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Abstract 
Spoken dialogue is increasingly central to systems that as-
sist people. As the tasks that people and machines speak 
about together become more complex, however, users’ dis-
satisfaction with those systems is an important concern. 
This paper presents a novel approach to learning for spoken 
dialogue systems. It describes embedded wizardry, a meth-
odology for learning from skilled people, and applies it to a 
library whose patrons order books by telephone. To address 
the challenges inherent in this application, we introduce 
RFW+, a domain-independent, feature-selection method 
that considers feature categories. Models learned with 
RFW+ on embedded-wizard data improve the performance 
of a traditional spoken dialogue system.  

Introduction   
Across a broad range of real-world applications, people in-
creasingly use spoken dialogue systems (SDSs). Fielded 
SDSs typically assume system initiative, that is, they con-
trol the path of the dialogue, whose turn it is to speak, and 
even indicate what the person (user) can say in response 
(e.g., “Say 1 for hours, 2 for sales…”). As the tasks SDSs 
address become more difficult, however, users’ language 
can become more complex, and it is far more challenging 
for the system designer to predict and control the dialogue. 
Thus, an SDS’s ability to understand its users’ goals be-
comes central to its development. Our results demonstrate 
that such understanding relies on dynamic synergy among 
a variety of data sources available to the system at runtime. 

This paper reports on a large-scale project that learns to 
support habitable human-machine dialogue through the 
implementation of three systems on which we collected ex-
tensive data. The next section describes a challenging ap-
plication and CheckItOut, an SDS constructed for it within 
a traditional architecture. To support research into dialogue 
management strategies for good SDS performance across 
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different levels of speech recognition, CheckItOut’s speech 
recognition is deliberately poor. It often asks users to re-
peat, and terminates 20% of their calls.  

People, however, adeptly match automated transcription 
of similar speech to CheckItOut’s databases. We therefore 
used embedded wizardry to develop a second system, 
CheckItOutW, which collects data both about CheckItOut’s 
computations and about how people make decisions when 
restricted to CheckItOut’s input and actions. The complexi-
ty of the resultant corpus drove the development of RFW+, 
a feature selection method that supports machine learning 
with knowledge about categories of data available to a sys-
tem at runtime. A new SDS, CheckItOut+, used models 
learned under RFW+ on wizard data to reduce and address 
errors. We describe three extensive experiments, one for 
each of CheckItOut, CheckItOutW, and CheckItOut+. 
CheckItOut+ demonstrates how multiple knowledge 
sources already available to an SDS can support a system’s 
ability to understand, and thereby improve its accuracy. It 
also provides insight on SDS performance evaluation. 

The Application: Library Book Orders 
Our application domain is book orders at The Andrew 
Heiskell Braille and Talking Book Library, a branch of the 
New York Public Library and a Regional Library of the 
National Library Service. Heiskell patrons typically order 
several books during a telephone call with a librarian. Call 
volume from 5000 active patrons is heavy, and is supple-
mented by a voice mail service. Our copy of the patron da-
tabase is sanitized to protect patrons’ privacy. 
 Traditional SDSs use a natural language understanding 
(NLU) pipeline to process user utterances. When an SDS 
receives acoustic data, its automated speech recognition 
(ASR) module produces a text string of words. ASR is 
challenged by a large vocabulary, many-word utterances, a 
broad variety of human speakers, and noisy environments 
and data channels. Our application confronts all of these. 



Our copy of Heiskell’s book database has 71,166 titles and 
28,031 authors, in a vocabulary of 54,448 distinct words. 
Book titles are less predictable than ordinary speech, and 
longer (2 – 34 words) than user utterances to most com-
mercial SDSs. In every data collection, users (several with 
native languages other than English) called a dedicated 
VOIP line from mobile or landline telephones at locations 
they chose. Although we adapted ASR acoustic models of 
Wall Street Journal dictation speech with 8 hours of con-
versational speech for book orders, the ASR word error 
rate (WER) averaged 50%. As a result, the ASR these sys-
tems confront is as difficult to match to the database as the 
ASR for titles shown in Figure 1. 

An NLU pipeline sends ASR output to a semantic parser 
that detects referenced concepts (e.g., a title or an author in 
a book request) and binds them to values. The parse de-
scribes concepts as attribute slots and their values, where a 
slot name corresponds roughly to a database attribute. For 
example, a BookRequest parse could include one or more 
title, author, or catalog-number slots. A confidence annota-
tor then scores the system’s certainty about user input.  

The NLU pipeline delivers its best parse to a dialogue 
manager that decides what to do (e.g., query a database) or 
say next. A query seeks to match a concept attribute value 
to an object in the database. For robustness, we rank re-
turns to a query by R/O (Ratcliff and Metzener, 1988), a 
simple string-similarity metric. If the top return has a high 
enough R/O score, it is offered to the user. For example: 
  SDS: Next book? 
  User: BOOK NUMBER SIX SEVEN FOUR THREE TWO 
  SDS: A Work in Progress is available. Next book? 
For multiple perfect matches (e.g., an author with several 
titles), the system offers the books one at a time to the user.  

 Even with perfectly-recognized speech, however, the di-
alogue manager may confront an ambiguous or unknown 
situation. For example, a user may request a title that is not 
unique or not in the database. A non-understanding occurs 
when the SDS cannot produce a semantic interpretation of 
what it has just heard. A misunderstanding occurs when 
the SDS binds a concept incorrectly (e.g., identifies the 
wrong book). Typically the SDS becomes aware of a mis-
understanding only when the user signals it. Error han-
dling seeks to correct misunderstandings and to address 
non-understandings as they arise. 

 CheckItOut is an SDS for the Heiskell domain, built 

within the Olympus/Ravenclaw architecture (Bohus and 
Rudnicky, 2009). CheckItOut uses the PocketSphinx 
speech recognizer (Huggins-Daines et al., 2008), the Phoe-
nix parser (Ward and Issar, 1994), and the Helios confi-
dence annotator (Bohus and Rudnicky, 2002). Once the 
pipeline arrives at a single parse for the user’s most recent 
utterance, the RavenClaw dialogue manager applies a do-
main-specific hierarchy that explicitly specifies domain-
dependent goals (e.g., identify the book) and provides the 
ability to query databases.  

For error handling and recovery, RavenClaw separates 
domain-specific dialogue strategies (e.g., ask for the next 
book) from domain-independent ones (e.g., ask the user to 
repeat). Once the dialogue manager decides what to say, a 
template-based natural language generator converts the 
semantic representation to an orthographic string, which is 
then sent to the Kalliope/Swift text-to-speech generator. 
That speech is forwarded to the audio manager, which 
conveys it back to the user.  
 We emphasize that this is a difficult task. CheckItOut 
must determine whether a request is for a title, an author, 
or a catalog number. Indeed, our users were given a pre-
specified signal for misunderstanding: 
  User: MY PERSONAL BEST 
  SDS: Persuasion is available. Next book? 
  User: THAT’S NOT WHAT I SAID 
  SDS: Sorry, I must have misunderstood you, let’s try 
   again. Next book? 

In earlier studies, we had shown that people without li-
brary training were surprisingly adept at matching noisy 
ASR to the correct Heiskell book title at WERs as high as 
83% (Ligorio et al., 2010; Passonneau et al., 2009a; 
Passonneau et al., 2009b; Passonneau et al., 2010). Thus 
we chose to learn from people how an SDS should do it. 

Embedded Wizardry 
A Wizard of Oz (WOz) study inserts a person (the wizard) 
as the decision maker in a system whose human users be-
lieve they are interacting with a computer. WOz studies 
were originally designed to anticipate the kinds of experi-
ences a system could expect to encounter. Our WOz study, 
however, embeds a wizard within a functioning system, to 
capture data available to the system when the wizard made 
a decision. The assumption was that a proficient human 
wizard could be modeled to improve CheckItOut. 

Throughout our work, subjects (both users and wizards) 
were balanced for gender, and recruited from among stu-
dents at local colleges. Users called over several days, and 
were periodically asked to complete an electronic survey 
that described their experience on a Likert scale of 1 to 5. 
For each call, the user retrieved from a website a new, ran-
domly-generated scenario: user identification data, and 

ASR True title 
INTO THAN 9 Into the Night 
HELEN AND TEACH DISTORT 
TELL UNTIL AN AM  
SULLIVAN MACY 

Helen and Teacher: The Story of 
Helen Keller and Anne Sullivan 
Macy 

NAH DON’T BONES Map of Bones 
ELUSIVE TOTAL MAN I Lived to Tell it All 
 
Figure 1: ASR encountered by CheckItOut for book titles. 



four books, each with its title, author, and catalog number. 
Users were asked to order one book by title, one by author, 
one by catalog number, and one by any of those methods. 
A new, randomly-selected set of 3000 books provided each 
experiment with data for the scenarios, the ASR language 
model, and the semantic grammar rules. On each call, the 
SDS was expected to greet the user, identify her, accept 
four book requests, offer an optional order summary, and 
sign off. The focus of this paper is on book requests, the 
most difficult part. Baseline data for CheckItOut was col-
lected in an experiment where each of 10 users was asked 
to make 50 calls; 562 calls were collected. 
 CheckItOutW’s interface for a human wizard ablated 
both the wizard’s input and her output as she made her 
own NLU and DM decisions. (CheckItOut’s recognition 
and parse output was generated but withheld from the wiz-
ard.) Instead of speech, the wizard saw ASR output on a 
graphical user interface (GUI), labeled for content in Fig-
ure 2. The wizard could query the Heiskell databases 
through the GUI, which displayed the author, title, and cat-
alog number of the best matches in descending order of 
their (concealed) R/O score. The wizard’s behavior was re-
stricted to a rich set of 43 actions (with black backgrounds 
in Figure 2). Three actions queried the database, by author, 
title, or catalog number. Others offered a book to the user, 
moved on to the next book, offered an order summary, or 
signed off. Many actions were questions to be generated by 
the system and then spoken to the user. Questions sought 
to clarify what the user wanted (e.g., “Did you ask for a ti-
tle?” or “Did you say — ?”).The wizard used mouse clicks 
to conduct a dialogue to help the user order books. 

 Nine volunteers trained as wizards; we selected six who 
appeared the most adept and motivated. Each of 10 sub-
jects then made 90 scheduled calls to CheckItOutW (un-
knowingly, at least 15 to each wizard). We explained to 
CheckItOutW users that the system was highly experi-

mental, and likely to be slow because it was considering 
many alternatives. To preserve our subjects’ positive atti-
tudes we also had the clock on the GUI change color after 
six minutes. That alerted the wizard to finish the current 
book request and sign off. During these calls, we collected 
data on 163 features that described knowledge that would 
be available to support dialogue management at runtime. 

The 913 collected calls to CheckItOutW covered 3394 
book requests and 20,378 utterances. These were assem-
bled into 17,288 adjacency pairs. An adjacency pair is the 
speech that begins with a system prompt and ends just be-
fore the next one. About a third of all adjacency pairs in-
cluded at least one query. Query returns included the in-
tended book 58% of the time if it was for a catalog num-
ber, but only 33% for author queries, and 28% for title que-
ries. Nonetheless, our wizards successfully identified 92% 
of the requests. (Only 22 books were ever countermanded 
by THAT’S NOT WHAT I SAID.) The 6-minute time limit, 
however, forced termination of 63% of the calls before all 
4 books were ordered. This was clearly a model of exper-
tise worth learning. 

Learning a New Dialogue Manager 
Except for its dialogue manager, CheckItOut+ is identical 
to CheckItOut. When it has a single confident parse or 
knows it has made an error, CheckItOut+ behaves the way 
CheckItOut would. Otherwise, CheckItOut+’s wizard 
module selects an action. The intent is to replace domain-
independent strategies with ones learned from the wizards, 
to make CheckItOut+ more flexible in the face of uncer-
tainty. We partitioned the CheckItOutW data to address 
three important decision points, each with its own model. 
Without a single confident parse, the voice search model 
decides whether or not to seek a title, an author, and a cata-
log number that partially matches the ASR (i.e., do voice 
search instead of semantic parsing). In these CheckItOut+ 
examples, periods delimit unconfident words. Here, no 
parse was generated, but voice search successfully matched 
the correct book: 
  User: .DUDLEY. SAFARI 
  SDS: Is the title Deadly safari? 
  User: YES 
After voice search, the yes-query model decides whether to 
confirm the best return with the user, as it did above, or to 
ask a question informed by that return as it did here: 
 User: .FOR. .NONDRIVERS. .SCHULLER. CHAPMAN 
 SDS: Is the author Fern Schumer Chapman? 
 User: YES 
Finally, if voice search was not performed, the no-query 
model decides whether to indicate non-understanding or to 
ask about the ASR or the request. Note the switch here 
from a prompt for the author to a prompt for the title: 

 
Figure 2: The wizard GUI for book requests in CheckItOutW. 



 SDS: Sorry, I misunderstood. Can you repeat the author? 
 User: .ANDRES. MORTIMER 
 SDS: Did you say John Mortimer? 
 User: NO 
 SDS: Sorry, I misunderstood. Can you repeat the author? 
 User: .ANDREW. .VACHSS. NO DIDN’T 
 SDS: Can you give me the book title please? 
The no-query model moves on to the next book after three 
consecutive non-understandings on the current one. 

The CheckItOutW dataset covers the system’s runtime 
knowledge thoroughly but redundantly. On such data, ma-
chine-learning algorithms often benefit from feature selec-
tion. Feature selection methods are either filters that select 
relevant features before learning (independently from the 
intended learning algorithm), or they are wrappers that it-
eratively test feature subsets on a specific learning algo-
rithm. Two new wrappers were developed for this work: 
RFW and RFW+ (Ligorio, 2011).  

RFW (Randomized Feature Weighting) explores the 
possible feature subsets to learn a feature-relevance criteri-
on tailored to both the data and the learner. Unlike most 
wrappers, however, RFW ranks features well at low com-
putational cost, in part because a parameter x determines 
the size of the feature subset RFW considers. RFW con-
sistently performs at least as well as state-of-the art filters 
(e.g., CFS(Hall, 2000)) and wrappers (e.g., Greedy For-
ward Selection (Kohavi and John, 1997)). Although slower 

than a filter, on a variety of datasets RFW has proved or-
ders of magnitude faster than Greedy Forward Selection 
for logistic regression and decision trees, and faster for 
support vector machines (Ligorio, 2011).  

To ensure that every aspect of available knowledge con-
tributed to decisions, we developed RFW+, which aug-
ments RFW-selected features to address under-represented 
feature categories. Table 1 categorizes the 163 features in 
the dataset at three levels of granularity. When applied to 
such categories, RFW+ seeks to improve RFW’s initial 
subset by the inclusion of some features from each catego-
ry. Under medium granularity, therefore, RFW+ seeks to 
include every pipeline stage. Figure 3 compares RFW and 
RFW+ to baselines as logistic regression learns whether or 
not to perform voice search on data from all wizards. 

One way to infuse learning with knowledge is to select 
relevant features, as RFW and RFW+ do; another is to se-
lect the best examples of the target behavior available. Two 
of our six wizards, WA and WB, were particularly skilled. 
They had more fully successful calls, where they identified 
all four books correctly (33% and 31% compared to 28% 
for all wizards), and had the fewest failed calls, where no 
books were ordered (7% and 12% compared to 17% for all 
wizards). WA and WB also had different conversational 
styles. WA was persistent; she asked the most questions 
per book request, made the most database queries, and 
shifted query type when necessary (e.g., after some diffi-

Table 1: Feature categories and examples under varying granularity for 163 features collected in the wizard experiment. 
Coarse (3) Medium (5) Fine (10) Examples 

Adjacency pair (36) 
 

Adjacency pair (36) 
 

Adjacency pair history (23) 
Adjacency pair (13) 

# books ordered so far 
# database searches in this adjacency pair 

Input (99) 
 

Recognition (45) 
 
Parse (46) 

Recognition history (10) 
Recognition (35) 
Parse history (12) 
Parse (34) 

Average language model score on call 
Normalized acoustic model score 
Average # grammar slots on this book  
# words not covered by the best parse 

Query (28) Query (16) 
 
Confidence (20) 

Query history (8) 
Query (8) 
Confidence history (14) 
Confidence (6) 

# title queries in this call 
# query results 
Average Helios confidence on this book  
Helios confidence  

 
Figure 3: Percentage of instances correctly classified by voice query models to match an ASR hypothesis learned with RFWx and RFW+ x 
for all wizard data, where x is the size of the feature subset. Granularity for RFW+ is coarse (mg), medium (g), or fine (sg). CFS and Greedy 
Forward Selection (GFS) are baselines. 



culty with the title, she clicked on “Who is the author?”). 
In contrast, WB queried the database extensively and 
“spoke” the least of any wizard. He quickly moved on to 
the next book when he experienced difficulty; the user 
could return to it later if time remained. For these reasons, 
we learned voice search and yes-query models on the data 
for WA from her 3161 and 1159 instances, respectively, 
and the no-query model on the 714 instances for WB.  

Under 10-fold cross validation on these reduced da-
tasets, speed and accuracy were roughly equivalent for 
learners that used decision trees, support vector machines, 
or logistic regression. Granularity impacted RFW+ mod-
els’ performance. (This differs from performance across all 
wizards, shown in Figure 3.) Thus the wizard module im-
plemented in the dialogue manager for CheckItOut+ was 
learned by RFW+ for logistic regression with medium 
granularity for the voice-search and no-query models, but 
with fine granularity for the yes-query model. Table 2 
summarizes the features in the learned wizard module. 

Performance with CheckItOut+ 
To evaluate the system under the new dialogue manager, 
10 subjects each made 50 calls to CheckItOut+ under the 
same conditions as those used for CheckItOut. During the-
se 505 calls, the wizard module triggered 4.72 times per 
call, and was responsible for at least 38% of the books cor-
rectly ordered by CheckItOut+. Calls averaged about 13 
seconds longer with CheckItOut+, an increase of only 
6.19%. (All comparisons here are at p < 0.05.) 

CheckItOut+ ordered more books, and more correct 
books. CheckItOut+ also ordered fewer incorrect books 
and elicited fewer misunderstanding signals (THAT’S NOT 
WHAT I SAID). CheckItOut+ averaged 65.57 seconds per 
correct book, 25% faster than CheckItOut’s 87.89 seconds. 
When calls required fewer turns (an indication that the user 
was readily understood), CheckItOut+ identified more 
books correctly, and costs (e.g., number of system and user 
turns per ordered book) decreased. When calls had more 
turns, CheckItOut+ persisted, while CheckItOut hung up. 

Despite CheckItOut+’s greater task success and higher 
throughput, users’ survey responses showed no preference 
for one SDS over the other. Only 1 of the 11 questions 
about how users perceived the system registered a differ-
ence: “I had to pay close attention while using the system” 
elicited different responses. CheckItOut+ users indicated 
that they had had to work harder; its persistent questions 
may have revealed too much about the system’s uncertain-
ty, unlike the binary responses (understood or not) of 
commercial SDSs. Demands on users’ attention apparently 
overshadowed CheckItOut+’s increased task success, and 
influenced their level of satisfaction.  

Related Work  
Common paradigms for dialogue managers learn a policy 
from a finite-state model (e.g., (Singh et al., 2002), follow 
a plan (Allen et al., 1995), or use frames (e.g., (Seneff et 
al., 1998) or information-state updates (e.g.,(Traum and 
Larsson, 2003)). Other WOz studies have investigated 
multimodal clarification (Rieser and O., 2011), domain-
dependent strategies (Skantze, 2005), and tried to predict 
responses to non-understanding (Bohus, 2007). In contrast, 
our wizards used voice search to understand noisy ASR.  
 CheckItOut+ scores well on dialogue efficiency, but 
other work suggests that users may prefer systems that of-
fer explicit confirmation, rather than implicit confirmation 
or none at all, both of which were available through our 
wizard module (Litman et al., 1999). PARADISE corre-
lates user satisfaction (averaged here across all survey 
questions) with 20 cost and success measures, and per-
forms linear regression on the most relevant (Walker et al., 
2000). A PARADISE-style evaluation showed that users of 
both CheckItOut and CheckItOut+ were sensitive to task 
success. CheckItOut user satisfaction was negatively corre-
lated with the number of prompts that dictated what they 
could say, while CheckItOut+ user satisfaction was nega-
tively correlated with the number of incorrect books. 

Table 2: Features in learned models with categories from Table 1, denoted as A (adjacency pair), R (recognition), P 
(parse), Q (query), and C (confidence). Italics indicate features used in more than one model.  

Voice-search Yes-query No-query 
# of pairs in request (A) # times moved on in call (A) # user utterances in pair (A) 
# question prompts in call (A) # new book requests in pair (A) # explicit confirms in request (A) 
Last prompt was non-understanding (A) Mean acoustic model score in call (R) Last prompt was explicit confirmation (A) 
Last prompt was explicit confirmation (A) Mean R/O score on voice search returns (Q) Mean word confidence in top (R) 
Mean word confidence in top (R) σ of R/O score on voice search returns (Q) Maximum word confidence in top (R) 
# words in best parse for top (P)  Acoustic model score for top (R) 
Top grammar slot for top (P)  ≥ 1 title slot in parse (P) 
# parses for top (P)  Some words omitted by top (P) 
# database queries in request (Q)  # author queries this request (Q) 
# title queries in request (Q)  # title queries in request (Q) 
Mean Helios/RO in request (C)  Helios confidence in top (C) 



Discussion and Current Work 
Although most people are no longer surprised to find their 
telephone call answered by a machine, they are rarely 
pleased — this work moves toward amelioration of that re-
sponse. Much of this work is application-independent, in-
cluding SDS actions and most features, RFW, and RFW+. 
The best of our wizards’ problem-solving strategies (e.g., 
recognize when no search return is likely) also appear to be 
application-independent. 

We emphasize that the performance improvement chron-
icled here can only be attributed to changes in the decision 
manager learned from the wizard data; CheckItOut and 
CheckItOut+ are otherwise identical. The features learned 
for CheckItOut+’s wizard module were deliberately drawn 
by RFW+ from different modules in the pipeline. They im-
proved both the system’s accuracy and its speed, which 
suggests that understanding benefits from less rigid inter-
action among SDS pipeline modules. In separate work, we 
have begun development of a new SDS architecture that 
further exploits the rich wizard corpus we collected. 
 There is an inherent tension among accuracy, speed, and 
flexibility for an SDS. Developers rely on system initiative 
to prevent errors and move the dialogue forward. A user 
with latitude may provide a familiar property (e.g., a 
book’s author) that is not a unique identifier, and therefore 
requires further discussion. Our emerging system can use a 
database of domain-specific objects as a source of confir-
mation and information to supplement what it has heard 
and what it has computed, and then develop reasonable in-
terpretations for it to assist the user.  
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