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Abstract 
A Wizard-of-Oz experiment investigates how voice search 
could affect dialogue management strategies. The study design 
has two novel components. First, a single turn exchange is ex-
amined, rather than a full dialogue. Second, wizards partner 
with a dialogue system, so internal system features unavailable 
to the wizard can be used to model wizard actions. Wizards 
see the output of automated speech recognition (ASR) for a 
book title request, plus a ranked list of candidate titles from a 
backend query. The features that contribute most to a regres-
sion model of the wizards’ actions prove to be the utterance 
level confidence score on the ASR, and the backend return 
type. People who compare ASR strings to candidate titles can 
select the correct one if it is there, and do so more confidently 
when the backend return has higher confidence. 

Introduction 
For at least the past decade, the quality of automated speech 
recognition (ASR) within spoken dialogue systems (SDSs) 
has been acknowledged as a limiting factor for user satisfac-
tion, task success and other measures of performance 
(Litman, Walker and Kearns, 1999; Walker et al., 1997). In-
formation-seeking and transaction-based systems (Georgila, 
et al. 2003, Johnston, et al. 2002, Levin, et al. 2000, Raux, et 
al. 2006, Zue, et al. 2000) query a backend database for in-
formation or to perform actions. The dialogue manager typi-
cally maintains system initiative, and aims for short, unambi-
guous user utterances through carefully designed prompts. 
This supports maximally accurate backend queries while 
minimizing clarification subdialogues. CheckItOut, a transac-
tion-based SDS that handles telephone requests for library 
books, is a mixed initiative system. It accesses a library data-
base where the mean length of the book title field is five 
words and the median is nineteen. Multiword book titles in 
the context of book request dialogue acts present an unusual 
challenge for SDS, particularly with mixed initiative. To ad-
dress this challenge, we query the backend with ASR for 
book titles, rather than a semantic interpretation resulting 
from a natural language understanding phase. This amounts 
to integrating voice search into SDS.  
 This paper presents preliminary results of an experiment 
investigating how voice search could affect dialogue man-
agement strategies. The principal findings pertain to three 

cases of backend return. Humans who compare ASR strings 
to candidate book titles are justifiably confident in selecting a 
title when the backend return has high confidence. When the 
backend has only moderate confidence, our subjects select a 
title with justifiably less confidence. When the backend re-
turn has low confidence, subjects correctly select a title only 
about a third of the time, and are tentative when they do so. 
 Voice search has been investigated primarily to access the 
web via mobile devices (Franz & Milch 2002; Paek & Yu 
2008). In our experiment, ASR output is used to query a da-
tabase of book titles. Often only a few returned titles (candi-
dates) will both be roughly the same length as the ASR string 
and match one or more content words (i.e., nouns, verbs, 
adverbs and adjectives). For example, for the title Billy 
Phelan’s Greatest Game, the ASR output in our experiment 
was “billies villains greatest.” A simple 
query method using that string returned three candidate titles: 
  • Billy Phelan’s Greatest Game 
  • Baseball’s Greatest Games 
  • More like Us: Making America Great Again 
Our subjects’ task is to guess which of the candidates re-
turned by the backend query is correct, if any, and to formu-
late a question if they cannot select a candidate.  
  The experiment described here relies on the Wizard of Oz 
(WOz) paradigm. In WOz studies, a human subject interacts 
with a wizard, whom she believes to be a computer but is 
actually a person. Our subjects perform as wizards or as 
mock callers, using a graphical user interface (GUI) rather 
than a telephone. This work employs two novel adaptations 
of WOz. First, we examine a single turn exchange, compara-
ble to the well-known notion of adjacency pair (Sacks, 
Schegloff and Jefferson, 1974), rather than a full dialogue. 
Second, wizards operate as partners with our dialogue sys-
tem, which allows us to model their behavior with system-
internal features unavailable to wizards, as well as with fea-
tures representing the wizards’ dialogue state. 
 After an overview of related work, this paper describes 
CheckItOut and three types of subdialogue likely to arise 
with voice search around book title requests. Subsequent 
sections describe the experimental design and results of the 
experiment, particularly  the factors that account for wizards’ 
decisions. The final two sections discuss implications for 
future work and summarize the contributions presented here.  



Related Work  
ASR quality, as measured by word error rate (WER), typi-
cally falls in the range [0.25, 0.65], depending upon such 
factors as vocabulary size, perplexity of the language model, 
and diversity of the user population by gender, age, and na-
tive language. The impact of WER on SDS performance can 
also vary considerably, depending on whether the system 
maintains initiative and on the design of system prompts. 
CMU’s Let’s Go!, which provides bus route information to 
the public from data provided by the Port Authority of Alle-
gheny County, maintains system initiative. The average WER 
reported in (Raux et al., 2005) was 0.60, due in part to a user 
population that included elderly and non-native speakers, and 
in part to the conditions under which users access the system. 
Callers often called from noisy street locations, or from in-
door locations with background noise, such as televisions 
 Approaches to error-ridden ASR either try to improve the 
recognizer’s data or algorithms, for example through speaker 
adaptation (Raux, 2004), or try to compensate for transcrip-
tion errors through error handling dialogue strategies (Bohus, 
2004). For the directory service application in (Georgila et 
al., 2003), users spell the first three letters of surnames, and 
ASR results are expanded using frequently confused phones. 
(Stoyanchev and Stent, 2009) add a two-pass recognition 
architecture to Let’s Go! to improve concept recognition in 
post-confirmation user utterances.  
 Turn segmentation and disfluencies also affect recognizer 
performance. A long pause, for example, is likely to be inter-
preted as the end of the speaker’s turn, even if it occurs 
within the utterance of a long book title. The Let’s Go! archi-
tecture now has an explicit representation of the conversa-
tional floor, the real-time events that take place when speak-
ers seize or cede the next turn (Raux and Eskenazi, 2007). To 
detect utterance boundaries, an interaction manager uses in-
formation from the speech recognizer, a semantic parser, and 
Helios, an utterance-level confidence annotator.  
 The goal of a WOz study is to elicit behaviors likely to 
appear when a system replaces the wizard. Work on the im-
pact of ASR errors in full human-wizard dialogues clearly 
demonstrates that wizards do not aim for full interpretation of 
every utterance (Rieser, Kruijff-Korbayová and Lemon 2005, 
Skantze 2003, Williams and Young 2004, Zollo 1999). Zollo 
collected seven dialogues with different human-wizard pairs 
whose task was to develop an evacuation plan. The overall 
WER was 30% and there were 227 cases of incorrect ASR. 
Nonetheless, wizard utterances indicated a failure to under-
stand for only 35% of them. Instead, wizards ignored words 
not salient in the domain and hypothesized words based on 
phonetic similarity. In another study where both users and 
wizards were treated as subjects, and both knew there was no 
dialogue system, 44 direction-finding dialogues were col-
lected involving 16 subjects (Skantze, 2003). Despite a WER 
of 43%, wizard operators signaled misunderstanding only 5% 
of the time. For the 20% of non-understandings, operators 
continued a route description, asked a task-related question, 
or requested a clarification of what had been said. 
 Simulated ASR controls for the degree of transcription 
errors, allow collection of dialogues without building or tun-

ing a speech recognizer, and can deliberately deprive the wiz-
ard of prosody (Rieser, Kruijff-Korbayová and Lemon, 2005; 
Williams and Young, 2004). A typist transcribes the user 
utterances, and errors are introduced systematically. In 
(Williams and Young, 2004), 144 dialogues were collected 
simulating tourist requests for information, and WER was 
constrained to be high, medium or low. High WER decreased 
full understandings and increased unflagged misunderstand-
ings (where the wizard did not show evidence of detecting 
the misunderstanding). Under medium WER, a task-related 
question in response to non-understanding or misunderstand-
ing more often led to full understanding in the next wizard 
turn than a repair did. Under high WER, when wizards fol-
lowed a non-understanding or misunderstanding with a task-
related question instead of a repair, unflagged misunderstand-
ing significantly increased. 
 The present experiment is a step towards wizard ablation, 
described in (Levin and Passonneau, 2006), in which the 
wizard relies on system inputs or outputs, rather than human 
ones. The hypothesis is that behaviors elicited from wiz-
ard/subject pairs in an ablated wizard study will be more per-
tinent for investigating dialogue strategies given the current 
state-of-the art in component technologies, such as speech 
recognition. Here we ablate the input channel to the wizard, 
so that the wizard has access only to the output of the speech 
recognizer, not the caller’s speech. 
 In an offline pilot study for this experiment (Passonneau, 
Epstein and Gordon, 2009), three speakers each read fifty 
book titles to generate three sets of ASR transcription. Each 
set was presented to one of three wizards who were asked to 
find the correct title by searching a plain text file of more 
than 70,000 titles. WER ranged from 0.69 to 0.83, depending 
on the speaker. Despite this high WER, on average wizards 
were able to find the correct title 74% of the time. 
 The current experiment provides a benchmark for the per-
formance of voice search techniques within the context of 
CheckItOut, and data on the types of subdialogue to expect 
for book requests by title. Our initial goals are to identify the 
contexts in which wizards perform well at selecting the cor-
rect title, and especially, to characterize the contexts where 
they do not, as these are the contexts likely to benefit the 
most from strategic dialogue management. 

CheckItOut 
CheckItOut handles book requests made to librarians at the 
Andrew Heiskell Braille and Talking Book Library. Heiskell 
is a branch of the New York Public Library and part of the 
National Library System (NLS). Patrons request materials by 
telephone and receive them by mail. Heiskell and other NLS 
libraries could greatly benefit from a system that automates 
some of the borrowing requests. 
 CheckItOut draws on the Olympus/Ravenclaw architecture 
and dialogue management framework (Bohus et al., 2007; 
Bohus and Rudnicky, 2003). Olympus is a domain-
independent dialogue system architecture based upon the 
earlier CMU Communicator (Rudniky, 2000). Ravenclaw 
(Bohus, 2004) is a dialogue management framework that 



separates the domain-dependent task structure from domain-
independent error-handling and clarification strategies. 
Olympus/Ravenclaw has been the basis for about a dozen 
research dialogue systems in different domains.  
 CheckItOut has domain-specific code for the task structure 
of the dialogue. The backend accesses a sanitized version of 
Heiskell’s database of 5028 active patrons, and its full book 
database with 71,166 titles and 28,031 authors. Titles and 
author names contribute 54,448 words to the vocabulary.  
 In a dialogue with CheckItOut, a caller identifies herself, 
requests books, and is told which are available for immediate 
shipment and which will go on reserve. The caller can re-
quest a book by catalogue number, by title, or by author. We 
recorded and transcribed 82 calls to the library. Approxi-
mately 44% of the book requests were by number, 28% by 
title or a combination of title and author, and the remainder 
represented a range of more general book requests. Because 
patrons receive monthly newsletters listing new titles, they 
request books with knowledge of the bibliographic data or 
catalogue numbers. As a result, most title requests from pa-
trons are nearly exact matches to the actual title. For present 
purposes, we assume they request the exact title or nearly so. 
 We exploited the Galaxy message passing architecture of 
Olympus/Ravenclaw to insert a wizard server into CheckI-
tOut. This makes it possible to pass messages from the sys-
tem to a wizard GUI, or from the wizard GUI to the system. 
By embedding our wizard within the system, we can examine 
how wizard actions relate to information available to the sys-
tem at runtime. Because CheckItOut relies on the same ver-
sion of Olympus as Let’s Go!, we can access features used by 
the interaction manager mentioned above. This allows us to 
test whether system features available during the speech rec-
ognition phase can be used to model wizards’ decisions. 
 We used PocketSphinx 0.50 for speech recognition, and 
microphone bandwidth acoustic models from Let’s Go!. Like 
the user population of Let’s Go!, patrons of the Andrew He-
iskell library include many elderly and non-native speakers. 
Our target population differs in that patrons qualify for access 
to Heiskell because they cannot read books in printed format. 
Many patrons are legally blind, or lack the motor skills to 
manipulate a book. In separate work, we are evaluating the 
recognition performance on speech from our transcribed cor-
pus of patron-library calls to determine the utility of addi-
tional iterations of acoustic training. 
 To present challenging cases to our wizards we aimed for a 
relatively high but not intractable WER. We sought a WER 
similar to that managed by wizards in the offline pilot study, 
but with a model that covered the titles in the database. WER 
was computed using Levenshtein distance (Levenshtein 
1996). A statistical language model assigns a probability dis-
tribution to possible word sequences. To select a language 
model, we first manipulated WER by constructing several 
bigram language models of varying sizes. We randomly se-
lected 10,000 titles (~11K words) from the library database, 
and then selected from it subsets of size 7,500 (~9K words), 
5,000 (~6.8K words) and 1,000 titles (~2K words). For each 
of the four sets of titles, we constructed a bigram language 
model. For each language model size, one male and one fe-

male each read a set of 50 titles used in our offline pilot. 
From this, we determined that a language model based on 
7,500 titles would yield the desired WER. 
 To model real-world conditions more closely, titles with 
below average circulation were eliminated before we selected 
a set to build the language model for our experiment. We also 
eliminated one-word titles and those containing non-
alphanumeric characters. A random sample of 7,500 was 
chosen from the remaining 19,708 titles to build a bigram 
language model. It contained 9,491 unique words. The 4,200 
titles in the experimental materials were drawn from the 
7,500 titles used in constructing the language model. Average 
WER for the book title requests in our experiment was 0.69. 

Experimental Design 
For the current study, we implemented a backend query that 
returns a ranked list of candidate titles, given the ASR tran-
scription of a caller’s book title request. The number of titles 
in the backend return depends on similarity scores between 
the ASR string and titles in the database. For the similarity 
score, we used Ratcliff/Obershelp (R/O) pattern recognition, 
which is the number of matching characters divided by the 
total number of characters (Ratcliff and Metzener, 1988),. 
Matching characters are those in the longest common subse-
quence, then recursively in the longest subsequences in the 
unmatched regions. For the ASR “billies villains 
greatest” the candidate titles and their R/O scores were: 
 • Billy Phelan’s Greatest Game (0.69) 
 • Baseball’s Greatest Games (0.44) 
 • More like Us: Making America Great Again (0.44) 
Based on our offline pilot, we hypothesized that there would 
be four distinct cases: a single close match, a small set of 
competing matches, a larger set of more evenly matched can-
didates with low but better than random similarity, and no 
candidates above a low, non-random threshold. The R/O 
thresholds we selected to yield these four cases here were: 

• Singleton: a single, good candidate (R/O ≥ 0.85) 
• AmbiguousList: a list of two to five moderately good 
candidates (0.85 > R/O ≥ 0.55)  
• NoisyList: a list of six to ten poor but non-random candi-
dates (0.55 > R/O ≥ 0.40)  
• Empty: no titles returned at all (R/0 < 0.40) 

In each candidate in a list, words that matched a word in the 
ASR appeared in a darker font, with all other words in gray-
scale that reflected the degree of character overlap. For Am-
biguousList, the darkest font was dark black; for NoisyList it 
was medium black. Note that our focus here is not on the 
backend query, but on the distinct types of returns. Certainly, 
a more finely tuned query could be implemented. 

In each session, the caller was given a list of 20 titles to 
read. The acoustic quality of titles read from a list is unlikely 
to approximate that of a patron asking for a title. Therefore, 
before each session the caller was asked to read a brief syn-
opsis of each book (taken from the library database) and to 
number the titles to reflect some logical grouping, such as 
genre or topic. Titles were then requested in that order.  



 Participants did two sessions at a time, reversing roles in 
between. They were asked to maximize a score designed to 
elicit cooperative behavior and to foster the development of 
useful strategies. For each individual title request, or title 
cycle, the wizard scored +1 for a correctly identified title, 
+0.5 for a thoughtful question, and -1 for an incorrect title. 
The caller received +0.5 for each successfully recognized 
title. No time limit was imposed on either the session or an 
individual title cycle. Figure 1 lists the 8 steps in a title cycle. 
 Seven undergraduate students at Hunter College partici-
pated. Two were non-native speakers of English (one Span-
ish, one Romanian). Each of the 21 pairs of students met for 
5 trials. During each trial, one student served as wizard and 
the other as caller for a session of 20 title cycles, then re-
versed roles for a second session. The maximum number of 
title cycles is thus 4,200 (21 pairs × 5 trials × 2 sessions × 20 
titles). Participants were allowed to end a session early. We 
collected data for 4,172 title cycles. 
 Wizard and caller sat in separate rooms where they could 
not overhear one another. Each was provided with a headset 
with microphone, and a GUI. (Audio input on the wizard’s 
headset was disabled.) Both GUIs accepted input from a 
mouse. The wizard GUI also accepted input from a keyboard. 
 The wizard GUI presented a live feed of each ASR hy-
pothesis, weighted by grayscale to reflect acoustic confi-
dence. The GUI also included a search field with which to 
query the database. The wizard selected an ASR string for 
entry into the search field. Because a long title could be split 
by the endpointer that segments utterances, wizards could 
optionally select a sequence of ASR strings. Wizards could 
also manually edit the search field, but were encouraged not 
to do so. The search result was presented as a list of candi-
date titles on the GUI, in descending order of the (unre-
vealed) similarity score from the backend’s retrieval func-
tion. Words in returned titles were darkened in proportion to 
their lexical similarity with the search terms. To offer a title 
to the caller, the wizard clicked on a title returned by the 
backend and then on a button labeled “Sure” or “Probably.” 
Selected titles were presented to the caller through a text-to-
speech component, prefixed with the word “probably” if the 
wizard had selected that button. To ask a question instead of 
selecting a candidate title, the wizard selected two or more 

titles the question pertained to, clicked a button labeled 
“Speak” and then spoke into the microphone. Questions 
could be of arbitrary length and content, and were recorded 
for offline analysis. The wizard GUI posted the success or 
failure of each title cycle before the next one began. 
 The caller GUI gave visual feedback to the caller on the 
full list of 20 titles to be read during the session. Titles in the 
list were highlighted green on success, red on failure, yellow 
if in progress, and not highlighted if still pending. If the caller 
heard a title selected by the wizard, the caller clicked on 
“Accept” or “Reject” to rate the wizard's accuracy. If the 
caller heard the wizard ask a question, the caller clicked on a 
judgment as to whether she could have answered it (“Can 
Answer” or “Cannot Answer”). Otherwise the caller clicked 
to indicate difficulty (“Problem”) or uncertainty about the 
question’s relevance (“Undecided”). 

Evaluation of Wizard and Caller Behavior 
Ideally, a wizard should identify the correct title when it is 
present among the candidates and, if possible, ask a clarify-
ing question when it is not. Our wizards were uniformly very 
good (95.25% accurate; σ = 1.45) at detecting a title that was 
present. They fared less well, however, when the correct title 
was absent, a situation that occurred 28.36% of the time.. 
 The backend never returned empty on any query, and Noi-
syLists were rare (2.83%). Responses were nearly evenly 
divided between a singleton title list (46.74%) and a list 
greater than one (53.26%). Moreover, every wizard saw a 
similar distribution of return types from the backend: single-
ton (µ = 278.57, σ = 21.16), AmbiguousList (µ = 300.57, σ = 
16.92), and NoisyList (µ = 16.86, σ = 4.78). The correct title 
was often (71.31%) in the list of candidates; 92.05% of the 
Singletons were the correct title, and 53.74% of the Ambigu-
ousLists and NoisyLists contained it.  
 If the title was present in the backend response, wizards 
were very good at finding it. When the correct title appeared 
among the candidates on the wizard GUI (N=2986), the wiz-
ard identified it confidently (68.72%) or tentatively 
(26.53%), a remarkable total of 95.25% of the time. The dif-
ficulty of the wizards’ task can be evaluated in part by the 
position of the title read by the caller within the backend re-
sponse. If the backend returned multiple candidates 
(N=2222), the first was the correct one 41% of the time. Far 
less often it was the second (5.81%), third (2.61%), fourth 
(2.20%), or later. (The fifth through ninth accounted for 
1.76%.) This should have helped the wizards, and indeed it 
did. In those cases where the first on the list was the correct 
title, wizards offered it 98.34% of the time (74.24% confi-
dently, and 24.10% tentatively). 
 If the title was not present in the backend response 
(N=1186), however, wizards performed much less well. After 
the query return, the wizard was permitted one of four possi-
ble actions: confident (select a single title with “Sure”), tenta-
tive (select a single title with “Probably”), questioning (ask a 
question), or mystified (the wizard could not formulate a rea-
sonable question and gave up). When the title was not pre-
sent, the wizards asked a question only 22.32% of the time. 

1. ASR processes the speech and sends output to the wizard.  
2.  The wizard can ask the caller to repeat the title one time. The 

new ASR goes to the wizard. 
3.  The wizard queries the database either with the ASR string or 

with words she selects from it. 
4.  The database backend returns a list of candidates.  
5.  The wizard selects a candidate with or without high confidence, 

or selects one or more candidates and asks a thoughtful question 
intended to help identify the requested title, or gives up. 

6.  If the wizard selected a candidate, the caller judges its correct-
ness. If the wizard asks a question, the caller judges its reason-
ableness. 

7.  The wizard is informed of success or failure, and prompts the 
caller for the next title. 

 
Figure 1: The title cycle. 



Typically our wizards were gamely tentative (67.71%) when 
the correct title was not among the hypotheses. Less often, 
they were confident (7.78%) or mystified (2.20%).  
 One would expect that the way the backend response ap-
peared on the GUI would affect the wizard’s action. “Ap-
pearance” here refers to the fact that any list was ranked by 
similarity to the ASR search string, and that words had dis-
tinct font color depending on the list type, and the degree of 
word overlap with the ASR. For each title, we coded the 
backend response to reflect the likelihood that the return con-
tained the correct title (Singleton = 3, AmbiguousList = 2, 
and NoisyList = 1), and the wizard’s response to reflect her 
certainty (confident = 3, tentative = 2, questioning = 1, and 
mystified = 0). The backend response proved somewhat cor-
related (R=0.59, p < 2.2e-16) with the wizard’s response. 
Although a Singleton (N=1950) from the backend nearly 
always elicited a title from the wizard (85.38% confident, 
13.74% tentative, 0.62% questioning, 0.26% mystified), an 
AmbiguousList (N=2104) from the backend substantially 
reduced the wizard’s confidence (22.46% confident, 63.28% 
tentative, 13.32% questioning, 0.95% mystified). The re-
sponse to NoisyStrings (N=118), was braver than might have 
been warranted: 9.32% confident, 52.54% tentative, 34.75% 
questioning, and 3.39% mystified. When the correct title was 
among the candidates, its rank (position in the list of candi-
dates) was somewhat correlated (R=0.42) with the wizard’s 
accuracy (p < 2.2e-16), that is, wizards were more likely to 
identify a title correctly when it was earlier on the list.  
 One would also expect wizards’ confidence, and therefore 
their responses, would vary with the individual wizard. Fig-
ure 2 confirms this. The ratio of correct decisions to total 
decisions for each wizard was 0.69 (A), 0.67 (B), 0.66 (C), 
0.67 (D), 0.69 (E), 0.69 (F) and 0.70 (G). Over all, the wiz-
ards were mostly confident (51.87%) or tentative (40.12%), 
rarely questioning (7.38%), and almost never mystified 
(0.62%). Nonetheless, one wizard almost never asked a ques-
tion, and four did so only rarely. Confidence was correlated 
with correctness (0.65, p < 2.2e-16). Confident title choices 
(N=2164) were correct 94.73% of the time; tentative ones 
only 47.37%. Wizard response type also varied with the 
caller, as shown in Figure 3. The caller who elicited far more 
tentative responses and questions than any of the others was 

the Romanian speaker. 
 To understand how wizards made correct decisions (confi-
dent or tentative if the correct title was present, questioning 
or mystified if it was not), we coded wizards’ correctness as 
correct = 1 and incorrect = 0. A linear regression model was 
then constructed with 10-fold cross-validation to predict wiz-
ard correctness from features available to the wizard or sys-
tem. Initially we gathered 60 such features, including de-
scriptions of the wizard GUI, how well the ASR matched the 
candidates and matched database entries, and how well the 
wizard had done thus far in the current session. Given their 
interdependence (e.g., different descriptions of the ASR 
string), preliminary processing examined correlations among 
the features and reduced the set to 28. The features and the 
feature selection process are described in detail in 
(Passonneau et al., Submitted). 
 The most significant feature in the linear regression model 
(root relative squared error = 73.60%) was CheckItOut’s con-
fidence in its understanding of the caller’s reading of the title, 
which comes from the Helios confidence annotator. While 
this feature is not available to wizards, it is analogous to how 
much “sense” the ASR string made to the wizard, and could 
be used to constrain system behavior. In descending order, 
the other particularly salient features were the GUI display 
(Singleton, AmbiguousList, NoisyList), speech rate (faster 
led to lower accuracy), and on how many of the last three 
titles the wizard had succeeded. More candidates led to lower 
accuracy; more words in the ASR string led to higher accu-
racy. Among the features that made no contribution to the 
model were the wizard’s or the caller’s experience at the task 
(number of sessions to date), and the frequency with which a 
wizard requested the caller to repeat the title.  

Discussion and Future Work 
Voice search offered our wizards three types of contexts for 
book title requests. These translate to three opportunities for 
CheckItOut. When a single title was returned, wizards justi-
fiably assumed that it was correct. In a full dialogue, CheckI-
tOut could mimic librarians’ behavior and simply report the 
status of the book, without confirming the title with the 
caller. When an AmbiguousList was returned, wizards made 
a tentative guess. Half the time, the title was there and the 

 
Figure 2:  Distribution of acitons chosen by wizard. 

 
Figure 3: Distribution of actions elicited by caller. 



guess was generally correct; the other half, the title was not. 
Here, CheckItOut could pursue one of two options: implicitly 
or explicitly confirm a title choice with the caller, or ask a 
disambiguating question. For example, given the ASR a 
charge deaf, one of our wizards was presented with 
two candidates: A Charmed Death and A Changed Man. She 
then asked “Did you say charmed or changed?” Finally, 
when the backend returned a NoisyList (six to ten titles), 
wizards often asked questions about specific words (“Does it 
have orchid in it?”), a strategy bound to be more successful, 
and appealing to users, than asking for a full repetition. 
 The focus here has been on the factors wizards attended to 
when they compared the ASR output to the list of candidates 
Extensive analysis of individual wizards is the subject of a 
subsequent paper currently under review (Passonneau et al., 
Submitted).We logged and computed many more features 
than those discussed here, including some that gauge the 
phonetic similarity of the ASR to the title. In addition, wiz-
ards and callers completed questionnaires after each session, 
which we will analyze, along with the wizards’ questions, in 
future work.  

Our experiment with voice search extends the WOz para-
digm to allow the wizard access only to the ASR of user’s 
utterances rather than to the acoustic input. We have shown 
that the integration of voice search into dialogue systems has 
significant promise. The accuracy of the wizards’ title offers 
proved very high. A linear regression model based upon 
backend return type predicted response type (confident, ten-
tative, questioning, mystified) very well. The clear differ-
ences in wizard performance bode well for our plans to learn 
the strategies that make a wizard proficient, and to incorpo-
rate those strategies in CheckItOut. 
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