm is defined in
Figure 1.

Digression

 Positive
 training
 instances

Negative
training
instances

value selections
 variable selections

Solution
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ties it receives, but the two weight-learning algorithms determine credits and penalties
differently.

DWL reinforces Advisors’ weights based on the size of the search tree and the size
of each digression. An Advisor that supports a positive training instance is rewarded
with a weight increment that depends upon the size of the search tree, relative to the
minimal size of the search tree in all previous problems. An Advisor that supports a
negative training instance is penalized in proportion to the number of search nodes in
the resultant digression. Small search trees indicate a good variable order, so the vari-
able-ordering Advisors that support positive training instances from a successful
small tree are highly rewarded. For value ordering, however, small search trees are
interpreted as an indication that the problem was relatively easy (i.e., any value selec-
tion would likely have led to a solution), and therefore result in only small weight
increment. In contrast, a successful but large search tree suggests that a problem was
relatively difficult, so those value-ordering Advisors that support positive training
instances in it receive substantial weight increments [13].

RSWL is more local in nature. With each training instance RSWL reinforces
weights based upon the distribution of each heuristic’s preferences across all the
available choices. RSWL reinforces weights based both upon relative support (de-
fined in Section 5) and upon an estimate of how difficult it is to make the correct
decision. For example, an Advisor that strongly singles out the correct decision in a
positive training instance receives more credit than a less-discriminating Advisor.

6. Experimental design

These learning algorithms are explored in experiments on four classes of randomly
generated CSPs. Three are model B classes: <50, 10, 0.38, 0.2>, <20, 30, 0.444, 0.5>
and <30, 8, 0.26, 0.34> (abbreviated henceforth as 50-10, 20-30, and 30-8, respec-
tively.) The fourth class, Comp, is a class of composed problems, where the central
component is model B with <22, 6, 0.6, 0.1>, linked to a single model B satellite with
<8, 6, 0.72, 0.45> by edges with density 0.115 and tightness 0.05. All four problem
classes are particularly difficult for their size (n and m). Some of these problems ap-
peared in the First International Constraint Solver Competition at CP-2005.

For ACE, a learning phase is a sequence of problems that it attempts to solve and
uses to learn Advisor weights. A testing phase is a sequence of fresh problems to be
solved with learning turned off. A run in ACE is a learning phase followed by a test-
ing phase. An experiment consists of 10 runs; all data reported here is averaged over
10 runs. Unless it was an experimental parameter, the step limit per problem during
learning was 100,000 for 50-10; 10,000 for 20-30; 2,000 for 30-8; and 1,000 for
Comp problems. Learning terminated after 30 problems, counting from the first
solved problem. The step limit per problem during testing was 100,000 for 50-10 and
20-30, and 10,000 for 30-8 and Comp problems. For each problem class, each testing
phase used the same 50 problems on every run.

In every learning phase, ACE had access to 42 tier-3 Advisors, 28 for variable se-
lection and 14 for value selection (described in the Appendix). Any differences cited
are statistically significant at the 95% confidence level.
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7. Techniques that improve learning

This section describes techniques that use both search performance and problem diffi-
culty to adapt learning. The impact of each technique on our adaptive solver is illus-
trated empirically.

7.1. Full restart

Repeated failure to solve problems can be taken as a reason to restart the entire
learning process. If one begins with a large initial list of heuristics that contains
minimizing and maximizing versions of many metrics, many of them perform poorly
on a particular class of problems (class-inappropriate heuristics) while others per-
form well (class-appropriate heuristics). (Note that duals may perform similarly. For
example, in Table 2, both min weighted degree and max weighted degrees are class-
appropriate for Comp.) On challenging problems, class-inappropriate heuristics occa-
sionally acquire high weights on an initial problem, and then control subsequent deci-
sions, so that either the problems go unsolved or the class-inappropriate heuristics
receive additional rewards.

Recall that DWL penalizes in proportion to digression size. As a result, when
class-inappropriate heuristics lead to a large digression, a large penalty reduces their
impact on decision making. Nonetheless, the learning described here requires that
problems be solved, potentially a very expensive process when class-inappropriate
heuristics dominate decision making. Recovery from such a situation is faster under
full restart [16]. Full restart monitors the number of unsolved problems under a rea-
sonably low step limit, and if failures are frequent, the current learning attempt is
deemed not promising, the responsible training problems are abandoned, and the
entire learning process restarts with freshly initialized weights.

Table 4 illustrates the performance of DWL on 30-8 problems, where the step limit
and full restart are treated as parameters. Learning succeeded with a 10,000-step limit,
but the total learning cost was high. Reducing the step limit to 2000 or 1000 resulted
in an inadequate run, one where weights performed poorly and testing performance

Table 4. The impact of a step limit and full restart on DWL’s performance on 30-8 problems.

Learning Testing

Step
limit

Full
restart

criterion
Number of
problems

Unsolved
problems Nodes

Total learn-
ing cost

Full
restarts Nodes Solved

10000 none 30.5 3.2 1165.2 35538.6 0.0 130.9 100.0%
2000 none 31.5 10.8 688.7 21695.3 0.0 707.3 94.6%
1000 none 31.5 8.9 334.7 10543.1 0.0 1,318.5 87.8%
2000 8 in 10 42.8 10.9 541.2 23165.1 0.8 130.3 100.0%
1000 8 in 10 41.1 10.2 309.0 12698.7 0.7 131.7 100.0%
500 8 in 10 41.1 12.3 194.6 8000.1 0.6 136.0 100.0%
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was unsatisfactory. With full restart, however, even a lower step limit did not have
such repercussions — there were no inadequate runs. Although more problems went
unsolved during learning under a lower step-limit, those failures were less expensive
and the total learning cost decreased. Nonetheless, full restart with a relatively low
step limit may demand many learning problems, which are not always available. In
the experiments that follow, ACE had recourse to full restart when it failed to solve 8
out of the 10 most recent problems. For brevity, the remaining experiments use
RSWL, which responds to full restart similarly.

7.2. Learning with random subsets

The interaction among heuristics can also serve as a filter during learning. Given an
initial set of heuristics that is large and inconsistent, many class-inappropriate heuris-
tics may combine to make bad choices, and thereby make it difficult to solve the
problem within a given step limit. Because only solved problems provide training
instances for weight learning, no learning can take place until some problem is solved.
Rather than consult all its Advisors at once, ACE can randomly select a new subset of
Advisors for each problem, consult them, make decisions based on their comments,
and update only their weights [17]. This method, learning with random subsets,
eventually uses a subset in which class-appropriate heuristics predominate and agree
on choices that solve a problem.

Figure 4 illustrates how the weights of several heuristics converged during learning
with random subsets. Here the problems were drawn from 50-10, and 70% of the
Advisors were randomly selected for each problem. Plateaus in weights correspond to
problems where the particular heuristic was not selected for the current random sub-
set. Although the weights learned from the first solved problem were not appropriate,
during subsequent learning, the class-appropriate heuristics had the opportunity to
participate, acquired high weights, and led future decisions. Gradually, ACE sepa-
rated the class-appropriate heuristics from the class-inappropriate ones. Observe that,
as learning progressed, weights stabilized.

In the experiments that follow, for each learning problem, a random number r in
[0.3, 0.7] was generated, and then r percent of the variable-ordering Advisors and r
percent of the value-ordering Advisors, were selected without replacement to make

Fig. 5. Weights of selected Advisors during learning over 30 problems in a single run.
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decisions during search on that problem.

7.3. Learning based on decision difficulty

Correct easy decisions are less significant for learning; it is correct difficult decisions
that are noteworthy. Thus it may be constructive to estimate the difficulty of each
decision the solver faces as if it were a fresh problem, and adjust Advisors’ weights
accordingly. Our rationale for this is that, on easy problems, any decision leads to a
solution. Credit for an easy decision effectively increases the weight of Advisors that
support it, but if the decision was made during search, those Advisors probably al-
ready had high weights.

The constrainedness parameter κ (kappa) has traditionally been used to identify
hard classes of problems [18]. For CSPs, κ depends upon n, d, m, and t, as defined in
Section 2:

€ 

κ =
n −1
2

d ⋅ logm (
1
1− t

)

For every search algorithm, and for fixed n and m, hard problem classes have κ close
to 1. Under one option, however, RSWL uses κ as a measure of subproblem difficulty
throughout search. In this case, RSWL rewards only an Advisor that supports the
decision in a positive training instance where κ on the problem in the corresponding
state is close to 1. Similarly, RSWL penalizes only an Advisor that supports the deci-
sion in a negative training instance where κ on the problem in the corresponding state
indicates that the subproblem was easy, making errors unacceptable.

Another, and far faster, way to gauge the difficulty of a decision is by the number
of choices available. For variable-selection Advisors, the number of available choices
is the number of unassigned variables. For value-selection Advisors, the number of
available choices is the dynamic domain size of the currently-selected variable. (This
number can depend upon the selected inference method.)

Table 5 illustrates that some assessment of problem difficulty can be important in

Table 5. A search decision can be viewed as a subproblem whose difficulty serves as input to
the RSWL weight-learning algorithm. A statistically significant improvement in search tree
size (in bold) occurs only on the 20-30 class.

20-30 50-10
Learning Testing Learning Testing

Algorithm Tasks
Full

restarts Nodes Solved Tasks
Full

restarts Nodes Solved

RSWL 32.9 0.1 3,768.4 100% 33.7 0.1 13,748.6 92.2%

RSWL with num-
ber of choices 34.6 0.2 2,286.1 100% 35.4 0.1 13,185.7 91.2%

RSWL with κ 35.1 0.1 2,022.7 100% 33.1 0.0 13,109.7 94.2%
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adaptive learning. We tested each of the two problem-difficulty strategies in turn. In
the second line, penalties were inversely proportional to the number of available
choices. In the third line, credits were given only on position training instances when
|κ-1| < 0.5, and penalties were assessed only on a negative training instance when
|κ-1| > 0.3. There was a statistically significant improvement only on the 20-30 class.
In the experiments that follow, RSWL’s penalties were based on decision difficulty,
as measured by the number of available choices.

7.4. Selecting heuristics based upon their learned weights

Learned weights can serve as a filter to select appropriate heuristics. Two benchmark
Advisors, one for value selection and one for variable selection, generate random
comments as a lower bound for performance. These benchmarks are excluded from
decision making, but used as a baseline to select heuristics for use after learning
weights. During testing ACE excludes from its learned mixture any Advisor whose
weight is lower than that of its respective benchmark. Further reduction to a pre-
specified number of the top-weighted Advisors can produce a significant speedup
during testing. Extensive reductions, however, typically result in a significant decline
in performance, as we show in our experiments [19].

Table 6 illustrates the impact of selecting heuristics for the testing phase based
upon weights learned by RSWL. Under ACE’s traditional approach, the benchmark
criterion typically eliminates about half the initial Advisors. (In the experiments per-
formed for this paper, 16 out of 28 variable-ordering Advisors and 6 out of 14 value-
ordering Advisors usually survived the benchmark criterion on any given run.) The
elimination of some surviving Advisors with the lowest weights had no impact on
search tree size during testing, but it did provide important reductions in computation
time. Since ACE avoids duplicate computations by caching, the computation time
required by an Advisor depends not only on its metric, but also on its commonalities
with other Advisors. Greater speedup occurred when more value-ordering Advisors
were eliminated, because their metrics tend to be more costly. With more extensive
reductions, however, search tree size eventually increased. Note that on the composed

Table 6. Testing with fewer Advisors. Average search tree size and percent of computational
time compared to the traditional (>bmk) approach, which uses every Advisor whose weight is
greater than the weight of its benchmark Advisor. Statistically significant differences are in
bold.

Comp 30-8 20-30 50-10
Var.
Adv.

Val.
Adv. Nodes Solved Time Nodes Time Nodes Time Nodes Solved Time

>bmk>bmk 327 97% 100% 121 100% 2,286 100% 13,186 91% 100%
8 4 407 95% 95% 124 90% 2,369 71% 13,390 93% 84%
8 2 492 94% 106% 124 68% 2,337 55% 13,014 93% 70%
4 4 755 91% 158% 141 94% 2,632 87% 13,069 94% 77%
4 2 661 92% 122% 141 69% 2,608 67% 13,168 94% 69%
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problems, the extensive increase in number of nodes eventually increases computation
time as well. In the experiments that follow, only 8 highly weighted variable Advisors
and 2 value Advisors were consulted during testing.

7.5. Combining heuristics’ preferences

The preferences expressed by heuristics can be used to make decisions during search.
The intuition here is that comparative nuances, as expressed by preferences, contain
more information than just what is “best.” Recall that each heuristic reflects an un-
derlying metric and returns a score for each possible choice. Comparative opinions
(here, heuristics’ preferences) can be exploited in a variety of ways that consider both
the scores returned by the metrics on which these heuristics rely and the distributions
of those scores across a set of possible choices. The simplest way to combine heuris-
tics’ preferences is to scale them into some common range. Mere ranking of these
scores, however, reflects only the preferences of one choice over another and ignores
the degree of metric difference. Interpolation not only considers the relative position
of choices, but also the actual differences between scores. Linear interpolation makes
strength differences proportional to the differences in scores; exponential interpola-
tion emphasizes the top-scoring choices more dramatically. The Borda methods were
inspired by an election method devised by Jean-Charles de Borda in the 1770s. They
emphasize the relative position of a choice among other choices, and attend to how
many choices share the same score. The variation used here sets strength equal to the
number of choices scored lower than this choice [19].

Table 7 illustrates the impact preference expressions have on learning. These final
experiments used all the techniques discussed here: reinforcement depended upon the
number of available choices, random subsets of heuristics were consulted for each
learning problem, full restarts were performed on unpromising learning attempts, and
during testing, ACE used only its eight highest-weighted variable-ordering Advisors
and two highest-weighted value-ordering Advisors. No one method to combine pref-
erences outperformed ranking on every problem class, but each was better on some
individual classes.

Table 7. Performance on different problem classes under a variety of selection regimes.
Statistically significant reductions in search tree size are in bold.

Comp 30-8 20-30 50-10
Nodes Solved Nodes Solved Nodes Solved Nodes Solved

Ranking 492.2 94.4% 124.4 100% 2,337.3 100% 13,014.4 93.20%
Exponential 615.6 92.4% 108.8 100% 2,145.9 100% 13,440.6 93.80%
Linear 696.1 92.4% 94.8 100% 2,295.6 100% 10,095.3 95.40%
Borda 255.7 97.6% 111.4 100% 2,494.1 100% 9,348.8 95.40%
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8. Conclusion and future work

ACE is a successful, adaptive solver. It learns to select a weighted mixture of heuris-
tics for a given problem class that produces search trees smaller than those from out-
standing individual heuristics in the CSP literature. ACE learns from its own search
performance, and from the accuracy, intensity, frequency and distribution of its heu-
ristics’ preferences. ACE adapts its decision making, its reinforcement policy, and its
heuristic selection mechanisms effectively.

Our current work extends on several fronts. Rather than rely on an endless set of
fresh problems, we plan to reuse unsolved problems and implement boosting with
little additional effort during learning [20]. A major focus is the automated selection
of good parameter settings for an individual class (including its step limit and full-
restart parameters), given [21]. Current work seeks to reduce the degree of random-
ness in random subset selection as learning progresses. Given the data in Table 7, the
ideal number of surviving Advisors clearly depends upon our willingness to trade
decision quality for speed during search. We also intend to extend our research to
classes containing both solvable and unsolvable problems, and to optimization prob-
lems. Finally, we plan to study this approach further in light of the factor analysis
evidence for strong correlations between CSP ordering heuristics [22].

Appendix

Two vertices with an edge between them are neighbors. Here, the degree of an edge is
the sum of the degrees of its endpoints, and the edge degree of a variable is the sum
of edge degrees of the edges on which it is incident.

Metrics for variable selection were static degree, dynamic domain size, FF2 [23],
dynamic degree, number of valued neighbors, ratio of dynamic domain size to dy-
namic degree, ratio of dynamic domain size to degree, number of acceptable con-
straint pairs, static and dynamic edge degree with preference for the higher or lower
degree endpoint, weighted degree, and ratio of dynamic domain size to weighted
degree [24]. Each metric produces two Advisors.

Metrics for value selection were number of value pairs for the selected variable
that include this value, and, for each potential value assignment: minimum resulting
domain size among neighbors, number of value pairs from neighbors to their neigh-
bors, number of values among neighbors of neighbors, neighbors’ domain size, a
weighted function of neighbors’ domain size, and the product of the neighbors’ do-
main sizes. Each metric produces two Advisors.
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