

Toward Habitable Assistance from Spoken Dialogue Systems

Susan L. Epstein1,2, Rebecca J. Passonneau3, Tiziana Ligorio1, and Joshua Gordon3

1Hunter College and 2The Graduate Center of The City University of New York, New York, NY, USA
3Columbia University, New York, NY, USA

susan.epstein@hunter.cuny.edu, becky@cs.columbia.edu, tligorio@hunter.cuny.edu, joshua@cs.columbia.edu

Abstract
Spoken dialogue is increasingly central to systems that as-
sist people. As the tasks that people and machines speak
about together become more complex, however, users’ dis-
satisfaction with those systems is an important concern.
This paper presents a novel approach to learning for spoken
dialogue systems. It describes embedded wizardry, a meth-
odology for learning from skilled people, and applies it to a
library whose patrons order books by telephone. To address
the challenges inherent in this application, we introduce
RFW+, a domain-independent, feature-selection method
that considers feature categories. Models learned with
RFW+ on embedded-wizard data improve the performance
of a traditional spoken dialogue system.

Introduction
Across a broad range of real-world applications, people in-
creasingly use spoken dialogue systems (SDSs). Fielded
SDSs typically assume system initiative, that is, they con-
trol the path of the dialogue, whose turn it is to speak, and
even indicate what the person (user) can say in response
(e.g., “Say 1 for hours, 2 for sales…”). As the tasks SDSs
address become more difficult, however, users’ language
can become more complex, and it is far more challenging
for the system designer to predict and control the dialogue.
Thus, an SDS’s ability to understand its users’ goals be-
comes central to its development. Our results demonstrate
that such understanding relies on dynamic synergy among
a variety of data sources available to the system at runtime.

This paper reports on a large-scale project that learns to
support habitable human-machine dialogue through the
implementation of three systems on which we collected ex-
tensive data. The next section describes a challenging ap-
plication and CheckItOut, an SDS constructed for it within
a traditional architecture. To support research into dialogue
management strategies for good SDS performance across

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

different levels of speech recognition, CheckItOut’s speech
recognition is deliberately poor. It often asks users to re-
peat, and terminates 20% of their calls.

People, however, adeptly match automated transcription
of similar speech to CheckItOut’s databases. We therefore
used embedded wizardry to develop a second system,
CheckItOutW, which collects data both about CheckItOut’s
computations and about how people make decisions when
restricted to CheckItOut’s input and actions. The complexi-
ty of the resultant corpus drove the development of RFW+,
a feature selection method that supports machine learning
with knowledge about categories of data available to a sys-
tem at runtime. A new SDS, CheckItOut+, used models
learned under RFW+ on wizard data to reduce and address
errors. We describe three extensive experiments, one for
each of CheckItOut, CheckItOutW, and CheckItOut+.
CheckItOut+ demonstrates how multiple knowledge
sources already available to an SDS can support a system’s
ability to understand, and thereby improve its accuracy. It
also provides insight on SDS performance evaluation.

The Application: Library Book Orders
Our application domain is book orders at The Andrew
Heiskell Braille and Talking Book Library, a branch of the
New York Public Library and a Regional Library of the
National Library Service. Heiskell patrons typically order
several books during a telephone call with a librarian. Call
volume from 5000 active patrons is heavy, and is supple-
mented by a voice mail service. Our copy of the patron da-
tabase is sanitized to protect patrons’ privacy.
 Traditional SDSs use a natural language understanding
(NLU) pipeline to process user utterances. When an SDS
receives acoustic data, its automated speech recognition
(ASR) module produces a text string of words. ASR is
challenged by a large vocabulary, many-word utterances, a
broad variety of human speakers, and noisy environments
and data channels. Our application confronts all of these.

Our copy of Heiskell’s book database has 71,166 titles and
28,031 authors, in a vocabulary of 54,448 distinct words.
Book titles are less predictable than ordinary speech, and
longer (2 – 34 words) than user utterances to most com-
mercial SDSs. In every data collection, users (several with
native languages other than English) called a dedicated
VOIP line from mobile or landline telephones at locations
they chose. Although we adapted ASR acoustic models of
Wall Street Journal dictation speech with 8 hours of con-
versational speech for book orders, the ASR word error
rate (WER) averaged 50%. As a result, the ASR these sys-
tems confront is as difficult to match to the database as the
ASR for titles shown in Figure 1.

An NLU pipeline sends ASR output to a semantic parser
that detects referenced concepts (e.g., a title or an author in
a book request) and binds them to values. The parse de-
scribes concepts as attribute slots and their values, where a
slot name corresponds roughly to a database attribute. For
example, a BookRequest parse could include one or more
title, author, or catalog-number slots. A confidence annota-
tor then scores the system’s certainty about user input.

The NLU pipeline delivers its best parse to a dialogue
manager that decides what to do (e.g., query a database) or
say next. A query seeks to match a concept attribute value
to an object in the database. For robustness, we rank re-
turns to a query by R/O (Ratcliff and Metzener, 1988), a
simple string-similarity metric. If the top return has a high
enough R/O score, it is offered to the user. For example:
 SDS: Next book?
 User: BOOK NUMBER SIX SEVEN FOUR THREE TWO
 SDS: A Work in Progress is available. Next book?
For multiple perfect matches (e.g., an author with several
titles), the system offers the books one at a time to the user.

 Even with perfectly-recognized speech, however, the di-
alogue manager may confront an ambiguous or unknown
situation. For example, a user may request a title that is not
unique or not in the database. A non-understanding occurs
when the SDS cannot produce a semantic interpretation of
what it has just heard. A misunderstanding occurs when
the SDS binds a concept incorrectly (e.g., identifies the
wrong book). Typically the SDS becomes aware of a mis-
understanding only when the user signals it. Error han-
dling seeks to correct misunderstandings and to address
non-understandings as they arise.

 CheckItOut is an SDS for the Heiskell domain, built

within the Olympus/Ravenclaw architecture (Bohus and
Rudnicky, 2009). CheckItOut uses the PocketSphinx
speech recognizer (Huggins-Daines et al., 2008), the Phoe-
nix parser (Ward and Issar, 1994), and the Helios confi-
dence annotator (Bohus and Rudnicky, 2002). Once the
pipeline arrives at a single parse for the user’s most recent
utterance, the RavenClaw dialogue manager applies a do-
main-specific hierarchy that explicitly specifies domain-
dependent goals (e.g., identify the book) and provides the
ability to query databases.

For error handling and recovery, RavenClaw separates
domain-specific dialogue strategies (e.g., ask for the next
book) from domain-independent ones (e.g., ask the user to
repeat). Once the dialogue manager decides what to say, a
template-based natural language generator converts the
semantic representation to an orthographic string, which is
then sent to the Kalliope/Swift text-to-speech generator.
That speech is forwarded to the audio manager, which
conveys it back to the user.
 We emphasize that this is a difficult task. CheckItOut
must determine whether a request is for a title, an author,
or a catalog number. Indeed, our users were given a pre-
specified signal for misunderstanding:
 User: MY PERSONAL BEST
 SDS: Persuasion is available. Next book?
 User: THAT’S NOT WHAT I SAID
 SDS: Sorry, I must have misunderstood you, let’s try
 again. Next book?

In earlier studies, we had shown that people without li-
brary training were surprisingly adept at matching noisy
ASR to the correct Heiskell book title at WERs as high as
83% (Ligorio et al., 2010; Passonneau et al., 2009a;
Passonneau et al., 2009b; Passonneau et al., 2010). Thus
we chose to learn from people how an SDS should do it.

Embedded Wizardry
A Wizard of Oz (WOz) study inserts a person (the wizard)
as the decision maker in a system whose human users be-
lieve they are interacting with a computer. WOz studies
were originally designed to anticipate the kinds of experi-
ences a system could expect to encounter. Our WOz study,
however, embeds a wizard within a functioning system, to
capture data available to the system when the wizard made
a decision. The assumption was that a proficient human
wizard could be modeled to improve CheckItOut.

Throughout our work, subjects (both users and wizards)
were balanced for gender, and recruited from among stu-
dents at local colleges. Users called over several days, and
were periodically asked to complete an electronic survey
that described their experience on a Likert scale of 1 to 5.
For each call, the user retrieved from a website a new, ran-
domly-generated scenario: user identification data, and

ASR True title
INTO THAN 9 Into the Night
HELEN AND TEACH DISTORT
TELL UNTIL AN AM
SULLIVAN MACY

Helen and Teacher: The Story of
Helen Keller and Anne Sullivan
Macy

NAH DON’T BONES Map of Bones
ELUSIVE TOTAL MAN I Lived to Tell it All

Figure 1: ASR encountered by CheckItOut for book titles.

four books, each with its title, author, and catalog number.
Users were asked to order one book by title, one by author,
one by catalog number, and one by any of those methods.
A new, randomly-selected set of 3000 books provided each
experiment with data for the scenarios, the ASR language
model, and the semantic grammar rules. On each call, the
SDS was expected to greet the user, identify her, accept
four book requests, offer an optional order summary, and
sign off. The focus of this paper is on book requests, the
most difficult part. Baseline data for CheckItOut was col-
lected in an experiment where each of 10 users was asked
to make 50 calls; 562 calls were collected.
 CheckItOutW’s interface for a human wizard ablated
both the wizard’s input and her output as she made her
own NLU and DM decisions. (CheckItOut’s recognition
and parse output was generated but withheld from the wiz-
ard.) Instead of speech, the wizard saw ASR output on a
graphical user interface (GUI), labeled for content in Fig-
ure 2. The wizard could query the Heiskell databases
through the GUI, which displayed the author, title, and cat-
alog number of the best matches in descending order of
their (concealed) R/O score. The wizard’s behavior was re-
stricted to a rich set of 43 actions (with black backgrounds
in Figure 2). Three actions queried the database, by author,
title, or catalog number. Others offered a book to the user,
moved on to the next book, offered an order summary, or
signed off. Many actions were questions to be generated by
the system and then spoken to the user. Questions sought
to clarify what the user wanted (e.g., “Did you ask for a ti-
tle?” or “Did you say — ?”).The wizard used mouse clicks
to conduct a dialogue to help the user order books.

 Nine volunteers trained as wizards; we selected six who
appeared the most adept and motivated. Each of 10 sub-
jects then made 90 scheduled calls to CheckItOutW (un-
knowingly, at least 15 to each wizard). We explained to
CheckItOutW users that the system was highly experi-

mental, and likely to be slow because it was considering
many alternatives. To preserve our subjects’ positive atti-
tudes we also had the clock on the GUI change color after
six minutes. That alerted the wizard to finish the current
book request and sign off. During these calls, we collected
data on 163 features that described knowledge that would
be available to support dialogue management at runtime.

The 913 collected calls to CheckItOutW covered 3394
book requests and 20,378 utterances. These were assem-
bled into 17,288 adjacency pairs. An adjacency pair is the
speech that begins with a system prompt and ends just be-
fore the next one. About a third of all adjacency pairs in-
cluded at least one query. Query returns included the in-
tended book 58% of the time if it was for a catalog num-
ber, but only 33% for author queries, and 28% for title que-
ries. Nonetheless, our wizards successfully identified 92%
of the requests. (Only 22 books were ever countermanded
by THAT’S NOT WHAT I SAID.) The 6-minute time limit,
however, forced termination of 63% of the calls before all
4 books were ordered. This was clearly a model of exper-
tise worth learning.

Learning a New Dialogue Manager
Except for its dialogue manager, CheckItOut+ is identical
to CheckItOut. When it has a single confident parse or
knows it has made an error, CheckItOut+ behaves the way
CheckItOut would. Otherwise, CheckItOut+’s wizard
module selects an action. The intent is to replace domain-
independent strategies with ones learned from the wizards,
to make CheckItOut+ more flexible in the face of uncer-
tainty. We partitioned the CheckItOutW data to address
three important decision points, each with its own model.
Without a single confident parse, the voice search model
decides whether or not to seek a title, an author, and a cata-
log number that partially matches the ASR (i.e., do voice
search instead of semantic parsing). In these CheckItOut+
examples, periods delimit unconfident words. Here, no
parse was generated, but voice search successfully matched
the correct book:
 User: .DUDLEY. SAFARI
 SDS: Is the title Deadly safari?
 User: YES
After voice search, the yes-query model decides whether to
confirm the best return with the user, as it did above, or to
ask a question informed by that return as it did here:
 User: .FOR. .NONDRIVERS. .SCHULLER. CHAPMAN
 SDS: Is the author Fern Schumer Chapman?
 User: YES
Finally, if voice search was not performed, the no-query
model decides whether to indicate non-understanding or to
ask about the ASR or the request. Note the switch here
from a prompt for the author to a prompt for the title:

Figure 2: The wizard GUI for book requests in CheckItOutW.

 SDS: Sorry, I misunderstood. Can you repeat the author?
 User: .ANDRES. MORTIMER
 SDS: Did you say John Mortimer?
 User: NO
 SDS: Sorry, I misunderstood. Can you repeat the author?
 User: .ANDREW. .VACHSS. NO DIDN’T
 SDS: Can you give me the book title please?
The no-query model moves on to the next book after three
consecutive non-understandings on the current one.

The CheckItOutW dataset covers the system’s runtime
knowledge thoroughly but redundantly. On such data, ma-
chine-learning algorithms often benefit from feature selec-
tion. Feature selection methods are either filters that select
relevant features before learning (independently from the
intended learning algorithm), or they are wrappers that it-
eratively test feature subsets on a specific learning algo-
rithm. Two new wrappers were developed for this work:
RFW and RFW+ (Ligorio, 2011).

RFW (Randomized Feature Weighting) explores the
possible feature subsets to learn a feature-relevance criteri-
on tailored to both the data and the learner. Unlike most
wrappers, however, RFW ranks features well at low com-
putational cost, in part because a parameter x determines
the size of the feature subset RFW considers. RFW con-
sistently performs at least as well as state-of-the art filters
(e.g., CFS(Hall, 2000)) and wrappers (e.g., Greedy For-
ward Selection (Kohavi and John, 1997)). Although slower

than a filter, on a variety of datasets RFW has proved or-
ders of magnitude faster than Greedy Forward Selection
for logistic regression and decision trees, and faster for
support vector machines (Ligorio, 2011).

To ensure that every aspect of available knowledge con-
tributed to decisions, we developed RFW+, which aug-
ments RFW-selected features to address under-represented
feature categories. Table 1 categorizes the 163 features in
the dataset at three levels of granularity. When applied to
such categories, RFW+ seeks to improve RFW’s initial
subset by the inclusion of some features from each catego-
ry. Under medium granularity, therefore, RFW+ seeks to
include every pipeline stage. Figure 3 compares RFW and
RFW+ to baselines as logistic regression learns whether or
not to perform voice search on data from all wizards.

One way to infuse learning with knowledge is to select
relevant features, as RFW and RFW+ do; another is to se-
lect the best examples of the target behavior available. Two
of our six wizards, WA and WB, were particularly skilled.
They had more fully successful calls, where they identified
all four books correctly (33% and 31% compared to 28%
for all wizards), and had the fewest failed calls, where no
books were ordered (7% and 12% compared to 17% for all
wizards). WA and WB also had different conversational
styles. WA was persistent; she asked the most questions
per book request, made the most database queries, and
shifted query type when necessary (e.g., after some diffi-

Table 1: Feature categories and examples under varying granularity for 163 features collected in the wizard experiment.
Coarse (3) Medium (5) Fine (10) Examples

Adjacency pair (36)

Adjacency pair (36)

Adjacency pair history (23)
Adjacency pair (13)

books ordered so far
database searches in this adjacency pair

Input (99)

Recognition (45)

Parse (46)

Recognition history (10)
Recognition (35)
Parse history (12)
Parse (34)

Average language model score on call
Normalized acoustic model score
Average # grammar slots on this book
words not covered by the best parse

Query (28) Query (16)

Confidence (20)

Query history (8)
Query (8)
Confidence history (14)
Confidence (6)

title queries in this call
query results
Average Helios confidence on this book
Helios confidence

Figure 3: Percentage of instances correctly classified by voice query models to match an ASR hypothesis learned with RFWx and RFW+ x
for all wizard data, where x is the size of the feature subset. Granularity for RFW+ is coarse (mg), medium (g), or fine (sg). CFS and Greedy
Forward Selection (GFS) are baselines.

culty with the title, she clicked on “Who is the author?”).
In contrast, WB queried the database extensively and
“spoke” the least of any wizard. He quickly moved on to
the next book when he experienced difficulty; the user
could return to it later if time remained. For these reasons,
we learned voice search and yes-query models on the data
for WA from her 3161 and 1159 instances, respectively,
and the no-query model on the 714 instances for WB.

Under 10-fold cross validation on these reduced da-
tasets, speed and accuracy were roughly equivalent for
learners that used decision trees, support vector machines,
or logistic regression. Granularity impacted RFW+ mod-
els’ performance. (This differs from performance across all
wizards, shown in Figure 3.) Thus the wizard module im-
plemented in the dialogue manager for CheckItOut+ was
learned by RFW+ for logistic regression with medium
granularity for the voice-search and no-query models, but
with fine granularity for the yes-query model. Table 2
summarizes the features in the learned wizard module.

Performance with CheckItOut+
To evaluate the system under the new dialogue manager,
10 subjects each made 50 calls to CheckItOut+ under the
same conditions as those used for CheckItOut. During the-
se 505 calls, the wizard module triggered 4.72 times per
call, and was responsible for at least 38% of the books cor-
rectly ordered by CheckItOut+. Calls averaged about 13
seconds longer with CheckItOut+, an increase of only
6.19%. (All comparisons here are at p < 0.05.)

CheckItOut+ ordered more books, and more correct
books. CheckItOut+ also ordered fewer incorrect books
and elicited fewer misunderstanding signals (THAT’S NOT
WHAT I SAID). CheckItOut+ averaged 65.57 seconds per
correct book, 25% faster than CheckItOut’s 87.89 seconds.
When calls required fewer turns (an indication that the user
was readily understood), CheckItOut+ identified more
books correctly, and costs (e.g., number of system and user
turns per ordered book) decreased. When calls had more
turns, CheckItOut+ persisted, while CheckItOut hung up.

Despite CheckItOut+’s greater task success and higher
throughput, users’ survey responses showed no preference
for one SDS over the other. Only 1 of the 11 questions
about how users perceived the system registered a differ-
ence: “I had to pay close attention while using the system”
elicited different responses. CheckItOut+ users indicated
that they had had to work harder; its persistent questions
may have revealed too much about the system’s uncertain-
ty, unlike the binary responses (understood or not) of
commercial SDSs. Demands on users’ attention apparently
overshadowed CheckItOut+’s increased task success, and
influenced their level of satisfaction.

Related Work
Common paradigms for dialogue managers learn a policy
from a finite-state model (e.g., (Singh et al., 2002), follow
a plan (Allen et al., 1995), or use frames (e.g., (Seneff et
al., 1998) or information-state updates (e.g.,(Traum and
Larsson, 2003)). Other WOz studies have investigated
multimodal clarification (Rieser and O., 2011), domain-
dependent strategies (Skantze, 2005), and tried to predict
responses to non-understanding (Bohus, 2007). In contrast,
our wizards used voice search to understand noisy ASR.
 CheckItOut+ scores well on dialogue efficiency, but
other work suggests that users may prefer systems that of-
fer explicit confirmation, rather than implicit confirmation
or none at all, both of which were available through our
wizard module (Litman et al., 1999). PARADISE corre-
lates user satisfaction (averaged here across all survey
questions) with 20 cost and success measures, and per-
forms linear regression on the most relevant (Walker et al.,
2000). A PARADISE-style evaluation showed that users of
both CheckItOut and CheckItOut+ were sensitive to task
success. CheckItOut user satisfaction was negatively corre-
lated with the number of prompts that dictated what they
could say, while CheckItOut+ user satisfaction was nega-
tively correlated with the number of incorrect books.

Table 2: Features in learned models with categories from Table 1, denoted as A (adjacency pair), R (recognition), P
(parse), Q (query), and C (confidence). Italics indicate features used in more than one model.

Voice-search Yes-query No-query
of pairs in request (A) # times moved on in call (A) # user utterances in pair (A)
question prompts in call (A) # new book requests in pair (A) # explicit confirms in request (A)
Last prompt was non-understanding (A) Mean acoustic model score in call (R) Last prompt was explicit confirmation (A)
Last prompt was explicit confirmation (A) Mean R/O score on voice search returns (Q) Mean word confidence in top (R)
Mean word confidence in top (R) σ of R/O score on voice search returns (Q) Maximum word confidence in top (R)
words in best parse for top (P) Acoustic model score for top (R)
Top grammar slot for top (P) ≥ 1 title slot in parse (P)
parses for top (P) Some words omitted by top (P)
database queries in request (Q) # author queries this request (Q)
title queries in request (Q) # title queries in request (Q)
Mean Helios/RO in request (C) Helios confidence in top (C)

Discussion and Current Work
Although most people are no longer surprised to find their
telephone call answered by a machine, they are rarely
pleased — this work moves toward amelioration of that re-
sponse. Much of this work is application-independent, in-
cluding SDS actions and most features, RFW, and RFW+.
The best of our wizards’ problem-solving strategies (e.g.,
recognize when no search return is likely) also appear to be
application-independent.

We emphasize that the performance improvement chron-
icled here can only be attributed to changes in the decision
manager learned from the wizard data; CheckItOut and
CheckItOut+ are otherwise identical. The features learned
for CheckItOut+’s wizard module were deliberately drawn
by RFW+ from different modules in the pipeline. They im-
proved both the system’s accuracy and its speed, which
suggests that understanding benefits from less rigid inter-
action among SDS pipeline modules. In separate work, we
have begun development of a new SDS architecture that
further exploits the rich wizard corpus we collected.
 There is an inherent tension among accuracy, speed, and
flexibility for an SDS. Developers rely on system initiative
to prevent errors and move the dialogue forward. A user
with latitude may provide a familiar property (e.g., a
book’s author) that is not a unique identifier, and therefore
requires further discussion. Our emerging system can use a
database of domain-specific objects as a source of confir-
mation and information to supplement what it has heard
and what it has computed, and then develop reasonable in-
terpretations for it to assist the user.

Acknowledgements
The National Science Foundation supported this work un-
der awards IIS-084966, IIS-0745369, and IIS-0744904.

References
Allen, J. F., L. K. Schubert, G. Ferguson, P. Heeman, C. H.
Hwang, T. Kato, M. Light, N. G. Martin, B. W. Miller and M.
Poesio 1995. The TRAINS Project: A Case Study in Defining a
Conversational Planning Agent. Journal of Experimental and
Theoretical AI 7: 7-48.
Bohus, D. 2007. Error Awareness and Recovery in Task-Oriented
Spoken Dialogue Systems. Computer Science. Pittsburgh, PA,
Carnegie Mellon University. Ph.D.
Bohus, D. and A. Rudnicky 2002. Integrating Multiple
Knowledge Sources for Utterance-Level Confidence Annotation
in the CMU Communicator Spoken Dialogue System, Carnegie
Mellon University.
Bohus, D. and A. I. Rudnicky 2009. The RavenClaw dialog
management framework: Architecture and systems. Computer
Speech and Language 23(3): 332-361.
Hall, M. A. 2000. Correlation-based Feature Selection for

Discrete and Numeric Class Machine Learning. 17th International
Conference on Machine Learning: 359-366.
Huggins-Daines, D., M. Kumar, A. Chan, A. W. Black, M.
Ravishankar and A. Rudnicky 2008. Pocketsphinx: A Free, Real-
Time Continuous Speech Recognition System for Hand-Held
Device. International Conference on Acoustics, Speech and
Signal Processing (ICASSP): 185-189.
Kohavi, R. and G. H. John 1997. Wrappers for feature subset
selection. Artificial Intelligence 97(1-2): 273-324.
Ligorio, T. 2011. Feature Selection for Error Detection and
Recovery in Spoken Dialogue Systems. Computer Science. The
Graduate Center of The City University of New York. Ph.D.
Ligorio, T., S. L. Epstein, R. J. Passonneau and J. B. Gordon
2010. What You Did and Didn’t Mean: Noise, Context, and
Human Skill. Cognitive Science - 2010.
Litman, D. J., M. A. Walker and M. S. Kearns 1999. Automatic
detection of poor speech recognition at the dialogue level. I. In
Proceedings of Thirty Seventh Annual Meeting of the Association
for Computational Linguistics (ACL), 309-316.
Passonneau, R. J., S. L. Epstein and J. B. Gordon 2009a. Help Me
Understand You: Addressing the Speech Recognition Bottleneck.
AAAI Spring Symposium on Agents that Learn from Human
Teachers. Palo Alto, CA, AAAI.
Passonneau, R. J., S. L. Epstein, J. B. Gordon and T. Ligorio
2009b. Seeing What You Said: How Wizards Use Voice Search
Results. IJCAI-09 Workshop on Knowledge and Reasoning in
Practical Dialogue Systems. Pasadena, CA, AAAI Press.
Passonneau, R. J., S. L. Epstein, T. Ligorio, J. Gordon and P.
Bhutada 2010. Learning About Voice Search for Spoken
Dialogue Systems. NAACL HLT 2010: 840-848.
Ratcliff, J. W. and D. Metzener 1988. Pattern Matching: The
Gestalt Approach, Dr. Dobb's Journal.
Rieser, V. and L. O. 2011. Learning and evaluation of dialogue
strategies for new applications: Empirical methods for
optimization from small data sets. Computational Linguistics 37:
153–96.
Seneff, S., E. Hurley, R. Lau, C. Pao, P. Schmid and V. Zue
1998. Galaxy II: A reference architecture for conversational
system development. 5th International Conference on Spoken
Language Systems (ICSLP-98). Sydney, Australia.
Singh, S., D. J. Litman, M. Kearns and M. Walker 2002.
Optimizing dialogue management with reinforcement learning:
Experiments with the njfun system. Journal of Artificial
Intelligence Research.
Skantze, G. 2005. Exploring Human Error Recovery Strategies:
Implications for Spoken Dialogue Systems Speech
Communication, Special Issue on Speech Annotation and Corpus
Tools 45(3): 207-359.
Traum, D. and S. Larsson 2003. The information state approach
to dialogue management. Advances in Discourse and Dialogue.
Kuppevelt, J. v. and R. Smith. Amsterdam, Kluwer.
Walker, M. A., C. A. Kamm and D. Litman, J. 2000. Towards
developing general models of usability with PARADISE. Natural
Language Engineering: Special Issue on Best Practice in Spoken
Dialogue Systems 6(3-4): 363-377.
Ward, W. and S. Issar 1994. Recent improvements in the CMU
spoken language understanding system. ARPA Human Language
Technology Workshop. Plainsboro, NJ: 213-216.

