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Abstract 
Reported properties of human decision-making under time 
pressure are used to refine a hybrid, hierarchical reasoner. The 
resultant system is used to explore the relationships among re-
activity, heuristic reasoning, situation-based behavior, search, 
and learning. The program first has the opportunity to react 
correctly. If no ready reaction is computed, the reasoner acti-
vates a set of time-limited search procedures. If any one of 
them succeeds, it produces a sequence of actions to be exe-
cuted. If they fail to produce a response, the reasoner resorts 
to collaboration among a set of heuristic rationales. A time-
limited maze-exploration task is posed where traditional AI 
techniques fail, but this hybrid reasoner succeeds. In a series 
of experiments, the hybrid is shown to be both effective and 
efficient. The data also show how correct reaction, time-lim-
ited search with reactive trigger, heuristic reasoning, and 
learning each play an important role in problem solving. Re-
activity is demonstrably enhanced by brief, situation-based, 
intelligent searches to generate solution fragments.  

1. Introduction 
When confronted with a difficult problem and a limited 
amount of time to decide upon an action, people employ a 
variety of devices to make what they hope will be expert 
decisions. Some of this behavior is automatic; perceptions 
about the current state of the world may trigger a response 
without conscious reasoning. AI researchers model such au-
tomaticity with reactive systems. Other portions of this be-
havior are heuristic; an approximately correct decision rule 
is selected and applied. AI researchers model such “rules of 
thumb” with rule-based systems. There is, however, another 
important mechanism people use. Situation-based behavior 
is the serial testing through search of known, triggered tech-
niques for problem solving in a domain. This paper de-
scribes a cognitive model that integrates situation-based be-
havior with reactivity, heuristic reasoning, and learning. The 
contributions of this work are the model and empirical evi-
dence from it that situation-based behavior is an effective 
method for decision-making under time pressure. 

 Situation-based behavior is based upon psychologists’ 
reports about human experts in resource-limited situations 
(Klein & Calderwood, 1991). For example, an emergency 
rescue team is called to the scene of an attempted suicide, 
where a person dangles from a sign after jumping from a 
highway overpass. Time is limited and the person is semi-
conscious. During debriefing after a successful rescue, the 
commander of the team describes how they immediately se-
cured the semiconscious woman’s arms and legs, but then 
needed to lift her to safety. He retrieved, instantiated, and 
mentally tested four devices that could hold her while the 

team lifted, one device at a time. When a device failed in his 
mental simulation, he ran the next. When the fourth scenario 
ran several times in simulation without an apparent flaw, he 
began to execute it in the real world. Klein and Calderwood 
describe the predominance of this situation-based behavior 
in 32 such incidents, and cite additional evidence from stud-
ies of other decision-makers under time pressure. Its key 
features, for the purposes of this discussion, are that a situa-
tion triggers a set of procedural responses, not solutions, and 
that those responses are not tested in parallel. 

The purpose of this paper is not to argue that situation-
based behavior is the only way to reason and search, but to 
explore its role with respect to learning and reactivity and 
heuristic reasoning under time limitations. The next section 
describes the integration of situation-based behavior into a 
problem solving and learning model called FORR. Subse-
quent sections detail the problem domain, describe an im-
plementation for path finding, discuss the experimental re-
sults, and relate situation-based behavior to other work.  

2. FORR: the Model 
The problem solvers Klein and Calderwood studied did not 
have the leisure to research similar situations or to explore 
many alternatives. They had to decide quickly. Reactive 
systems are intended to sense the world around them and re-
spond with a quick computation (Brooks, 1991; Maes & 
Brooks, 1990). They iterate a “sense-compute-execute” loop 
where the sensing is predetermined and the heuristic compu-
tation is either hardwired or extremely rapid. In most com-
plex dynamic problems, however, a simulation of intelli-
gence is strengthened by learning. In the spirit of reactivity, 
such learning should be quick to do and easy to apply in 
subsequent loop iterations. The model described in this sec-
tion supports the development of such a reactive reasoner. 

FORR (FOr the Right Reasons) models the transition 
from general expertise to specific expertise (Epstein, 1994). 
A FORR-based system begins with a domain of related 
problem classes, such as board games or mazes, and some 
domain-specific but problem-class-independent knowledge, 
such as “do not set the other contestant up for a win” or 
“avoid dead-ends.” With problem solving experience, such 
as contests played or trips from one maze location to an-
other, a FORR-based program acquires useful knowledge, 
problem-class-specific data that is potentially useful and 
probably correct. Useful knowledge, such as good game 
openings or shortcuts in a particular maze from one vicinity 
to the next, should enhance the performance of a FORR-
based system.  



This paper appeared in 1995 in The Proceedings of the Seventeenth Annual Cognitive Science Conference, 568-573. 
Pittsburgh: Lawrence Earlbaum Associates. 
 

FORR integrates reactivity, situation-based behavior, and 
heuristic reasoning in the three-tiered hierarchical model 
shown in Figure 1. Tier 1 is reactive and correct, tier 1.5 is 
situation-based search, and tier 2 is reactive and heuristic. 
An Advisor epitomizes a domain-specific but problem-class-
independent, decision-making ra tionale, such as “minimize 
the other contestant’s material” or “get closer to your desti-
nation.” Each Advisor is a “right reason” for decision-mak-
ing in the domain, implemented as a time-limited procedure. 
Input to each Advisor is the current state of the world, the 
current permissible actions from that state, and any learned 
useful knowledge about the problem class under considera-
tion. Each Advisor outputs any number of comments that 
support or discourage permissible actions. A comment lists 
the Advisor’s name, the action commented upon, and a 
strength, an integer from 0 to 10 that measures the intensity 
and direction of the Advisor’s opinion.  

FORR addresses a problem as a sequence of decisions to 
be made. At decision-making time, a FORR-based system 
senses the current state of the world and reacts with a 
rapidly-computed decision. The calculation for that decision 
begins in the first tier, where Advisors are consulted in a 
predetermined, fixed order. They may have the authority to 
make a decision unilaterally or to eliminate a legal action 
from any further consideration. First-tier Advisors are reac-
tive, consulted in sequence, and reference only correct use-
ful knowledge. They “sense” the current state of the world 
and what they know about the problem class; if they make a 
decision, it is fast and correct. The commander had a first-
tier Advisor which insisted that the victim’s limbs be se-
cured. A good first-tier Advisor for game playing is “if you 
see a winning move, take it;” a good one for maze-travers-
ing is “if you see the goal, go to it.” Only when the first tier 
of a FORR-based system fails to make a decision does con-
trol default to the next tier.  

Second-tier Advisors, in contrast, are not necessarily in-
dependent, or even correct in the full context of the state 
space. Each of them epitomizes a heuristic, specialized view 
of reality that is a reasonable argument for or against one or 
more actions. Second-tier Advisors are reactive too, but far 
less trustworthy, because neither their reasoning process nor 
the useful knowledge on which they rely is guaranteed cor-
rect. All the second-tier Advisors have an opportunity to 
comment before any decision is made. The decision they 
compute is the action with the highest total strength; this 
represents a consensus of their opinions. A good second-tier 
Advisor for game playing is “maximize the number of your 
pieces on the board and minimize those of the other contes-
tant;” a good one for maze-traversing is “move in the direc-
tion of the goal.” There is evidence in the literature that 
people approach complex tasks as if they had such Advisors 
(Biswas, Goldman, Fisher, Bhuva, & Glewwe, 1995; 
Ratterman & Epstein, 1995), but for the rescue situation, 
second-tier Advisors may be too slow and too risky. 

Situation-based behavior has recently been incorporated 
into FORR with tier 1.5. A tier-1.5 Advisor temporarily di-
gresses from the “sense-compute-execute” loop when it rec-
ognizes a situation in which its knowledge may have sub-
stantial impact. Each tier-1.5 Advisor has a reactive trigger 
to recognize that the current situation may benefit from its 

solution method, just as the need to hoist was a trigger for 
each of the rescue team’s holding devices. Each also has a 
knowledge-intensive, highly-constrained search procedure 
to construct a solution fragment, a sequence of decisions 
rather than a single reactive one. If the first tier has failed to 
make a decision, each of the prioritized Advisors of tier 1.5 
has the opportunity in turn to trigger, and each triggered 
Advisor is ceded control until one of them produces a solu-
tion fragment. Tier-1.5 Advisors execute decisions in the ac-
tual problem space as they attempt to construct a solution 
fragment. Regardless of its outcome, the first returned solu-
tion fragment is incorporated into the solution under con-
struction, and control is returned to tier 1. If no tier-1.5 Ad-
visor produces a sequence of recommended steps, the sec-
ond tier will make the decision. The effectiveness of situa-
tion-based Advisors and their role in reasoning is best 
demonstrated with an example.  

3. Ariadne: an Implementation 
Ariadne is a FORR-based system for simulated robot path-
finding. (Ariadne, daughter of King Minos, helped Theseus 
find his way through the labyrinth.) Ariadne models learn-
ing the way around a complex geographic area through a se-
ries of trips there. A problem class for Ariadne is a particu-
lar maze, and learning occurs as a result of repeated path 
finding in the same maze. Ariadne’s task is to move a robot 
from some initial location to the stationary goal in a se-
quence of legal moves. The robot, however, is severely re-
stricted. It has no explicit map and it is not permitted to 
construct one. It senses where it is and where it can go in 
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Figure 1: How FORR makes decisions. 
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one step, decides which step to take, and “leaps” there with-
out collecting data on the way.  

A state in Ariadne is a maze containing the robot and the 
goal. Figure 2 represents a sample state in a 20 × 20 rectan-
gular grid with discrete internal obstructions. A location 
(r, c) in a maze is the position in the rth row and c th col-
umn, addressed as if it were an array. The robot is at (18, 6) 
and the goal at (5, 14) in Figure 2. At any instant in time, 
the state of the world is described to Ariadne as the 
dimensions of the maze, the coordinates of the goal, the 
robot’s coordinates, the path it has thus far traversed, and 
how far the robot can “see” in four directions to the nearest 
obstruction or to the goal. At each step the robot is 
permitted to move through any number of unobstructed 
locations in one (north, south, east, or west) direction. The 
robot in Figure 2 has 8 legal moves: north to (17, 6), east to 
(18, 7), (18, 8), (18, 9), and (18, 10), south to (19, 6) and 
(20, 6), and west to (18, 5).  

A problem in Ariadne is an initial location R for the robot 
and a location G for the goal. A problem is solvable if and 
only if there exists some path, consisting only of legal 
moves, from R to G, i.e., through only unobstructed loca-
tions. The level of difficulty of a solvable problem is one 
more than the minimum number of (left or right) turns the 
robot must make to reach the goal. Note that this is different 
from the Manhattan distance (as measured in grid units) 
from the robot to the goal. Figure 2 is a level 11 problem; 
one solution for it has Manhattan distance 29. 

It is important to note that the robot is not given, and does 
not construct, an explicit, detailed map of the maze. Ariadne 
does, however, learn descriptive abstractions about the maze 
as useful knowledge: gates, dead-ends, and chambers. A 
gate is a location that offers a transition from one quadrant 
of the maze to another, for example, (11, 3) is a gate be-
tween quadrants 3 and 2 in Figure 2. Of course, a gate may 
not always be helpful; (11, 3) offers access to little of quad-
rant 2. After each decision, Ariadne tests whether its last 
move has changed its quadrant, that is, if it has moved 
through a gate. If so, the robot’s current location is learned 
as a gate between the current quadrant and the previous one. 
A corridor is a passageway of width one that either leads 
nowhere (a dead-end) or is a hallway. In Figure 2 {(14, 1), 
(15, 1), (16, 1)} is a dead-end and {(5, 15), (5, 16), (6, 16), 
(6, 17)} is a hallway that zigzags. A corridor is learned as a 
pair of endpoints when, from the current state, the robot has 
only one or two moves. Corridors are enlarged and merged 
together as necessary. A chamber is an irregularly shaped 
space with an access point and an approximate extent, the 
furthest in each direction one can go in the chamber. This is 
a compact, heuristic description that at worst overstates the 
chamber by a bounding rectangle. Figure 2’s robot is in a 
chamber with access point (16, 5) and extent 16 north, 10 
east, 20 south, and 4 west. The access point of a chamber is 
a location within the chamber that affords a view outside it. 
For example, from (16, 5) the robot can see east beyond its 
extent to (16, 3). All locations reachable from the robot re-
ally constitute one large chamber, but the chambers that 
Ariadne learns are more limited and room-like. When Ari-
adne is not making good progress and the decision cycle 
reaches tier 1.5, an Advisor may call a search procedure that 

scans vertically and horizontally from the robot’s current 
position to estimate the extent of the current chamber. A 
chamber is represented as an extent-access-point pair and 
stored on a list. A new chamber may subsume an old one, in 
which case it replaces it on the list. Otherwise, chambers are 
not merged, and they may overlap or have more than one 
access point. 

Ariadne has 17 Advisors, listed in Table 1, with tiers 1 
and 1.5 in order of their relative priority. Descriptions of the 
triggers for the tier-1.5 Advisors are italicized. For example, 
Roundabout triggers when the robot is in the same row or 
column as the goal but it cannot see it because of an ob-
struction. Roundabout attempts to shift over and then go 
around the wall between it and the goal. If, for example, the 
robot of Figure 2 were at (5, 18), Roundabout would take it 
to (6, 18), (6, 17), and (6, 16) before stopping at (5, 16) 
where the goal is in sight. Note that Roundabout, like any 
tier-1.5 Advisor, is time-limited and heuristic. It may fail, or 
it may only get closer to the goal than it had been, without 
actually bringing the goal in sight.  

Ariadne’s tier-2 Advisors embody path-finding common-
sense and do no forward search at all in the problem space. 
Chamberlain, for example, encourages moves to the entry 
point of a dead-end or a chamber whose extent indicates that 
the goal might lie within, and discourages moves to any 
other entry points. (Although Chamberlain’s comments are 
based upon heuristic extents, it never permanently prevents 
a solution, because the other Advisors may eventually over-
ride it with their own comments.) Note that Chamberlain, 
unlike Outta Here, is not permitted to search. The simple 
ideas behind the tier-2 Advisors support rapid computation. 
FORR signals (but continues to calculate) if any Advisor 
runs out of time, and that has yet to happen with Ariadne. 

Ariadne is implemented as a set of Common Lisp routines 
that run with FORR. To create a problem class, the user 

 Quadrant 2 Quadrant 1 

 
Quadrant 3 Quadrant 4 

 
Figure 2: An Ariadne problem. The robot must move to the 
goal in unidirectional steps through unobstructed locations.  
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specifies the dimensions of the maze, the level of problem 
difficulty, and the percentage of internal obstruction. Further 
technical details are available in (Epstein, 
1995) . 

4. Experimental Results 
The performance of six reasoning agents was tested: the full 
version of Ariadne and five ablated versions that measure 
the contribution of Ariadne’s various components. The Ran-
dom agent selects random legal moves; this is equivalent to 
blind search. The Reactive agent learns, but uses only the 
Advisors in tier 1; it simulates correct reactive response. 
The Reactive+ agent learns, but uses only the Advisors in 
tiers 1 and 1.5; it simulates reactive decision making with 
situation-based behavior but without heuristic reasoning. 
The Reactive-Heuristic agent learns, but uses only the 
Advisors in tiers 1 and 2; it simulates reactive decision mak-
ing without situation-based behavior. No-Learning includes 
only the Advisors in any tier that do not consult learned 
useful knowledge (those starred in Table 1). The FORR 
agent uses all the Advisors in Table 1; this simulates 

reactive decision making and learning with situation-based 
behavior. Agents were eliminated from testing after poor 
performance. During early trials the Random agent, solved 
only 12% of 100 level 6 problems; it therefore served 
merely as a benchmark. 

A run for a fixed, randomly-generated maze is 10 learning 
problems given to the full version of Ariadne, followed by 5 
newly-generated testing problems in the same maze given to 
the agents with learning turned off. A problem of either kind 
was terminated when the agent reached the goal or when it 
had made 100 passes through Figure 1. Learning problems 
were provided only to establish a useful knowledge base for 
those Advisors that depend upon it. (Those Advisors are 
starred in Table 1.) Because FORR is non-deterministic and 
the mazes and problems are generated at random within the 
specified constraints, results from 10 runs were averaged to 
produce an experiment. An experiment was performed for 
problems with levels of difficulty 6, 8, 10, and 12 in a 
20 × 20 maze with 30% internal obstruction. These parame-
ters were selected to provide at least 1000 possible problems 
at the specified level of difficulty. Any agent that performed 
badly was omitted from more difficult experiments. 

Table 2 reports the results. “Solved” is the percentage of 
the test problems the agent could solve with at most 100 
moves in the same maze. “Path length” is the Manhattan 
distance along the solution to the goal. Since a step may 
move through more than one location, path length varies 
among problems of the same difficulty. “Moves” is the 
number of moves in the solution. The number of distinct lo-
cations actually visited during those moves is reported as 
“locations.” “Triggers” measures the reliance of the system 
on tier 1.5; it is the number of passes through Figure 1 dur-
ing which any situation-based Advisor executed. Path 
length, moves, and locations are computed only over solved 
problems. (This makes the ablated agents look somewhat 
better than they actually are.) “BFS%” is the percentage of 
the space reachable from the robot’s initial position that 
breadth-first search would have visited on the same test 
problems. Time pressure can be applied to a solution two 
ways: either as the path length (since computation time 
would be much faster than travel time), or as the number of 
passes through Figure 1 (based purely on computation 
time). 

As the problems become more difficult, the ability of the 
ablated agents to solve the problems becomes markedly in-
ferior, and the situation-based Advisors trigger more often. 
The Reactive-Heuristic agent, FORR’s original formulation, 
draws the robot to fewer locations and constructs shorter 
paths than Reactive+ on the simpler problems, but solves 
fewer difficult ones. Although situation-based Advisors 
make some contribution when combined with tier 1, 
Reactive+ is clearly inadequate on the more difficult 
problems. The situation-based Advisors trigger more often 
with Reactive+ than with the full FORR agent because most 
of them recognize repetitive action, and Reactive+ 
frequently behaves repetitively.  

The full FORR agent is clearly more powerful than the 
ablated ones. FORR with tier-1.5 offers a measure of relia-
bility and achievement the other versions lack. The number 
of successes by the full FORR agent represents a statis-

Table 1: Ariadne’s Advisors for path finding. Starred 
Advisors reference useful knowledge.  

 
Name Description 

Tier 1  
No Way* Do not enter a goal-free dead-end. 
Victory Move to the goal if it is in sight. 

Tier 1.5  
Roundabout Move around the wall if already in the 

right row or column. 
Outta Here* Exit a goal-free dead-end or chamber or a 

small geographical area. 
Probe* Exit a chamber if recently locally 

constrained. 
Super-Quadro* Exit a quadrant if recently locally 

constrained. 
Wander Take very large steps L-shaped steps if 

recently locally constrained. 

Tier 2  
Been There Avoid return to a previous location. 
Chamberlain* Avoid or encourage entrances to dead-ends 

and chambers based upon their extent. 
Done That Avoid repetition of a move in the same 

direction as one already taken from a 
previous location. 

Giant Step Make the longest possible move in some 
direction. 

Goal Row Move to the same row as the goal. 
Goal Column Move to the same column as the goal. 
Mr. Rogers Move as close to the goal as possible. 
Opening* Begin the way a previous successful path 

did. 
Plod Move one location in some direction. 
Quadro* Move from one quadrant to another 

through known gates. 
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tically significant improvement over the others. Although 
this work was predicated on the acceptability of suboptimal 
solutions, the successful paths of the ablated agents are ex-

tremely long. With all of FORR’s tiers in place, Ariadne 
gets the robot to the goal more often, more quickly, and 
considers fewer alternatives along the way.   

5. Search and Learning 
This domain is not amenable to traditional AI search tech-
niques. Depth-first search requires elaborate backtracking 
and loop prevention to calculate any solution; very few, if 
any, of the test problems would be solvable in 100 steps this 
way. Breadth-first search, while it will always solve the 
problem, does so at the cost of visiting a high proportion of 
the nodes ever accessible to the robot from its starting loca-
tion in the search space. AI searches are often steered by an 
evaluation function toward the “most promising” locations 
to avoid such difficulties. The robot’s knowledge is so lim-
ited, however, that an evaluation function would have all the 
shortcomings of the Reactive-Heuristic agent. For example, 
closer to the goal is not necessarily better; there may be a 
very long wall there. Means-ends analysis, another standard 
AI technique, is not possible because the robot knows little, 
if anything at all, about the immediate vicinity of the goal. 
For a very large maze, then, explicit search would be ex-
tremely inefficient, perhaps intractable. 

There is a complex relationship among the tiers. Tier 1.5 
requires both tier 1’s commonsense and tier 2’s heuristic 
knowledge to be effective. Tier 2 tries to avoid search and 
effectively sets up the situation-based Advisors in tier 1.5 so 
that they can trigger. For example, Goal Row and Goal Col-
umn push the robot into a situation where Roundabout can 
trigger. In turn, the situation-based Advisors of tier 1.5 set 
up the heuristic reasoners in tier 2. For example, Wander 
puts the robot where all the tier-2 Advisors are more likely 
to make new, constructive comments. When Ariadne bogs 
down, the triggers of the tier 1.5 Advisors behave like a 
search party; they expend resources to improve the pro-
gram’s ability to make progress. The useful knowledge ac-
quired this way is not overwhelming. Ariadne averaged only 
30.5 corridors and 10.8 chambers in its level 12 problems.  

The initial impulse behind reactive programming was to 
avoid search. When one augments the reactive Advisors of 

tier 1 and tier 2 with tier 1.5, the system is kept within the 
search minimization philosophy two ways. First, FORR 
only allocates each Advisor, in any tier, a limited amount of 
computing time. Therefore solution fragments that take too 
long to construct are not considered. Second, tier-1.5 Advi-
sors have hand-coded routines intended to address their par-
ticular subgoals. These routines generate and test solution 
fragments, just the way the commander did, but the pro-
posed partial solutions must be highly constrained, just as 
the commander’s are. This constraint saves the tier-1.5 Ad-
visor from a combinatoric explosion. Although their search 
can be quite deep, they are effective because they are 
severely curtailed by knowledge.  

An important difference between FORR with tier 1.5 and 
the commander is the fact that he ran his successful simula-
tion four times before he implemented it. Comparing moves 
and locations in Table 2, it is clear that Ariadne could 
shorten its path lengths by as much as 25% if it removed the 
loops. With respect to timing, however, the robot visited 
those locations, so the entire path is still the cost. 

The role of learning in this domain becomes apparent 
only  in the most difficult problems. In another series of 
experiments we tested the full FORR agent against No-
Learning. By level 10, No-Learning solved 20% fewer 
problems and triggered tier 1.5 three times as often. There 
were mazes (runs) where No-Learning could solve all five 
level-10 problems (albeit in slightly longer paths) without 
learned useful knowledge, but in two mazes it could solve 
only two. The paths No-Learning finds in hard problems 
look like a flight of steps. No-Learning fails on problems 
where the goal is hidden behind or the robot begins behind a 
variety of deceptive barriers. Even when No-Learning could 
solve a hard problem, the solutions with learning were 
shorter, less repetitive, and required fewer decision cycles.  

Ariadne has already performed well on preliminary tests 
in 30 × 30 mazes and continues to improve as we refine its 
Advisors and its learning algorithms. There is every reason 

Table 2: Average testing performance of agents after learning in 10 randomly generated 20 × 20  mazes. 
Search terminated upon solution or after 100 decisions. 
 
Level Agent Solved Path Length Moves Locations Triggers BFS % 

6 Reactive 24% 156.2 52.0 29.8 — 66.1% 
 Reactive+ 96% 61.2 28.0 22.0 13.3  
 Reactive-Heuristic 90% 48.2 23.5 16.1 —  
 FORR  98% 29.7 19.2 15.8 5.5  

8 Reactive+ 86% 79.7 37.4 29.1 17.7 87.4% 
 Reactive-Heuristic 88% 93.3 37.5 23.7 —  
 FORR  96% 45.5 28.5 24.3 9.9  

10 Reactive+ 80% 105.3 50.4 37.8 19.7 95.2% 
 Reactive-Heuristic 66% 122.0 54.3 33.0 —  
 FORR  86% 60.6 38.3 28.5 14.8  

12 Reactive+ 64% 118.0 53.0 41.2 29.9 96.2% 
 FORR  80% 69.4 41.8 31.7 25.7  



 

to believe that Ariadne will continue to scale up, i.e., per-
form well in much larger and more tortuous mazes than 
these. Hoyle, a FORR-based game-learning program, pro-
gressed to much larger spaces after the addition of only a 
few tier-2 Advisors (Epstein, 1994).  

6. Related Work 
Situation-based behavior is not case-based reasoning (CBR), 
although they have much in common. In CBR, experiences 
are indexed and stored. Later, when a problem arises, one or 
more potentially relevant cases that “remind” the system of 
the current one are retrieved, and an attempt is made to 
modify their solutions to solve the current problem 
(Kolodner, 1993). Although situation-based behavior is 
triggered by an abstraction of the current state that could 
have been used as an index for CBR, situation-based 
behavior does not retrieve specific solutions to be modified, 
only procedures intended to generate solution fragments. 
Situation-based behavior and CBR both constrain solution 
generation, but CBR does it by searching from old 
solutions, while situation-based behavior does it by the 
knowledge inherent in its procedures. Klein and 
Calderwood emphasize that the human experts they study 
do not perceive their problem solving as reminding. This is 
not a claim that CBR has no parallel in people, only that it is 
less likely to be used under time pressure.  

Situation-based behavior is not planning either. A plan is 
a set of actions intended to reach a specific goal. The com-
mander tested holding devices by incorporating them into 
plans and mentally executing those plans until one promised 
success. The situation-based Advisors of tier 1.5 are not 
planners because they actually execute their behavior, even 
if they do not eventually recommend it. For example, Wan-
der can investigate as many as eight L’s (by moving one 
longest step in each direction and then testing for possible 
second steps) before it chooses one to execute. Rather than 
planners, situation-based Advisors are procedures that reac-
tively seize control of a FORR-based program’s resources 
for a fixed period of time. When that time elapses the situa-
tion-based Advisor either returns control to tier 2 or returns 
a sequence of actions whose execution it requires. Tier 2 
constitutes a reactive decision maker, much like Pengi (Agre 
& Chapman, 1990). The principal difference is that Pengi’s 
problem is living in its world; it is not held to an explicit de-
cision standard like Ariadne’s “solve in 100 decision steps.”  

Nor is situation-based behavior a macro-operator. A 
macro-operator is a generalization across the variables en-
tailed in a successful procedure, whereas a situation-based 
Advisor is a procedural generalization over several kinds of 
behavior appropriate to a situation. Situation-based behavior 
is a resource-grabbing heuristic digression intended to pro-
duce a solution fragment.  

Situation-based behavior does shed some light on the de-
bate about representation and reactivity (Hayes, Ford, & 
Agnew, 1994). For Ariadne conceptual knowledge includes 
situation-based triggers like “the last 30% of the moves 
have been in no more than 5% of the locations in the maze” 
and “a wall lies between the aligned robot and the goal.” 
This work demonstrates that, at least in this domain, the rep-

resentation of conceptual knowledge is an essential 
component in a reactive learner. 

7. Conclusions 
Ariadne succeeds on time-limited decision problems where 
traditional AI techniques fail. Ablation indicates that no sin-
gle component of the hybrid reasoner is responsible for its 
success; there is a synergy among them. The program is ro-
bust; it can learn in any maze without “tuning.” 

The thesis of this work is that severely constrained search, 
particularly when enhanced by learning, can play an impor-
tant role in the performance of an otherwise reactive and 
heuristic system. Situation-based behavior is modeled on 
people who produce suboptimal solutions under time con-
straints. A reactive system goes directly from perception to 
an associated action, without any opportunity to reason 
about the state. With tier 1.5, FORR, like Klein and Calder-
wood’s subjects, perceives and then reasons about the cur-
rent state of the world before it elicits an associated action, 
but still maintains some of the advantages of reactivity. Ari-
adne’s success at maze search is a clear indication that re-
source allocation to highly-restricted, intelligent search is an 
important facet in the simulation of efficient, effective 
learning and decision making under resource limitations. 
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