
The Interaction of Memory and Explicit Concepts in Learning*

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of The City University of New York
695 Park Avenue, New York, NY 10021

sehhc@cunyvm.cuny.edu

Abstract

The extent to which concepts, memory, and planning
are necessary to the simulation of intelligent behavior
is a fundamental philosophical issue in AI. An active
and productive segment of the research community has
taken the position that multiple low-level agents,
properly organized, can account for high-level
behavior. The empirical research relevant to this debate
with fully operational systems has thus far been
primarily on mobile robots that do simple tasks. This
paper recounts experiments with Hoyle, a system in a
cerebral, rather than a physical, domain. The program
learns to perform well and quickly, often outpacing its
human creators at two-person, perfect information
board games. Hoyle demonstrates that a surprising
amount of intelligent behavior can be treated as if it
were situation-determined, that often planning is
unnecessary, and that the memory required to support
this learning is minimal. The contribution of this
paper is its demonstration of how explicit, rather than
implicit, concept representation strengthens a reactive
system that learns, and reduces its reliance on memory.

Introduction

This paper is about the interaction among explicit
concept representation, memory requirements, and the
ability to learn. Learning, in this context, is defined as
the transformation of subsequent behavior by previous
experience. Learning during problem solving may
manifest itself as a change in the speed with which one
solves a problem, as a change in the path one takes to
a solution, or as a change in the solution at which one
arrives.

Although there is general agreement that an intelli-
gent artifact learns, there is less certainty about what is
required to learn. Clearly, by the definition of learning,
experience is necessary. Most would argue that
memory is also necessary for learning, although a
machine that rewired itself to incorporate new
knowledge, rather than recorded it in some “softer”

 * This work was supported in part by NSF 9001936
and PSC-CUNY 668287.

manner, would meet the criterion. The necessity for
concepts, reasoning, and planning in learning,
however, has recently come under careful scrutiny by
proponents of reactive systems.

The thesis of this paper is that reactive, hierarchical
systems can minimize deliberation, but that both
memory and explicitly represented concepts are
necessary if a program is to learn to perform
intelligently. The discussion focuses on a domain
previously cited as inhospitable for a reactive system:
two-person, perfect information board games (Kirsh,
1991). The paper demonstrates how reactive systems
that learn to play games can have unreasonable
memory requirements, and discusses concepts and their
role in cerebral tasks. Empirical evidence shows how
explicit concept representation can reduce memory
requirements and improve performance while
preserving the essential features of a reactive system:
refusal to plan, reluctance to search, and reliance on
low-level responses to achieve high-level goals.

The Control-Concept Controversy

One of the lessons of empirical AI is that general state
space search heuristics are weak methods, and that
power requires domain specialization. A program may
have the appropriate knowledge prespecified or may
learn it (Laird, Rosenbloom, & Newell, 1987; Minton,
1988; Mitchell et al., 1989). When search and learning
are not enough, many systems plan, i.e., reason about
possible actions and their outcomes before committing
to them.

Biology, however, offers many examples of seem-
ingly intelligent and planned behavior that can be ex-
plained as prespecified, i.e., “hard-wired.” Ants trans-
porting food cooperatively or young birds avoiding
precipices, it is said, do not reason about hunger or
danger, although their behavior simulates a creature
that does. Some researchers have extrapolated from this
to suggest that, in the simulation of intelligence,
planning, goals, and representation are unnecessary;
that when behavior is cast as reaction to environmental
stimulus, only appropriate control is required. Such
programs are called reactive systems.

Brooks has provided the following “representation-

free” description of a reactive system: “Low-level
simple activities can instill the Creature with reactions
to dangerous or important changes in its environ-
ment.… By having multiple parallel activities, and by
removing the idea of a central representation, there is
less chance that any given change in the class of
properties enjoyed by the world can cause total collapse
of the system.… Each layer of control can be thought
of as having its own implicit purpose.… The purpose
of the Creature is implicit in its higher-level purposes,
goals, or layers.” (Brooks, 1991)

Reactive systems are built from small components
called agents. Each agent has a simple task to
accomplish, for example, looking, feeling a force, or
moving forward. Each agent “decides” what to do by
processing input sensory data. The agent’s reaction is
its output. The entire program performs as a collection
of competing behaviors to which an observer may
impute motives and goals where none are ever
explicitly represented, i.e., reactive systems do not
deliberate (plan from concepts).

The coordination of these agents to effect such con-
trol is non-trivial. A layer is a subsystem of agents
that produces an activity, i.e., pursues some implicit
purpose. Experiments indicate that a hierarchical sub-
sumption architecture that coordinates its agents in
layers is the key to proper control for a reactive system
(Brooks, 1991; Connell, 1990). One Brooks robot, for
example, has a layer to avoid obstacles, another to
wander, and one to explore.

The simulation of intelligence in reactive systems is
purely a control issue, their proponents claim, without
any concern for representation or focus of attention. A
few robotic reactive systems have been able to learn
their own control strategy (Maes & Brooks, 1990;
Mahadevan & Connell, 1991).

Preliminary successes with robots have been pre-
dicted to scale up to any task because “there need be no
explicit representation of either the world or the in-
tentions of the system to generate intelligent behaviors
for a Creature” (Brooks, 1991). Kirsh, however, claims
that Brooks has worked only on situation-determined
behavior, i.e., problems where an egocentric perception
of the “indicators that matter” is sufficient to determine
the appropriate course of action. (Kirsh, 1991). He
characterizes cerebral tasks, the kinds of tasks on which
he believes a reactive system would fail: tasks that
involve other independent agents, that require planning,
that require an objective viewpoint, that require
problem solving. Between them they pose the control-
concept controversy: Should a program learn explicit
concepts that generalize experience, as in the traditional
AI paradigms, or should it learn control for a reactive
system? The remainder of this paper explores that issue
in a domain Kirsh predicts as too difficult for a reactive
system: game-playing.

Reactive Playing

An obvious reactive system to play a specific game
perfectly would construct one agent for each possible
game state, an agent that would output the perfect
move whenever it sensed a match with its state de-
scription. Challenging games, however, would require
far too many such agents. Thus, this ideal reactive sys-
tem must somehow be supplemented with knowledge.
The four reactive programs described below are goal-
free; all they do is sense patterns and respond to them.

Henri demonstrates how pure pattern recognition can
be insufficient for learning even a simple game in a
noise-free environment (Painter, 1992). For several
different games on a three-by-three board, Henri learns
values for three-symbol (X’s, O’s, and blanks) patterns
and applies those values to each of the eight possible
three-position lines on the board. Henri learns, for
example, that in tic-tac-toe the pattern “X-X-blank” is
more valuable than the pattern “blank-X-blank.”
Values are calculated by a primitive kind of
reinforcement learning based on contest outcome. On
its turn, Henri evaluates each possible legal move, and
selects one with the highest pattern score. Against a
programmed expert, after training in 200 tic-tac-toe
contests, Henri still loses 15% of the time, because of
inaccuracies in the pattern values. It is unclear how
long Henri would take to learn to play perfect tic-tac-
toe, or if it ever would.

N-N/Tree shows how pattern recognition plus search
can still fail to learn a simple game in a realistic
environment. This program uses temporal differences
to learn weights for a neural net that accepts nine-
position pattern input for games on a three-by-three
board (Flax et al., 1990). N-N/Tree is also permitted a
3-ply search. It plays against a programmed expert that
may err as often as 5% of the time. After 1000 tic-tac-
toe training contests, approximately 9000 training
examples, N-N/Tree still loses 8% of its contests.

Dooze suggests that learning only control, while
adequate, may require more memory than a machine
can offer. Dooze is a classifier system that learns to
play games on a three-by-three board (Esfahany, 1992).
Learning is the introduction and deletion of decision-
making rules, called classifiers, at the end of each
contest. Each classifier has the form “when the board
matches the following pattern, move to position i.” A
pattern describes each of the nine positions as an X, an
O, a blank, or a “don’t care” symbol. After 63
contests, on average, Dooze learns to play apparently
perfect tic-tac-toe. Its better performance may be
attributable, however, to its larger memory
requirements. There are 9.48 possible Dooze classifiers
for tic-tac-toe. The program must maintain a set of 150
of them, about 15%, to learn to play expertly. Many
of the learned classifiers are quite restrictive, i.e., entail
patterns that would apply to very few game states. For
five men’s morris, a relatively simple game with 10
markers and 16 positions, 15% of the possible
classifiers would be about 231 rules.

Morph highlights a possible learning tradeoff
between memory size and number of training experi-
ences required to learn. It learns patterns while playing
chess against a competent commercial program
(Levinson & Snyder, 1991). Morph is characterized as
a search-free and purely syntactic game player, i.e., one
that reacts only to patterns, without planning or
reasoning. A Morph pattern is a labeled graph that
describes how selected markers and positions on the
board relate to each other. Such a pattern is more
sophisticated and less specific than the ones used by
Dooze and N-N/Tree, and often applicable to more
game states. Given an appropriate, hand-crafted pattern
language, Morph’s methods can be applied to any
game. On tic-tac-toe, a Morph-like program learned to
play perfectly after approximately 250 contests and
learned approximately 50 patterns (Levinson, 1991).
The difference in learning rate and storage requirements
between this program and Dooze suggests a trade off
between memory size and number of training
experiences required to learn.

Careful analysis reveals that each of these
“representation-free” programs actually incorporates
concepts, generalizations about game playing under-
stood by the programmer and incorporated into the
code. Henri only uses knowledge about lines and how
positions lie on them in two-dimensional space; its
performance is also the weakest. N-N/Tree uses
knowledge about the minimax algorithm for search
control and how to apply it three-ply deep. Dooze’s
learning algorithms value the winning move highly,
value every move the expert model makes, and recog-
nize that good positions for X are good for O when the
markers are interchanged. This is a hefty dose of primi-
tive game-playing commonsense. Dooze’s don’t-care
symbols also support abstractions, such as “If X holds
the center, ….” Morph’s pattern language embeds ideas
like threat and defense in both the pattern learner and in
memory. In summary, although reactive game players
are possible, they rely on hidden knowledge to achieve
acceptable performance, and probably have some trade-
off between memory size and learning speed.

Concepts and their Representation

A concept is defined here as some recognized set of
regularities detected in some observed world.
Regularity means repeated occurrence and/or
consistency of use. In this context, a concept includes
not only the necessary and sufficient descriptions called
definitions, but also defaults, associations, and
expectations. Thus a concept may incorporate error,
bias, and inconsistency (Wierzbicka, 1985). From an
AI perspective, a concept is generalized domain
knowledge, a description of what has been encountered.
Although specific examples may be remembered, a
concept is not a set of instances but a summary of
experience.

 If a machine is constructed to meet a goal, either
implicit or explicit concept representation is necessary.
A cherry pitter, for example, implicitly references the
concept of a cherry as a small, round object containing
an even smaller object which can be extracted when
pressure is appropriately applied. Although the
architecture of a sufficiently elaborate machine, like a
robot, may obscure its concepts, they are present
implicitly, in circuitry and mechanical devices. Any
program claimed “representation-free” is characterized
here as a program with implicit concept representation.
In contrast, explicit concept representation offers
several benefits to a machine that learns: organization
of knowledge, focus of attention, and ability to discard
experience. Thus explicit concept representation
reduces the need for induction and deduction, as it
flexibly makes regularities immediately accessible.

People find it convenient to expect regularity in the
world, and they have many devices to represent the
regularities they detect. Four kinds of concepts, ways
that people generalize about regularities in their expe-
rience, are identified here. Compiled regularities, like
how to ride a bicycle, abbreviate a reliable response to
specific situations. Compiled knowledge is experienced
as reactive behavior; it has lost the detail, rationale,
and instructions that once accompanied it. When the
lost information is needed, reconstruction often requires
observation from fresh experience. Categories are sets
of objects with common features. For example, a chair
is a category and every chair, physical or hypothetical,
is an instance of the category, with specifically noted
values for some of its features. Scripts are regularities
about what is expected of an experience and those who
participate in it (Schank & Abelson, 1977). For
example, any visit to a restaurant is a walk through a
script, a partially ordered set of expectations for
everyone’s behavior there. Meta-principles are
regularities applicable to many different kinds of
experience, ones to fall back upon when more detailed
knowledge fails. Examples of meta-principles include
efficiency, safety, and propriety. The instantiation of a
meta-principle for a particular domain results in a
principle, behavioral guidance that may curtail search.
The application of efficiency, safety, and propriety to
driving a car, for example, would result in directives to
drive rapidly, to drive carefully, and to obey the driving
laws, respectively. Note the evident conflict among
these principles.

People behave appropriately and learn quickly in part
because they retrieve and apply these regularities, or
concepts, continually and effectively. There is ample
psychological and anthropological evidence that con-
cepts are both learned and culturally determined, and
that people prefer them to logical reasoning for any but
the simplest examples (D’Andrade, 1991). In any
culture, those judged experts are those who give more
modal responses, i.e., agree most with commonly held
regularities (D’Andrade, 1990). Thus an expert learns

compiled knowledge, categories, scripts, and princi-
ples, and knows when and how to apply them. Given
those regularities, learning and problem solving with
them may not be trivial, but it should be easier and
require less memory.

The Power of Concepts and Memory

Hoyle is a learning program that now equals or outper-
forms its human mentors at more than a dozen two-
person, perfect information board games. The
complexity of the program prevents a full technical
description in this abbreviated space; interested readers
are referred to (Epstein, 1992a, 1992b) for additional
detail. Hoyle explicitly represents, integrates, and
exploits each of the four kinds of concepts in its
memory, learning, and behavior. There is a script for
game playing that provides predefined, uniform, proce-
dural direction, so that the system performs as if it
were accustomed to playing games. There is a category
representation for games and another for useful knowl-
edge (knowledge that is possibly relevant and probably
correct) that may be acquired during play. Hoyle’s
compiled knowledge resides in its Learner, as pre-spec-
ified, uniform, game-independent heuristic procedures
to compute and selectively store useful knowledge.
Finally, Hoyle’s Advisors are principles, implemented
as heuristic agents and layered in a subsumption archi-
tecture. They accept current knowledge and make
comments on moves they favor or oppose.

Given a game, the Learner initiates a series of
tournaments against an expert model (Kirsh’s “other
agent”) that is only observed, never queried. Whenever
it is Hoyle’s turn to move, the Advisors comment
based upon the current state of their cerebral reality: the
game state, the legal moves, and any useful knowledge
about the game already acquired. Move selection is a
simple arithmetic calculation, part ordering and part
voting, that mediates among the Advisors’ disagreeing
comments. After contests and after tournaments, the
Learner’s algorithms compute and record useful
knowledge.

Hoyle is a reactive system for a cerebral task. The
Hoyle cycle is pause-sense-react, where “pause” cedes
control to the expert model, “sense” is the collection of
current information, and “react” is the collective
response of the agents to their input. Each Advisor is
an agent, a low-level intelligence that does not plan,
that merely senses the input data and responds to it
with output signals. The control mechanism is based
upon a hierarchical subsumption architecture. Each
move choice is a rapid and simplistic mathematical
computation, a reaction without search or deliberation.

Hoyle meets the postulated reactive system criteria
as follows. The low-level simple activities are its
quick reactions to short-term possibilities of success
and failure. The multiple parallel activities are its
Advisors, each of which processes sensory data

independently. When Hoyle’s world changes, with a
new game to play or new opposition to play against,
the program is robust and degrades gracefully. The
implicit purpose of each Advisor is to forward, in its
own particular way, the meta-principle it instantiates.
Hoyle can play legally with any subset of its Advisors.
The purpose implicit in its higher-level layers is to
learn to play perfectly, but there is no explicit
representation, in Hoyle’s game-playing algorithm or
in its control mechanism, of intention, belief, plan,
goal, subgoal, win, loss, or draw.

Figure 1 shows performance curves for several 20-
contest tic-tac-toe tournaments. The bottom line (#1)
is a reasonable lower bound for performance; it shows
how a program lost all but one contest in 20 when it
made random legal moves against a programmed
expert. The top line in Figure 1, for absolute expertise,
is a reasonable upper bound; it shows how a program
that made perfect moves achieved repeated draws
against a programmed expert. Once a program learns to
play perfectly, its performance curve should parallel
that for absolute expertise indefinitely.

Hoyle’s useful knowledge is a compendium of the
regularities expert game players look for and exploit. A
significant state is an inevitable win or loss when both
participants play expertly. Such a state is a deduced,
compiled regularity computed by the Learner at the end
of a contest and stored in memory. The regularity
captured by a significant state is that every time it
occurs the outcome when two experts play is in-
evitable, not that it is an abstraction of a game state. A
significant state may either be treated as a concept
(used in computation) or treated as a reflex action
(turned toward or avoided). Retrieval of significant
states is from a hash table, and is assumed to require
no search. Besides significant states, useful knowledge
includes selected contest histories, moves experts have
made that may have served them well, whether or not
it is an advantage to go first, the length of the average
contest, data gathered on the relevance and reliability of
individual Advisors, and relevant forks, game-indepen-
dent concepts whose instantiation with the current
game state can provide powerful offensive and defen-
sive advice (Epstein, 1990). The memory requirement

Tic-tac-toe

J
J

J
J

J
J

J
J

J
JJ

JJ
J

J
JJ

JJ
J

J

HHHHHH
HHHHHHHH

HHH
HHHH0

5

10

15

20

0 5 10 15 20
Cumulative Number of Contests Played

Absolute
Expertise

J #4

#3

H #2

#1

Figure 1. Cumulative non-losses in tic-tac-toe.
for learning a game is essentially a function of the
number of significant states and expert moves.

At present Hoyle plays correctly (has the rules for)
24 games gathered from almost as many cultures (Bell,
1969; Zaslavsky, 1982). Hoyle’s task is to learn to
play each game expertly. Although none of the games
is as difficult as checkers or chess, they incorporate a
variety of challenges: boards of varying shapes and
sizes, stages where the rules change, cycles, and very
large search spaces. One of the games it learns to play
expertly is Qubic, which has more than a billion game
states and is generally acknowledged to lie on the
border between simple games and the difficult ones.

The performance of the full version of Hoyle at tic-
tac-toe against a programmed expert is shown as curve
#4 in Figure 1. In 11 contests, Hoyle learned to play
perfectly, and stored an average of 3 significant states
and 4 expert moves. Compare this with Dooze’s 63
contests and 150 rules, and the Morph-like 250
contests and 50 patterns.

Are Hoyle’s concepts or its memory responsible for
its ability? Elimination of all concepts from Hoyle
would deprive it of its game-playing algorithm, and
make it unable to play at all. Less radically, if all the
Advisors and all learning were removed, Hoyle would
make random moves and would play no better than
curve #1 in Figure 1. An interesting reactive version of
Hoyle with severe concept restrictions learns responses
to game states but uses them only in one way. This
concept-poor version of Hoyle is a flawless imitator;
the Advisors react to the input knowledge but do not
perform simple calculations from past experience. This
version restricts learned useful knowledge to detailed
recollection of the contests it has played and of
significant states as reflexes, not as concepts; that way
it is permitted only performance repetition, rather than
simple computation, with its knowledge. The concept-
poor version recognizes previously encountered certain
wins and losses, imitates moves the expert made in the
identical situation, and tries to avoid reproducing its
own failing moves in an identical situation. The per-
formance of this concept-poor version against a pro-
grammed expert is shown as curve #2 in Figure 1. The
partially-disabled Advisors immediately learn and rec-
ommend the successful openings of the human partici-
pant, but find the play later in a contest more difficult.
In this tournament Hoyle loaded up its memory while
it very gradually learned to avoid losing moves, as if it
were building the obvious one-agent-per-state reactive
system. Although theoretically Hoyle could learn
about all possible states by backing up such experi-
ence, Figure 1 shows that this memory-greedy process
is also slow.

A memory-free but concept-dependent version of
Hoyle is analogous to an intelligent participant that
played every contest at the same game as if it were the
first. To explore whether the Advisors that apply
useful knowledge really need memory to learn to play
expertly, Hoyle played a tournament against a human
expert (#3 in Figure 1), this time only with those

Advisors omitted from the concept-poor version and
without memory. Now the program could rely only on
its concepts. After a few contests, a human opponent
unaware that Hoyle lacked memory tried a simple
strategy for X that defeated the program, one the
memory-free version could not learn to avoid. On a
hunch the person repeated the same strategy and
immediately observed that Hoyle did not learn from its
mistakes. (This accounts for the step-like pattern of
#3; Hoyle played perfectly in the alternate contests.)
Thus the program without memory plays reasonably
intelligent contests, but performs unintelligently in a
tournament situation. Learning requires memory, and
without memory Hoyle never would develop expertise.
In all of the games, except the very easiest, it has been
repeatedly observed that Hoyle’s power derives from
this synergy between memory and concepts.

Thus far, Hoyle has learned to play as well or better
than each of its 14 game-specific external experts,
without planning and with only minimal search. When
Hoyle has had difficulty learning a new game, its
useful knowledge has been very gradually extended to
include new concepts and the low-level agents to apply
them. This gradual debugging process is much like
Brooks’ robot-control layering: “so far, so good”
(Brooks, 1991).

Conclusions

In a domain that is not situation-determined, Hoyle is a
successful, reactive, hierarchical system that retains
only a small fraction of what it experiences. The
program pays an interesting price for its reactivity,
however: it must rely on concepts to learn to perform
intelligently. Hoyle offers evidence that learning
cerebral tasks demands more explicit concepts than
Brooks would like, and far fewer than Kirsh would
assume. Hoyle may not resolve the control-concept
controversy, but it should certainly influence our
attitude on the significance of low-level agents in high-
level tasks.

Four other reactive game playing programs have
been shown here to employ concepts implicitly. Their
pattern generalizations, however, are tailored to a
single set of board-specific algorithms, and their
memory requirements grow dramatically with the
number of positions on the board. Hoyle outperforms
these programs, this paper has argued, because it
explicitly represents and exploits its concepts.

Hoyle’s concepts organize the way it remembers
experience, focus its attention on what is important to
learn, force it to apply its experience, and permit it to
discard experience that is judged unlikely to be useful.
As a result it learns with smaller memory requirements
and applies its compact useful knowledge more
flexibly. Although Hoyle is reactive, the full version
of the program incorporates and remembers concepts:
knowledge about the regularities that people learn,

prefer, and exploit when playing games, and how
people use those regularities. When the program is
partially disabled and the results observed, it is clear
that the synergy between memory and concept
application provides the program with its power.

Hoyle’s ability to learn with only 15 relatively sim-
ple Advisors suggests that more high-level behavior is
available through low-level reactive processes than one
might initially suspect. As the games become more
difficult, new concepts are necessary to support per-
formance. Learning high-level behavior efficiently with
a limited memory requires concepts. After a recent im-
provement that provided symmetry discovery, Hoyle
learned faster and required less memory. Low-level
sensory data can offer an immediate improvement in
high-level processing.

For the time being, several tasks have been relegated
to the human system designer: the framework of the
categories for game definition and useful knowledge,
the correct identification of the culturally determined
meta-principles (characterized as “commonsense” but
by no means trivial), the instantiation of the meta-
principles to construct low-level agents, the assign-
ment of Advisors to tiers based upon knowledge about
relations among meta-principles, the specification of
which Advisors access which concepts, and the descrip-
tion of how they apply that knowledge. This author
believes that all of these can eventually be automated.
Work continues on the specified sequence of games; for
the moment search during play is limited to two-ply
and there is no planning.

Hoyle’s results demonstrate for at least one broad
cerebral task, game playing, that a reactive system
without memory is impractical, and that reliance only
on extensive, detailed memory is brittle and often im-
possible. This paper has shown how concepts can
structure resource-efficient memory, provide flexibility,
and regularize knowledge to support performance. Will
a reactive program ever, then, have to search and plan
and believe? Hoyle’s answer is not yet, perhaps not
explicitly, and far less than we ever expected.

Acknowledgments
The author thanks Jack Gelfand, Alice Greenwood,
Cullen Shaeffer, and Rick Shweder for their insightful
comments and suggestions.

References

Bell, R.C. 1969. Board and Table Games from Many
Civilizations. London: Oxford University.

Brooks, R.A. 1991. Intelligence without Represen-
tation. Artificial Intelligence 47: 139-160.

Connell, J. 1990. Minimalist Mobile Robotics. New
York: Academic Press.

D'Andrade, R.G. 1990. Some Propositions about the
Relations between Culture and Human Cognition. In
Cultural Psychology, ed. J.W. Stigler, R.A. Shweder
& G. Herdt. Cambridge: Cambridge University Press.

D'Andrade, R.G. 1991. Culturally Based Reasoning. In
Cognition and Social Worlds, ed. A. Gellatly and D.
Rogers. Oxford: Clarendon Press.

Epstein, S.L. 1990. Learning Plans for Competitive
Domains. Proc. 7th International Conference on
Machine Learning, 190-197. Morgan Kaufmann.

Epstein, S.L. 1992a. Hard Questions about Easy
Tasks. In Computational Learning Theory and Natural
Learning Systems: Constraints and Prospects,
Cambridge, MA: MIT Press. Forthcoming.

Epstein, S.L. 1992b. Prior Knowledge Strengthens
Learning to Control Search in Weak Theory
Domains. International Journal of Intelligent
Systems. Forthcoming.

Esfahany, K. 1992. A Pattern Classifier that Learns to
Play Games. In preparation.

Flax, M.G., Gelfand, J.J., Lane, S.H. & Handelman,
D.A. 1990. Integrating Neural Network and Tree
Search Approaches to Produce an Auto-Supervised
System that Learns to Play Games. In Proceedings of
the 1992 International Joint Conference on Neural
Networks, Beijing. Forthcoming.

Kirsh, D. 1991. Today, the Earwig, Tomorrow Man?
Artificial Intelligence 47: 161-184.

Laird, J. E., Rosenbloom, P. S. and Newell, A. 1987.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33: 1-64.

Levinson, R. 1991. Personal communication.
Levinson, R. & Snyder, R. 1991. Adaptive Pattern-
Oriented Chess. In Proceedings of the Eighth
International Machine Learning Workshop, 85-89.
San Mateo, CA: Morgan Kaufmann.

Maes, P. and Brooks, R.A. 1990. Learning to
Coordinate Behaviors. In Proceedings of the Eighth
National Conference on AI, 796-802. AAAI Press.

Mahadevan, S. and Connell, J. 1991. Scaling
Reinforcement Learning to Robotics by Exploiting
the Subsumption Architecture. In Proceedings of the
Eighth International Machine Learning Workshop,
328-332. San Mateo: Morgan Kaufmann.

Minton, S. 1988. Learning Search Control
Knowledge. Boston: Kluwer Academic.

Mitchell, T., et al. 1990. Theo: A Framework for Self-
Improving Systems. In Architectures for Intelligence,
ed. K. Vanlehn. Boston: Erlbaum.

Painter, J. 1992. Pattern Recognition for Decision
Making in a Competitive Environment. Master's
thesis, Dept. of Computer Science, Hunter College.
In preparation.

Schank, R. and Abelson, R. 1977. Scripts, Plans,
Goals, and Understanding: An Inquiry into Human
Knowledge Structures. Hillsdale, NJ: Erlbaum.

Wierzbicka, A. 1985. Lexicography and Conceptual
Analysis. Ann Arbor, MI: Karoma Publishers.

Zaslavsky, C. 1982. Tic Tac Toe and Other Three-in-a-
Row Games. Crowell.

