
Random Subsets Support Learning a Mixture of Heuristics
Smiljana Petrovic1 and Susan L. Epstein1,2

1Department of Computer Science, The Graduate Center of The City University of New York, NY, USA
2Department of Computer Science, Hunter College and The Graduate Center of The City University of New York, NY, USA

spetrovic@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
Problem solvers, both human and machine, have at their
disposal many heuristics that may support effective search.
The efficacy of these heuristics, however, varies with the
problem class, and their mutual interactions may not be well
understood. The long-term goal of our work is to learn how
to select appropriately from among a large body of heuris-
tics, and how to combine them into a mixture that works
well on a specific class of problems. The principal result re-
ported here is that randomly chosen subsets of heuristics can
improve the identification of an appropriate mixture of heu-
ristics. A self-supervised learner uses this method here to
learn to solve constraint satisfaction problems quickly and
effectively.

Introduction
A good combination of heuristics can outperform even the
best individual heuristic. Even well-trusted individual heu-
ristics vary dramatically on their performance on different
classes. Some traditionally good heuristics actually per-
form quite poorly compared to their duals (opposites) when
the problems have specific structure. It is difficult to pre-
dict which heuristics will perform best on a set of prob-
lems. Hence, we argue for the selection of a mixture of
heuristics from among a large, contradictory set.

Nonetheless, learning with a large, inconsistent set of
heuristics presents considerable challenges. A self-
supervised learner that gleans its training instances from
problem traces requires solved problems. If such a learner
is forced to work within a resource limit, and with many
search heuristics of uncertain quality, it is put at a consid-
erable disadvantage. Rather than use all the heuristics at
once, our method consults a new, randomly-selected subset
of them for each learning problem. As a result, the solver
learns effective combinations of heuristics for challenging
problems under a reasonable resource limit. The thesis of
this work is that randomly chosen subsets from a large pool
of general, potentially inappropriate heuristics, can support
the creation of a small, weighted mixture of heuristics that
effectively guides search. Our principle result is a demon-
stration of this idea in heuristic-guided global search to
solve constraint satisfaction problems.

After a review of constraint satisfaction and related
work, we describe how mixtures of preference heuristics
are learned. Subsequent sections describe the potential
benefits of learning from subsets of a large set of heuris-
tics, describe our experiments, and discuss the results.

Constraint satisfaction problems
A constraint satisfaction problem (CSP) is a set of vari-
ables, their associated domains, and a set of constraints,
expressed as relations over subsets of those variables. A
solution to a CSP is an instantiation of all its variables that
satisfies all the constraints. A binary CSP has constraints
on at most two variables. Such a CSP can be represented as
a constraint graph, where vertices correspond to the vari-
ables (labeled by their domains), and each edge represents
a constraint between its respective variables. Constraint
satisfaction search heuristics either select the next variable
to be assigned a value (variable-ordering heuristics) or the
next value to assign to that variable (value-ordering heu-
ristics).

A class is a set of CSPs with the same characterization.
For example, binary CSPs in model B are characterized by
<n,!m,!d,!t>, where n is the number of variables, m the
maximum domain size, d the density (fraction of edges out
of n(n-1)/2 possible edges) and t the tightness (fraction of
possible value pairs that each constraint excludes) (Gomes,
Fernandez, et al., 2004). A class can also mandate some
non-random structure on its problems. For example, a
composed problem consists of a subgraph called its central
component loosely joined to one or more subgraphs called
satellites (Aardal, Hoesel, et al., 2003).

Finding a CSP solution is an NP-complete problem; the
worst-case cost is exponential in n for any known algo-
rithm. Often, however, a CSP can be solved with a cost
much smaller than the worst case. CSPs in the same class
are ostensibly similar, but there is evidence that their diffi-
cultly may vary substantially for a given search algorithm
(Hulubei and O’Sullivan, 2005).

Related work
There are several reasons why a combination of heuristics
can offer improved performance, compared to a single ex-
pert (Valentini and Masulli, 2002). There may be no single
heuristic that is best on all the problems. A combination of
heuristics could thus enhance the accuracy and reliability
of the overall system. On limited training data, different
candidate heuristics may appear equally accurate. In this
case, one could better approximate the unknown, correct
heuristic by averaging or mixing candidates, rather than
selecting one (Dietterich, 2000). The performance of algo-
rithms that combine experts (equivalent in this context to

heuristics) has been theoretically analyzed for supervised
learning compared to the best individual expert (Kivinen
and Warmuth, 1999). Under the worst-case assumption,
even when the best expert is unknown (in an online set-
ting), mixture-of-experts algorithms have been proved as-
ymptotically close to the behavior of the best expert
(Kivinen and Warmuth, 1999).

Randomization is common in CSP search. Randomly
selected points diversify local search to try to escape local
minima (Selman, et al., 1996). Global search restarts with a
degree of randomness to compensate for heavy tails in the
search cost distribution (Gomes, Selman, et al., 2000).
Randomness can be introduced to break ties in variable and
value selection, to decide whether to apply inference pro-
cedures after a value assignment, or to select a backtrack
point (Gomes, 2003; Lynce, Baptista, et al., 2001).

 Solving with a mixture of heuristics
When ACE (the Adaptive Constraint Engine) learns to
solve a class of CSPs, it customizes a weighted mixture of
heuristics for the class (Epstein, Freuder, et al., 2005). ACE
is based on FORR, an architecture for the development of
expertise from multiple heuristics (Epstein, 1994). Heuris-
tics are implemented by procedures called Advisors.

The search algorithm (in Figure 1) alternately selects a
variable and then selects a value for it from its domain. The
size of the resultant search tree depends upon the order in
which values and variables are selected. Each Advisor can
comment upon any number of choices (variables or values),
and each comment has a strength that indicates its degree
of support for the choice. For example, if an Advisor is
given {A, B, C} and comments {(10,!A), (9, C)}, it prefers
A to C and does not recommend B. The Advisors refer-
enced in this paper are described in the appendix.

After a value assignment, some form of inference detects
values that are incompatible with the current instantiation.
Here we use the MAC-3 algorithm to maintain arc consis-

tency during search (Sabin and Freuder, 1994). MAC-3
temporarily removes currently unsupportable values to
calculate dynamic domains that reflect the current instan-
tiation. If every value in any variable’s domain is incon-
sistent, the current partial instantiation cannot be extended
to a solution, so some retraction method is applied. Here
we use chronological backtracking: the subtree (digres-
sion) rooted at an inconsistent node is pruned, and the most
recent value assignment(s) withdrawn.

ACE’s Advisors are organized into three tiers. The deci-
sion-making described here focuses on the heuristic Advi-
sors in tier 3. When a decision is passed to tier 3, all its
Advisors are consulted together, and a selection is made by
voting: the action with the greatest sum of weighted
strengths over all the comments is executed.
 Each tier-3 Advisor’s heuristic view is based on a de-
scriptive metric. For each metric, there is a dual pair of
Advisors, one that favors smaller values for the metric and
one that favors larger values. Typically, one Advisor from
each pair is reported as a good heuristic in the CSP litera-
ture, but ACE implements both of them. Two benchmark
Advisors, one for value selection and one for variable se-
lection, generate random comments as a lower bound for
performance and are excluded from decision making.

Learning from search experience
Given a class of problems, ACE's goal is to select Advisors
and learn weights for them so that the decisions supported
by the largest weighted combination of strengths lead to
effective search. ACE uses a weight-learning algorithm to
update its weight profile, the set of weights for its tier-3
Advisors. As in Figure 2, the learner gleans training in-
stances from its own (likely imperfect) successful searches,
and uses them to refine its search algorithm before it con-
tinues to the next problem. Positive training instances are
those made along an error-free path extracted from a solu-
tion trace. Negative training instances are value selections
at the root of a digression, as well as variable selections
whose subsequent value assignment fails. Decisions made
within a digression are not considered.

ACE does a form of self-supervised reinforcement
learning. The only information available to it comes from

Figure 2: The extraction of positive and negative train-
ing instances from the trace of a successful CSP search.
Squares are variable selections, circles are value selec-
tions.

Search (p, Avar , Aval)
Until problem p is solved or resources exhausted

Select unvalued variable v

Select value d for variable v from v’s domain Dv

 Correct domains of all unvalued variables *inference*
 Unless domains of all unvalued variables are non-empty

 return to a previous alternative value *retraction*

Figure 1: Search with a weighted mixture of heuristics
from A. w(A) is the weight of Advisor A; s(A, v) is the sup-
port of Advisor A for a choice v.

Digression

Positive
training
instances

Negative
training
instances

†

v = argmax
v ŒV

w(A) ⋅ s(A,v)
A ŒAvar

Â

†

d = argmax
a ŒDv

w(A) ⋅ s(A,a)
A ŒAval

Â

its limited experience as it finds one solution to a problem.
This approach is problematic for several reasons. Without
supervision, we must somehow declare what constitutes
correct decisions. Clearly, the value selection at the root of
any digression is wrong. (Of course, that failure may be the
result of some earlier decision.) Given correct value selec-
tions, however, any variable ordering can produce a back-
track-free solution. Thus the quality of a variable selection
really reflects the subsequent search performance. Here, a
variable selection is considered correct if no value assign-
ment to that variable subsequently failed. Moreover, there
is no guarantee that some other solution could not be found
much faster, if even a single decision were different. Fi-
nally, a particular Advisor may be incorrect on some deci-
sions that resulted in a large digression, and still be correct
on many other decisions in the same problem.

The weight learning algorithm used here is a variation on
RSWL (Relative Support Weight Learning), developed for
ACE (Petrovic and Epstein, 2006b). The relative support
of an Advisor for a choice is the normalized difference
between the strength the Advisor assigned to that choice
and the average strength it assigned to all available choices.
Under RSWL, an Advisor is deemed to support an action if
its relative support for that action is positive. RSWL cal-
culates credits and penalties based on relative support.
RSWL also estimates how constrained the problem was at
the time of the training instance, in the spirit of (Gent,
Prosser, et al., 1999). To reduce computational overhead
here, we simply use the number of available choices. Our
rationale is that the penalty for making an incorrect deci-
sion from among only a few choices should be larger than
the penalty from among many.

Motivation for using a large set of heuristics
The choice of appropriate heuristics from the many touted
in the constraint literature is non-trivial. Even well-trusted
individual heuristics vary dramatically in their performance
on different classes. Consider, for example, the non-
uniform performance in Table 1, as measured by average
steps (variable selections or value selections). Traditional,
off-the-shelf heuristics were used individually on 20 prob-
lems from each of 2 challenging classes. (Definitions for
all heuristics appear in the appendix.) Max degree does
about half as much work as Min domain on the first class,

but more work on the second.
Some traditionally good heuristics actually perform quite

poorly compared to their duals (opposites) when the prob-
lems have non-random structure. Consider, for example,
the performance of 3 pairs of duals on 100 class C prob-
lems in Table 2. Here, class C problems are composed,
with a central component in <22,!6,!0.6,!0.1>, one satellite
in <8,!6,!0.72,!0.45>, and links between them with density
0.115 and tightness 0.05. The traditionally good heuristic
Max degree fails to find any solution to 19 problems within
10,000 steps, while its dual solves all the problems suc-
cessfully. In several real-world problems a dual has also
been shown superior to the traditional heuristic (Petrie and
Smith, 2003; Otten, Grönkvist, et al., 2006; Lecoutre,
Boussemart, et al., 2004). To achieve good performance,
therefore, it is advisable to consider both the maximizing
and minimizing versions of a heuristic’s metric.

A good combination of heuristics can outperform even
the best individual heuristic, as Table!3 demonstrates. In-
deed, a good pair of heuristics, one for variable selection
and the other for value selection can perform significantly
better than an individual one. (Note too that some combi-
nations of traditionally good heuristics are far better than
others.) The last line of Table 3 demonstrates that combi-
nations of more than two heuristics can further improve
performance.

Updating one subset of Advisors at a time
As illustrated, it is difficult to predict which heuristics will
perform best on a set of problems. If one begins with a
large initial list of heuristics, it probably contains many that
perform poorly on a particular class of problems (class-
inappropriate heuristics) and others that perform well

Table 1: Individual heuristic search performance on two
classes of challenging problems.

 <20, 30, .444, .5> <50, 10, .38, .8>
Individual heuristics Steps Steps

Min domain 14,404.00 52,387.30
Max degree 7,690.10 58,408.65
Max forward degree 16,119.85 48,364.15
Min dom/degree 5,337.60 41,033.70
Min dom/dynamic degree 4,989.15 36,508.05
Min dom/weighted degree 5,325.75 36,212.40

Table 2: Performance of traditionally good heuristics (in
italics) and their duals on 100 composed class C problems.

Heuristic
Unsolved
problems Steps

Max degree 19 2,117.03
Min degree 0 64.72
Max forward-degree 10 1,144.42
Min forward-degree 0 64.49
Min domain/degree 17 1,964.40
Max domain/degree 9 1,000.88

Table 3: Mixture of heuristics search performance on two
classes of challenging problems

 <20, 30, .444, .5> <50, 10, .38, .8>
Mixtures Steps Steps

Min dom/weighted degree +
Max Product Domain Value 3,447.05 14,282.70

Min dom/ dynamic degree +
Max Small Domain Value 3,923.35 31,445.40
A 12-heuristic mixture
found by ACE 3,127.30 8,554.80

(class-appropriate heuristics). On challenging problems,
learning with all these heuristics presents two difficulties
for the self-supervised learner. First, many class-
inappropriate heuristics may combine to make bad choices,
and thereby make it difficult to solve the problem within a
reasonable step limit. Because only solved problems pro-
vide training instances for weight learning, no learning
takes place until some problem is solved. Second, class-
inappropriate heuristics occasionally acquire high weights
when an initial problem is easy, and then control subse-
quent decisions, so that either the problems go unsolved or
the class-inappropriate heuristics receive additional re-
wards. ACE is able to recover (correct weights) gradually
from such a situation, but recovery is faster under full re-
start, where ACE recognizes that its current learning at-
tempt is not promising, abandons the responsible training
problems, and restarts the entire learning process (Petrovic
and Epstein, 2006a). In this paper, ACE has recourse to full
restart, but rarely resorts to it.

Learning from random subsets is a new approach (in
Figure 3) that addresses both these issues in self-supervised
learning. For each problem, ACE randomly selects a new
subset of all the Advisors (here, a random subset), consults
them, makes decisions based on their comments, and up-
dates only their weights. Our premise is that eventually a
random subset with a majority of class-appropriate heuris-
tics will solve some problem, and that further learning from
random subsets will produce an adequate weight profile for
challenging problems. Initially, all Advisors’ weights are
set to 0.05.

Under a reasonable resource limit, when class-
inappropriate heuristics predominate in a random subset,
the problem is unlikely to be solved and no learning will
occur. When class-appropriate heuristics predominate in a
random subset S and they solve the problem, all partici-
pating Advisors will have their weights adjusted. On the
next problem, the new random subset S¢ likely contains
some new, low-weight Advisors and some reselected from

S. Any previously-successful Advisors from S that are se-
lected for S¢ will have larger positive weights than the other
Advisors, and will therefore heavily influence decisions
during search. If S succeeded because it contained more
class-appropriate than class-inappropriate heuristics, S « S¢
is also likely to have more class-appropriate heuristics and
thereby solve the new problem, so again those that partici-
pate in correct decisions will be rewarded. On the other
hand, in the less likely case that the majority of S«S¢ con-
sists of reinforced, class-inappropriate heuristics, the prob-
lem will likely go unsolved, and the class-inappropriate
heuristics will not be rewarded further. In the rare case of
repeated failure, RSWL resorts to full restart for recovery.

Any reduction in overall computation time here results
mostly from the exploration of fewer partial instantiations.
Individual decision time is not directly proportional to the
number of selected Advisors. This is primarily because a
pair of Advisors that minimize or maximize the same met-
ric share the same major computational cost: calculating
their common metric. For example, the bulk of the work
for Min Product Domain Value lies in its one-step looka-
head: calculating the products of the domain sizes of the
neighbors after each potential value assignment. Consult-
ing only Min Product Domain Value and not Max Product
Domain Value will therefore not significantly reduce com-
putational time. Moreover, the metrics for some Advisors
are based upon metrics already calculated for others. For
example, dynamic domain/weighted-degree is based on
weighted degree and dynamic domain, and is therefore
relatively inexpensive if those metrics are in use by other
Advisors.

Experimental design
We tested learning from random subsets on two CSP
classes that are particularly difficult for their size (n and
m). (Indeed, some of them appeared in the First Interna-
tional Constraint Solver Competition at CP-2005.)
<50,!8,!0.38,!0.8> has many variables and relatively small
domains; <20,!30,!0.444,!0.5> has fewer variables but
larger domains. We also tested on problems from class C
(defined earlier) and the somewhat easier
<30,!8,!0.31,!0.34>.

A run in ACE is a learning phase followed by a testing
phase. During learning, failure on 7 of the last 13 tasks
triggered a full restart. At most 2 full restarts were permit-
ted; after 20 problems that did not trigger a restart, the
learning phase terminated. Problems were not reused dur-
ing learning, even with full restart. During ACE’s testing
phase it attempts to solve a sequence of fresh problems
with learning turned off, using only those Advisors whose
weight exceeds that of their respective benchmarks. For
each problem class, every testing phase used the same 20
problems. (The same problems were also used in Tables 1
and 3.) In <50,!8,!0.38,!0.8>, the step limits on individual
problems were 100,000 during both the learning and test-
ing phases. For the problems in <20,!30,!0.444,!0.5>, which
are somewhat easier, the step limit was 10,000 during

LearnFromRandomSubsets
Until termination of the learning phase

Identify learning problem p
Generate or accept x and y in [0,1]
Randomly select subset Svar of x variable Advisors from A
Randomly select subset Sval of y value Advisors from A
Search (p, Svar, Sval)
If p is solved
 for each training instance t from p

for each Advisor A such that s(A, t) > 0
 when t is a positive training instance

 increase w(A) *reward*
 when t is a negative training instance

 decrease w(A) *penalize*
else when full restart criteria are satisfied
 initialize all weights to 0.05

Figure 3: Learning with random subsets of Advisors from
A. The Search algorithm is defined in Figure 1.

learning, and 100,000 during testing.
In these experiments, ACE began with 42 tier-3 Advi-

sors, described in the appendix: 28 for variable ordering
and 14 for value ordering. There were three types of ex-
periments for each class; each with a different way to
choose the heuristics applied to each problem:
• Use all the Advisors on every problem.
• Choose a fixed percentage f of the variable-ordering Ad-
visors and f of the value-ordering Advisors, without re-
placement. We tested both f = 0.3 and f = 0.7.
• For each problem, select a random percentage r in
[0.2,!0.8]. Choose r of the variable-ordering Advisors and r
of the value-ordering Advisors, without replacement.
All results reported here are averaged over 5 runs.

Results
ACE with RSWL could find an initial solution and then go
on to learn successfully both in composed class C and in
<30,!8,!0.31,!0.34>. They served only to confirm that
learning with random subsets does not harm performance
on problem classes where it is unnecessary. (Details omit-
ted.)

In <50,!8,!0.38,!0.8> and <20,!30,!0.444,!0.5>, however,
when all the Advisors were included on every learning
problem, there were often many consecutive unsolved
problems before the first weights could be learned. We
report here on the percentage of learning problems that
went unsolved, and the percentage unsolved before any
weights had been learned (early failures). We also report
the percentage of problems that went unsolved during
testing (out of 20), and the number of steps across all test-
ing problems.

Table 4 demonstrates the difficulties in learning on hard
problems with a large body of heuristics, when all the Ad-
visors are consulted. In the first, fourth and fifth runs, after
some failures, the learner was able to solve a problem,
learn weights and achieve good testing performance. The
second run produced high weights for class inappropriate
heuristics, and did not recover, so testing performance was
poor. In the third run, not a single problem was solved
during learning. With the resultant unweighted combina-
tion of all 42 Advisors, 65% of the testing problems went
unsolved. Experiments with more frequent full restarts

produced better overall performance, but still did not
eliminate inadequate runs. (Data omitted.)

Table 5 demonstrates the advantages of learning from
random subsets. When Advisors were randomly selected
for each task, performance improved: there were no inade-
quate runs, and the percentage of unsolved problem and the
percentage of early failures was reduced. Table 5 also indi-
cates how the size of the random subsets affects perform-
ance in both classes. More learning problems go unsolved
with smaller (30% vs. 70%) random subsets, probably be-
cause the overlap among random subsets is smaller.

On the harder <50,!8,!0.38,!0.8> class, with random sub-
sets of 70%, the relatively high average decision steps on
testing problems was due to a single run in which the vari-
able Advisors received weights very similar to those in
successful runs, but the value Advisors did not recover
from incorrect initial weights. Because the variable-
ordering weight profile was good, enough learning prob-
lems were solved to complete the phase. This was the only
occasion on which such behavior developed.

One issue with the use of random subsets is how to de-
termine a good subset size. When a random subset is too
small, even if class-appropriate heuristics receive high
weights, subsequent random subsets may not include any
of them. On the other hand, if we assume that there are
many more class-inappropriate than class-appropriate heu-
ristics, a random subset that is too large may never have a
majority of class-appropriate heuristics, and thus rarely
solve problems. The experiments that permitted the size of
the random subset to vary within [0.2, 0.8] during learning
show no negative effect on either learning or testing per-
formance. Moreover, on <50,!8,!0.38,!0.8> they produced
the best testing performance. Our intuition is that, with
varying subset size, the smaller subsets ensure that one
with a majority of class-appropriate heuristics is eventually
selected, while the large subsets give more Advisors an
opportunity to participate.

Another issue is how to synchronize the influences of
variable and value Advisors. There remains the possibility
that highly weighted, class-appropriate variable Advisors
solve the problem, but class-inappropriate value heuristics

Table 4: When all Advisors are referenced, learning on
<20,!30,!0.444,!0.5> problems can perform poorly.

Learning Testing

Run Unsolved
Early

failures Unsolved Steps

Run 1 30.00% 25.00% 0% 4,065.10
Run 2 87.50% 50.00% 90% 95,334.15
Run 3 100.00% 100.00% 65% 75,675.50
Run 4 40.74% 37.04% 0% 4,791.40
Run 5 4.76% 0.00% 0% 4,312.35

Table 5: Learning with different participating Advisors
subsets. (*) indicates that only 2 runs were completed.

Learning Testing

Class
Subset

size Unsolved
Early

failures Unsolved Steps

100% 52.60% 42.41% 31% 36,835.70
30% 32.20% 11.89% 0 % 3,608.27
70% 14.56% 9.48% 0 % 3,962.62

20
 3

0
.4

44
 .5

20%-80% 24.37% 7.72% 0 % 3,888.62

100% (*) 93.38% 58.10% 97.5% 97,972.85
30% 31.64% 26.63% 1 % 15,599.71
70% 26.45% 23.27% 10 % 23,499.99

50
 1

0
.3

8
.8

20%-80% 27.43% 20.29% 0% 13,206.32

are also reinforced.
We are currently examining other parameters for learn-

ing from random subsets. These include the learning step
limit, the termination criteria for learning, full restart pa-
rameters and the constrainedness of the problem class.
Particular attention will be paid to the size of the initial set
of Advisors and synergies among them, given the “prom-
ise” and “fail-first” policies studied by (Wallace, 2006).
Another approach would be to select Advisors probabilisti-
cally, based on their current weights. This would increase
the likelihood that successful Advisors would be rese-
lected. We intend to use boosting to ensure that learning is
not limited to easy problems (Schapire, 1990).

We also plan to explore ways to eliminate underper-
forming Advisors during learning. Meanwhile, we have
demonstrated that random subset learning performs signifi-
cantly better than learning with a large set of Advisors. It
manages a substantial set of heuristics, most of which may
be class-inappropriate and contradictory. Learning with
random subsets relieves the user of the burden of selecting
search heuristics for a solver, an important step toward
automated problem solving.

Appendix
The metrics underlying ACE’s heuristic tier-3 Advisors
were drawn from the CSP literature. Each metric produces
a dual pair of Advisors. All are computed dynamically,
except where noted. The degree of an edge is the sum of
the degrees of the variables incident on it.

Variable selection metrics were static degree, dynamic
domain size, FF2 (Smith and Grant, 1998), dynamic de-
gree, number of valued neighbors, ratio of dynamic domain
size to dynamic degree,!ratio of dynamic domain size to
degree,!number of acceptable constraint pairs, edge degree
(sum of degrees of the edges on which it is incident) with
preference for the higher/lower degree endpoint, weighted
degree, and ratio of dynamic domain size to weighted de-
gree (Boussemart, Hemery, et al., 2004).

Value selection metrics were number of value pairs on
the selected variable that include this value, and, for each
potential value assignment: minimal resulting domain size
among neighbors, number of value pairs from neighbors to
their neighbors, number of values among neighbors of
neighbors, neighbors’ domain size, a weighted function of
neighbors’ domain size, and the product of the neighbors’
domain sizes.

 References
 Aardal, K. I., S. P. M. v. Hoesel, A. M. C. A. Koster, C.

Mannino and A. Sassano (2003). Models and solution
techniques for frequency assignment problems. 4OR: A
Quarterly Journal of Operations Research 1(4): 261-317.

Boussemart, F., F. Hemery, C. Lecoutre and L. Sais
(2004). Boosting Systematic Search by Weighting Con-
straints. ECAI-2004, pp. 146-150.

Dietterich, T.G. (2000). Ensemble methods in machine
learning. CP-2000, 1-15 Cagliari, Italy,

Epstein, S. L. (1994). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18: 479-511.

Epstein, S. L., E. C. Freuder and R. Wallace (2005).
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.

Gent, I. P., P. Prosser and T. Walsh (1996). The Con-
strainedness of Search. AAAI/IAAI 1: 246-252.

Gomes, C. (2003). Complete Randomized Backtrack
Search. In Constraint and Integer Programming: Toward
a Unified Methodology, pp. 233-283, Kluwer.

Gomes, C., C. Fernandez, B. Selman and C. Bessiere
(2004). Statistical Regimes Across Constrainedness Re-
gions. CP-2004, pp. 32-46, Springer, Toronto, Canada.

Gomes, C. P., B. Selman, N. Crato and H. Kautz (2000).
Heavy-Tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems. Journal of Automated Reasoning:
67–100.

Hulubei, T. and B. O’Sullivan (2005). Search Heuristics
and Heavy-Tailed Behavior. CP-2005, pp. 328-342.

Kivinen, J. and M. K. Warmuth (1999). Averaging expert
predictions. EuroCOLT-99, pp. 153-167.

Lecoutre, C., F. Boussemart and F. Hemery (2004). Back-
jump-based techniques versus conflict-directed heuris-
tics. ICTAI-2004: 549–557.

Lynce, I., L. Baptista and J. Marques-Silva (2001). Sto-
chastic systematic search algorithms for satisfiability.
LICS Workshop on Theory and Applications of Satisfi-
ability Testing (LICS-SAT 2001).

Otten, L., M. Grönkvist and D. P. Dubhashi (2006). Ran-
domization in Constraint Programming for Airline Plan-
ning. CP-2006, pp. 406-420, Nantes, France.

Petrie, K. E. and B. M. Smith (2003). Symmetry breaking
in graceful graphs. CP-2003, pp. 930-934, LNCS 2833.

Petrovic, S. and S. L. Epstein (2006a). Full Restart Speeds
Learning. FLAIRS-06, Melbourne Beach, Florida.

Petrovic, S. and S. L. Epstein (2006b). Relative Support
Weight Learning for Constraint Solving. AAAI Workshop
on Learning for Search, pp. 115-122, Boston, MA

Sabin, D. and E. C. Freuder (1994). Contradicting Con-
ventional Wisdom in Constraint Satisfaction. ECAI-1994,
pp. 125-129.

Schapire, R. E. (1990). The strength of weak learnability.
Machine Learning 5(2): 197-227.

Selman, B., H. Kautz and B. Cohen (1996). Local search
strategies for satisfiability testing. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science
26: 521-532.

Smith, B. and S. Grant (1998). Trying Harder to Fail First.
ECAI-1998. pp. 249-253.

Valentini, G. and F. Masulli (2002). Ensembles of learning
machines. Neural Nets WIRN Vietri-02

Wallace, R. J. (2006). Analysis of heuristic synergies. Re-
cent Advances in Constraints. Joint ERCIM/CologNet
Workshop in Constraint Solving and Constraint Logic
Programming.

