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Abstract. Portfolio-based solvers are both effective and robust, but their prom-
ise for parallel execution with constraint satisfaction solvers has received rela-
tively little attention. This paper proposes an approach that constructs algorithm 
portfolios intended for parallel execution based on a combination of case-based 
reasoning, a greedy algorithm, and three heuristics. Empirical results show that 
this method is efficient, and can significantly improve performance with only a 
few additional processors. On problems from solver competitions, the resultant 
algorithm portfolios perform nearly as well as an oracle. 

Keywords: constraint satisfaction, algorithm portfolio, parallel processing, ma-
chine learning. 

1   Introduction 

Given a set of solvers and a set of constraint satisfaction problems (CSPs), no one 
solver may consistently outperform all the others on every problem (e.g., [1-5]). In-
formally, an algorithm portfolio is a set of algorithms that run according to some 
schedule on a set of problems. The thesis of this work is that learning and parallelism 
can improve the efficiency and effectiveness of algorithm portfolios, so that they out-
perform each of their constituents. This paper explores offline learning to construct 
such portfolios for CSPs. Given the performance of several algorithms on a training 
set, we seek an algorithm portfolio that executes on multiple processors to solve the 
most problems within some time limit. The principal result reported here is that, given 
several additional processors, our method can construct algorithm portfolios whose 
performance is competitive with that of an oracle, a solver that always chooses the 
best available algorithm for each problem.  

For parallel execution, a portfolio could simply schedule the same CSP on many 
processors, each of which would execute a different solver on it, and then race until 
some algorithm found a solution. Given the number of plausible solver configura-
tions, this approach is not realistic. It is, however, possible to learn to schedule a set 
of solvers on a set of processors. Our approach combines case-based reasoning (CBR), 
a greedy algorithm, and a set of heuristics. Although CBR [6] and greedy algorithms 
[7] have been applied to construct portfolios for CSPs before, this work is, to the best 
of our knowledge, the first to combine them in a single framework. Given a CSP, our 



method uses CBR to identify a small set of similar training problems, and then greedi-
ly generates an effective portfolio without the complete search necessary to find an 
optimal one. In addition, we introduce three heuristics that transform algorithm port-
folios intended for a single processor into ones intended for parallel execution. Exten-
sive experiments show that portfolios produced by our method would solve more 
problems, not only when they are designed for one processor, but also consistently 
improve performance when they are designed for as many as 16 processors.   

The next two sections provide background on CSPs and algorithm portfolios. Sec-
tion 4 formulates algorithm portfolio construction as a machine learning task and re-
views related work. Section 5 discusses a general framework that combines CBR with 
a greedy algorithm to construct algorithm portfolios, and Section 6 generalizes that 
framework to parallel algorithms. Subsequent sections detail and discuss the experi-
mental design and results, and offer some conclusions. 

2   Constraint Satisfaction Problems 

A CSP here is a triple <X, D, C>, where X is a set of variables, D is a set of finite do-
mains associated with those variables, and C is a set of constraints that those variables 
must satisfy. A constraint defined on two variables is binary, and one defined on n > 2 
variables is n-ary. An extensional constraint explicitly represents a set of tuples; an 
intensional constraint implicitly describes tuples with a predicate.  

An instantiation of a CSP assigns values to its variables from their respective do-
mains. A consistent instantiation violates no constraint. An instantiation of all the var-
iables is a complete instantiation, and a complete and consistent instantiation is a solu-
tion. A CSP is solvable if it has at least one solution; otherwise it is unsolvable. 

Many constraint solvers search for a solution to a CSP with systematic backtrack-
ing, which assigns values to variables one at a time and checks consistency after each 
assignment. After an assignment, any inconsistent value for an as-yet-unassigned var-
iable is temporarily removed from that variable’s domain. A wipeout occurs when a 
domain becomes empty. At that point, search backtracks to an earlier variable with an 
alternative value, restores removed values along the way, and assigns another value to 
the earlier variable. Search returns a solution when one is found, or halts when the 
domain of the variable at the root of the search tree becomes empty.  

 A CSP solver is typically a complex combination of fundamental search algo-
rithms, along with a set of techniques, heuristics, and policies to realize and support 
them. To improve overall search performance, preprocessing techniques manipulate 
the problem before a full search, variable-ordering heuristics choose the next variable 
to be assigned a value, and value-ordering heuristics choose a value for it. Once a 
heuristic orders the possible variables or values, randomization chooses one at ran-
dom, usually from a small set of the top-ranked candidates [8]. A restart policy is a 
sequence of termination conditions that trigger the re-initiation of the search. Com-
bined with randomization, a restart policy may improve search performance. Alt-
hough the many ways to assemble a solver’s components and then set their parame-
ters yield a broad spectrum of search performance, they also provide fertile raw mate-
rial for effective algorithm portfolio construction.   



3   Algorithm Portfolios 

An algorithm portfolio for CSP solution was originally defined as a method that com-
bined different algorithms to improve search performance while it lowered search 
risk, the standard deviation of a performance metric (e.g., expected CPU time or 
number of backtracks to solve a problem) [9, 10]. In other words, an algorithm portfo-
lio searched for a Pareto frontier in the two-dimensional space defined by a given per-
formance metric and its standard deviation. Later, an algorithm portfolio was general-
ized to denote a combination of different algorithms intended to outperform the 
search performance of any of its constituent algorithms [3, 6, 11-14]. Here we extend 
that formulation, so that an algorithm portfolio schedules its constituent algorithms to 
run concurrently on a set of processors. 

Let an algorithm be any CSP solver, as described in the previous section. Given a 
set A = {a1, a2, …, am} of m algorithms, a set P = {x1, x2, …, xn} of n problems, and a 
set of B consecutive time intervals T = {t1, t2, …, tB}, a simple schedule Sk for a prob-
lem on a single processor specifies which algorithm addresses the problem in each 
time interval, that is, Sk: T ! A. (At most one algorithm executes in any time interval 
in a simple schedule.) A schedule for K processors is a set of K simple schedules, one 
for each processor. (Here, a schedule addresses only one problem at a time.) An algo-
rithm portfolio is then a quintuple <P, A, K, S, B> where S is a set of schedules that 
deploy algorithms A on K processors to solve problems from P within B. Note that 
our definition includes both simple (K = 1) and parallel (K > 1) algorithm portfolios. 
Without loss of generality, we also simplify T to {1, 2, …, B}. Of course, neither a 
simple nor a parallel schedule can outperform an oracle’s perfect algorithm selection. 

Clearly, on one processor at most B time can be allotted to any algorithm on any 
problem. Thus the performance of A on P can be represented as an n " m performance 
matrix !. If the entry !ij # {1, 2, …, B} then aj solves xi in time !ij; otherwise xi goes 
unsolved by aj in time B. A deterministic algorithm consistently produces the same 
output given the same problem and time cutoff; that is, for a deterministic algorithm 
each !ij is fixed. In contrast, the output of a randomized algorithm may change from 
one run to the next (i.e., !ij is a random number).  

Given a problem, a sequential algorithm portfolio executes algorithms on it in a 
specific order, but does not preserve any intermediate search data for an algorithm 
when the portfolio leaves it. Thus, a sequential portfolio must restart on the problem if 
it later reapplies a previous algorithm to it. In contrast, a switching algorithm portfolio 
interleaves algorithms, and preserves intermediate search data, so that search can con-
tinue from a previous state when it returns to an earlier algorithm. Algorithm selection 
is an algorithm portfolio that schedules only one algorithm [13, 15].  

The schedule for a static algorithm portfolio is constructed in advance, and goes un-
changed during search. In contrast, a dynamic algorithm portfolio can profit from 
feedback as it executes, and adjust its schedule accordingly. For example, the dynam-
ic algorithm portfolios in [2, 16] iteratively share a (possibly varying-length) time 
slice among all available algorithms, but modify the algorithms’ relative priorities 
based on their progress. Adjustments for a dynamic portfolio can be triggered by un-
satisfactory performance during execution [17, 18]. Most of the work referenced thus 
far is for simple schedules, which interleave algorithms on a single processor.  



There are other ways to exploit parallel processing beyond the scope of this paper. 
These include search space splitting to partition the search space of a CSP into sub-
spaces and uses different processors to explore difference subspaces [19], and struc-
tural decomposition to separate a CSP into simpler, smaller-size subproblems based 
on the structure of its constraint hypergraph [20, 21]. Moreover, a parallel SAT solver 
can share clauses learnt on different processors, where each processor executes a 
manually pre-determined algorithm [22].  

The current algorithm portfolio performance metric is runtime, which may be used 
to optimize different objective functions. For example, a portfolio may be required to 
minimize its expected runtime on a problem generated at random from some problem 
distribution. (Alternatives are introduced in [14].) Recent CSP solver competitions 
evaluated solvers on how many problems they solved under a fixed, per-problem time 
limit, and broke ties on average solution time across solved problems [23, 24]. We 
compare algorithm portfolio construction methods (henceforward, constructors) with 
the same standard. (In contrast, SAT solver competitions have compared solvers with 
a complex scoring function that includes the performance of all competitors [25].) 

As formulated here, the differences between two solvers may be simply in their 
choice of even a single technique, heuristic, or policy that sustains performance diver-
sity. Thus an algorithm portfolio can be thought of as a mixture of experts [26], in-
cluding variable-ordering and value-ordering heuristics, restart policies, and nogood 
learning methods. In particular, even if only one heuristic is available, the portfolio 
could consist of the heuristic and its opposite, or the heuristic and random selection.  

4   Learning an Effective Algorithm Portfolio 

Algorithm portfolio constructors that learn are classified as online or offline based on 
the way they use their training problems. An offline constructor observes the perfor-
mance of algorithms on a set of training problems and then builds a portfolio of those 
algorithms to optimize its performance on an entire testing set [3, 6, 13]. An online 
constructor solves one problem at a time, and the knowledge it relies on for that prob-
lem comes only from the problems that preceded it [2, 7, 16]. This paper focuses on 
offline algorithm constructors.  
  Our case-based approach to algorithm portfolio construction relies on feature ex-
traction. Figure 1 represents offline algorithm portfolio construction with feature ex-

  

Fig.1. Algorithm portfolio construction as offline learning.  



traction as a machine-learning task. Given a set Ptrain of training problems, a set Ptest of 
testing problems, and a performance matrix !(a,x) that stores the time required by 
each algorithm a # A to solve each problem x # Ptrain, the constructor’s task is to find 
a schedule S with optimal performance that uses A to solve Ptest. Here, all entries in ! 
are discrete, fixed positive integers, that is, all algorithms are assumed to be determin-
istic. P*(y) is a set of CSPs similar to testing problem y. (Portfolios of randomized al-
gorithms are discussed in [3, 27].) 

The two portfolio constructors most relevant here are CPHYDRA [6] and GASS [7]. 
Let P(aj, S) be the problems in P solved by aj under schedule S. CPHYDRA defines the 
optimal schedule as one that maximizes the number of problems solved within B: 

argmax
S
!
j
P(aj,S)  such that length(S) ! B  

Because it uses relatively few algorithms in competition, CPHYDRA can address opti-
mality with exhaustive search, in time O(2m) where m is the number of algorithms. 
CPHYDRA had two entries in the 2008 competition, both with m = 3: CPHYDRA_k_10 
used 10 similar training examples (i.e., |P*(y)| = 10), and CPHYDRA_k_40 used 40. 
Among 24 competitiors, both versions finished in the top two solvers, except in the 
category for global constraints. CPHYDRA also weights training problems by their Eu-
clidean distance from the testing problem. Its approach was later exploited and tai-
lored for SAT problems [28] as well.  

GASS’ greedy algorithm bases its optimal schedule on ci(S), the expected time to 
solve xi under schedule S. Its optimal schedule minimizes the overall runtime (equiva-
lent to the average runtime under fixed n) to solve all problems in Ptrain: 

argmax
S

ci (S)
i=1

n

!
 At each step, GASS greedily maximizes the number of problems solved per unit of 

time, and counts only problems solved for the first time during the current time step. 
In time O(nm log n $ min{n, Bm}), GASS returns an approximate schedule that is at 
most four times worse (a 4-approximation) than the optimal switching schedule. The 
computation of any better approximation is NP-hard [7].  

5   WG, a New Constructor for Switching Algorithm Portfolios 

Our Weighted Greedy (WG) algorithm is a new constructor for switching algorithm 
portfolios that exploits the perspectives of both GASS and CPHYDRA. For a single 
processor, CPHYDRA uses CBR to select a small set of similar training problems for 
each testing problem. It then does a complete search, exponential in the number of al-
gorithms m, to find an optimal schedule for the new problem. In contrast, the impact 
of m on GASS is at worst quadratic; GASS’ greedy approach is heavily dependent on 
the number of training problems n instead. WG exploits the fact that some problems 
are far more similar to a given testing problem than others, so that a properly selected 
subset of problems can estimate the runtime of the testing problem more precisely. 
 



On one processor, to schedule within time limit B algorithms from A for a problem 
y given prior experience on a set of problems P, WG combines GASS and CPHYDRA 
into a single framework for switching scheduling. (See Figure 2.) WG is similar to 
GASS, except that it represents problems by numeric feature vectors, and restricts its 
attention to similar problems (i.e., reasons based only on similar cases). WG initially 
selects a neighbor set P* that is the 100r% of the most similar training problems (i.e., 
have feature vectors closest in Euclidean distance to that of y), 0 < r ! 1. The influ-
ence of these problems in the selection of an algorithm may be uniform, or be 
weighted in proportion to their distance di from y. The weight functions investigated 
here are shown in Table 1, where dmin denotes the smallest distance from a neighbor 
set problem to y, and dmax denotes the largest distance. 

During each new interval %z, WG counts (from the performance matrix !)  and 
weights how many training problems in the current neighbor set P* it could solve 
within time t + %z if it assigned problem xi to algorithm aj during that interval:  

N j
z (t) = wi! ij

xi!P*
" (t) where ! ij (t) =

1 if " ij # t
0 otherwise

$
%
&

'&
 

 
(1) 

WG then greedily maximizes (1) per unit of time expended, that is, it calculates 

argmax
aj ,!z

N j
z (t + ! z )
! z

 

and removes those now-solved similar problems from P*. The time complexity of 
WG is O(rnm log rn $ min{rn, Bm}) because it considers every algorithm aj with eve-
ry interval length %z.  

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B, 
  testing problem y, weight function w: &d!&d, neighbor set ratio r 
Output: schedule S for a non-parallel switching algorithm portfolio  
For i = 1 to n, compute Euclidean distance between xi and y 
P* ' {100r% of problems in P closest to y} 
For each xi in P*, compute weight wi = w(xi) 
Initialize time step z ' 1, overall time T ' 0, and time spent tj ' 0 for algorithm aj 
While P* ( Ø and T < B 
     Select aj with execution time %z to maximize Nj

z(tj + %z)/ %z  
Remove from P* problems solved by aj during step z  
Schedule aj with execution time %z in S 

     Update times: tj ' tj + %z, T ' T + %z, and z ' z + 1 
Return S 

Fig. 2. High-level pseudocode for WG, a weighted greedy constructor for one processor. 

 

Table 1. Three weight functions that measure problem similarity, where di denotes the Euclide-
an distance of problem y from the ith neighbor set problem xi. Here, " = 0.001.  

 Reciprocal weighting   Normalized weighting     Normalized-fixed weighting 

    
wi =

1
1+ di         

wi =1!
(n !1)(di ! dmin )
n(dmax ! dmin )      

wi =1!
(1! ! )(di ! dmin )
dmax ! dmin

 

      



6   Creation of Portfolios for Parallel Processing  

An intuitive way to parallelize WG for K identical processors #1, #2, …, #K is to parti-
tion the similar training problems P* into K subsets P1, P2, …, PK at random, and then 
use WG to construct a schedule for processor #k based its corresponding subset Pk. We 
call this RPWG (randomized parallel WG). With uniform weights wi = 1, RPWG is a 
naïve parallel version of GASS. (To reduce the impact of randomness, RPWG could 
construct such a partition v times, although to conserve time v = 1 here.) Thus the 
overall complexity of RPWG is O(vrnm log(rn/K)$min{rn/K,Bm}). Similarly, RP-
CPHYDRA, the naïve parallel version of CPHYDRA, randomly partitions the similar 
training problems into K subsets and then uses CPHYDRA on each subset to construct 
a schedule for each processor. Section 7 investigates both these naïve parallel con-
structors as baselines. (Other recent work relevant to parallel algorithm portfolios in-
cludes online learning [2, 16] and methods that split problems [29, 30].) 

Effectively, the construction of a parallel algorithm portfolio to solve as many 
training problems as possible on K processors is an integer-programming (IP) prob-
lem. The goal is to find the schedule S that specifies the time allotments to all algo-
rithms on all processors, such that no problem can receive more than B time from all 
the processors together, and the total number of problems solved is a maximum. The 
expression (1 - )ij(tkj)) is 1 if problem xi is unsolved by algorithm aj after time tkj allo-
cated to it on #k, and 0 otherwise. The product of (1 - )ij(tkj)) over all j and k is 1 if 
problem xi is not solved by any algorithm on any processor in schedule Sk, and 0 oth-
erwise. Thus the best schedule is 

  
(2) 

Intuitively, when two schedules solve the same number of training problems, we 
would prefer the one that consumes less total time. Thus (2) becomes: 

 
 

(3) 

Expression (3) seeks to minimize the cost of schedule S, as measured by a penalty for 
unsolved problems (counted in the first sum) and the resources tkj allocated to all pro-
cessors. Each unsolved problem incurs cost KB + 1, which is greater than all available 
time on all processors. This guarantees that any benefit introduced by reduction in 
overall runtime will be overshadowed by the penalty for solving one less problem. 
The optimization in (3) is NP-hard; others have proposed the use of column genera-
tion to solve a simpler IP problem for algorithm scheduling for non-parallel algorithm 
portfolios [28]. Instead here we adopt heuristics to generalize WG for this IP problem. 

We argue that the optimal solution to (3) can occur only when there exists at most 
one processor k for each algorithm aj such that tkj > 0. For example, consider a sched-
ule that allocates time t1j and t2j (0 < t1j < t2j) to the same algorithm on processors 1 
and 2, respectively. These times are resources only, and are not directed to any partic-
ular problem or algorithm. Any problem solved by some algorithm on processor 1 in 
t1j can be solved by the same algorithm on processor 2 in t2j. Removing the algorithm 
from processor 1 does not increase the number of unsolved training problems because 

! 

argmax
S={S1 ,...,SK }
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j=1
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the same problems will be solved on processor 2, but it does reduce the total runtime, 
and produces a better schedule.  

Inspired by this argument, Figure 3 introduces RSR-WG for parallel algorithm port-
folios, where RSR stands for three heuristics: Retain, Spread, and Return. Like WG, 
RSR-WG selects an initial set of similar training problems and tries to schedule 
greedily, but with modifications from our three heuristics. Retain (line 6) places algo-
rithm aj on processor # u if that placement will maximize equation (1) per unit of ex-
pended time and # u still has time available (Tu < B). Among such processors, Retain 
prefers one that has already hosted y before (tuj ! 0), and otherwise selects one that 
has thus far been used the least (i.e., has minimum Tu). If a parallel schedule S solves 
all training problems without making full use of all the processors, Spread (line 11) 
places the algorithm aj that solves the most problems in P but does not appear in S on 
a processor that was idle throughout S (if one exists), breaking ties at random. (The 
rationale here is that aj may be generally effective but not outstanding on y.) Finally, 
if a processor is not fully used in S (i.e., Tu

 < B), Return (line 14) places the first algo-
rithm it executed on that processor until the time limit. Obviously, RSR-WG achieves 
the performance of an oracle when K = m, but it is also effective when K is relatively 
small compared to m, as demonstrated in the next section. 

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B, 
  testing problem y, weight function w: &d!&d, neighbor set ratio r,  
  processors {#1, # 2, …, # K} 
Output: schedule S = {S1, S2, …, SK} for a parallel switching algorithm portfolio  
1  For i = 1 to n, compute Euclidean distance between xi and y 
2  P* ' {100r% of problems in P closest to y} 
3  Compute weight wi for each xi in P* with w 
4  Initialize time step z ' 1, overall time Tu ' 0 on processor # u,  

time tuj ' 0 for aj on # u 
5  While P* ( Ø and Tu < B for at least one u 
6   Select aj on # u with time %z to maximize Nj

z(tj + %z)/ %z       ** Retain ** 
7   Remove from P* problems solved by aj during step z  
8   Schedule aj with execution time %z on # u  
9   Update times: tuj ' tuj + %z, Tu ' Tu + %z, and z ' z + 1 
10 For each # u where Tu < B  
11   If Tu = 0                                 ** Spread ** 
12   then assign a j to # u for B, where a j solves the most problems in P and a j * S 
13      update times: tuj ' B, Tu ' B, and z ' z + 1           
14   else # u executes the first algorithm placed on # u until B      ** Return ** 
15       update times: tuj ' tuj + (B – Tu), Tu ' B, and z ' z + 1   
16  Return S 

Fig. 3. High-level pseudocode for RSR-WG, a weighted greedy algorithm that constructs a par-
allel switching schedule with heuristics Retain, Spread, and Return. 



7   Experimental Design and Results 

We compared the performance of parallel algorithm portfolios from three constructors 
to that of four non-parallel solvers on problems from the Third International CSP 
solver competition (CPAI’08). To extract the 36 features values (e.g., number of vari-
ables, maximum domain size) used by CPHYDRA and RSR-WG, we ran the CSP solv-
er Mistral 1.550 ([31]). For feature extraction we allotted 1 second on an 8 GB Mac 
Pro with a 2.93 GHz Quad-Core Intel Xeon processor.  

CPAI’08 included 3307 problems in 5 categories. Some solvers could not address 
problems in every category; we merged the 2-ARY-INT and N-ARY-INT (N > 2) cat-
egories because the same solvers addressed both. Because our experiments count 
solved problems (those where a solver finds a solution or proves that none exists), we 
excluded any problem that was not solved by any solver within the CPAI’08 time lim-
it of 1800 seconds. If CPHYDRA does not extract features quickly enough, it simply 
splits its schedule evenly among its three algorithms. Rather than test portfolios’ luck 
with an algorithm this way (and penalize a portfolio with more algorithms at its dis-
posal), we chose to exclude such problems. Table 2 summarizes the remaining 2865 
problems in 4 categories. 

Stratified partitioning was used in all runs, to maintain the proportions of problems 
from different categories in each subset. Table 3 reports the performance, in number 
of problems solved within 1800 seconds each, of an oracle and three non-parallel al-
gorithm portfolio constructors as baselines: CPHYDRA_k_10, CPHYDRA_k_40, and 
GASS. The data for GASS was obtained by 10-fold cross-validation with stratified 
partitioning on the 2865 problems.  

All portfolio construction experiments ran under 10-fold cross-validation on a Dell 
PowerEdge 1850 cluster with one head node and 86 compute nodes, each with four 
Intel 2.80 GHz Woodcrest dual-core processors. RSR-WG results reported here are 
for portfolio construction (i.e., scheduling) time plus runtime. The runtimes of RPWG 
and RP-CPHYDRA did not include portfolio construction time, which gave them a 
slight advantage. In extensive testing, uniform weighting and the three weight func-
tions in Table 1 produced slightly different performance improvements in RSR-WG, 
but no one statistically significantly outperformed the others consistently. Thus this 
paper reports only on the normalized-fixed weight function.  

In CPAI’08, CPHYDRA chose 10 or 40 similar problems from which to learn, so 
here RP-CPHYDRA selects 10*K neighbors, randomly distributes them to K processors, 
and executes a complete search for the optimal schedule on each processor. RP-
CPHYDRA’s portfolio construction time was limited to 180 seconds. If it did not pro-
duce the optimal schedule in that time, the best schedule found so far was used. To 

Table 2. Competition problems by category. Experiment problems were those for which at 
least one solver found a solution or showed that none existed, and also had features extractable 

within one second. Solvable problems had at least one solution. 

Applicable 
solvers 

Category Competition 
problems 

Experiment 
problems 

Experiment  
solvable problems 

   

17 GLOBAL 556 493 256    
22 k-ARY-INT (k"2) 1412 1303 739    
23 2-ARY-EXT 635 620 301    
24 N-ARY-EXT (N>2) 704 449 156    



reduce search time, any algorithm dominated by another algorithm (i.e., always out-
performed by it on all 2865 problems) was also eliminated from RP-CPHYDRA’s con-
sideration. RP-CPHYDRA also scaled all schedules (as discussed in Section 8) to ex-
ploit the full time limit B.  

Table 4 compares the performance of parallel portfolios from three constructors: 
RP-CPHYDRA (the parallel version of CPHYDRA), RPWG (the naïve parallel version 
of GASS), and RSR-WG. It lists the total number of problems (out of 2865) solved by 
each constructor’s portfolios, and flags experiments where RSR-WG portfolios were 
statistically significantly better (p < 0.005) than those of a naïve parallel constructor.  

For RSR-WG we simulated all 24 solvers from the original competition [23]. For 
RSR-WG only, we tested as many as K = 16 processors. Both K = 8 and K = 16 pro-
duced near-oracle performance; indeed, 2 out of 10 runs for K = 16 were perfect. Exe-
cution of RSR-WG on K = 16 processors is a reasonable approach for modern com-
puters, where it would produce portfolios able to solve only one fewer problem than 
an oracle. (Execution of RSR-WG on one computer with multiple cores could degrade 
performance, for example, due to overhead introduced by memory sharing.)  

One important question is the number of training problems to use for CBR, as 
measured by the neighbor set ratio (# problems / # training problems). For K from 1 
to 16 we tested neighbor set ratios of 0.005 to 0.16, which yield neighbor sets that 
range in size from 14 to 458, respectively. Table 5 reports on how many problems 
(out of 2865) RSR-WG solved, and shows how the neighbor set ratio impacts perfor-
mance under different numbers of processors K. Boldface entries in Tables 4 and 5 
indicate the best performance for each K. Clearly RSR-WG efficiently generates ef-
fective algorithm portfolios, and does best with small neighbor set ratios for K > 1. On 
K = 1, RSR-WG outperforms GASS, CPHYDRA_k_10, and CPHYDRA_k_40. 

Table 3. Benchmark results for the 3rd International CSP solver competition. 

Solver Oracle GASS CPHYDRA_k_10 CPHYDRA_k_40 
Number solved 2865 2773 2577 2573 

% solved 100% 96.79% 89.95% 89.81% 

Table 4. Performance of 3 parallel portfolio constructors on 2865 problems, with best value for 
K processors in boldface. * means RSR-WG outperformed RPWG; † means RSR-WG outper-
formed RP-CPHYDRA. 

 
 K RP-

CPHYDRA 

Neighbor set ratio 
0.005 0.01 0.02 

RPWG RSR-WG RPWG RSR-WG RPWG RSR-WG 
1 2779 2771 2773 2778 2779 2787 2786† 
2 2807 2801 2826* 2799 2821* 2802 2823*† 
3 2817 2808 2841*† 2810 2836*† 2808 2839*† 
4 2827 2810 2850*† 2812 2847*† 2811 2847*† 
5 2830 2817 2855*† 2819 2851*† 2816 2852*† 
6 2831 2821 2857*† 2818 2855*† 2819 2856*† 
7 2834 2823 2858*† 2823 2858*† 2824 2857*† 
8 2834 2825 2859*† 2825 2860*† 2825 2858*† 

 



Finally, Figure 4 compares the runtimes of an oracle solver and RSR-WG in one 
run with neighbor set ratio 0.005 and weight function normalized-fixed. (Again, RSR-
WG’s time includes both portfolio construction and search.) As in [23], each plus sign 
represents one of the 2865 problems. Those at the far right correspond to problems 
that went unsolved by RSR-WG in 1800 seconds. Those on the diagonal correspond 
to problems that were solved by RSR-WG as quickly as an oracle would have solved 
them. Clearly, more processors reduced the number of unsolved problems (from 90 to 
6 in this particular run) and solved more problems as quickly as an oracle.  

8   Discussion 

As indicated above, the 1800-second runtime per problem for RSR-WG in these ex-
periments includes the time to extract features, construct the schedule, and to execute 
it. RSR-WG adopts a greedy approach that dramatically reduces its scheduling time 
but still generates effective portfolios. For example, over 10 runs the average schedul-
ing time of RSR-WG for K = 8 processors ranged from 14.56 to 14.96 seconds (+ in 
[6.05, 6.35]) with normalized-fixed weights and a neighbor set ratio of 0.16. For K = 
1 processor under the same conditions, average scheduling time ranged from 14.30 to 
14.80 seconds (+ in [5.75, 6.15]). These are small but statistically significant differ-
ences. In contrast, RP-CPHYDRA sometimes failed to compute an optimal schedule 
within 180 seconds. When K = 1, CPHYDRA failed to compute an optimal schedule 
4.81% of the time. When K > 1, CPHYDRA must construct a schedule for each proces-
sor, on training sets that may be considerably more diverse. This can increase the 
search effort; indeed, for K = 8, CPHYDRA failed to compute an optimal schedule 
14.39% of the time. As for GASS, because it learns on all the training problems, it re-
quired more than 5 days of execution time for its single entry in Table 2.  

Instead of Spread, one might scale S to extend it to the entire time limit B, that is, al-
locate B to algorithms proportionally to their runtimes in S. CPHYDRA adopted scal-
ing, and so did RP-CPHYDRA in our experiments. Scaling, however, would be unwise 
in RSR-WG because the earliest designated algorithms might be both most promising 

Table 5. Mean and standard deviation for the number of problems solved by RSR-WG out of 
2865, with normalized-fixed weight function over 10 runs with K processors. Best value for K 
processors is in boldface 

 
K 

Neighbor set ratio 
0.005 0.01 0.02 0.04 0.08 0.16 

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51 
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87 
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07 
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50 
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26 
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07 
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14 
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43 

16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47 



and quick, in which case they would only be allotted relatively short time intervals %z. 
Whether or not scaling is appropriate, we believe, is probably determined by the prob-
lem set. The Return heuristic succeeds, we suspect, because as K approaches m it is 
better to allot larger time intervals to an algorithm on a single processor.  

We temper the results on K = 16 with the observation that it is very nearly a race, 
when the problems in the neighbor set are sufficiently descriptive to eliminate the 
poorest performers on y. We prefer to consider the near-optimal performance for K = 

 

Fig. 4. Comparison of (ideal) oracle runtime (y-axis) to RSR-WG’s time (x-axis) for 1 run with 
weight function normalized-fixed and neighbor set ratio 0.005. Each + denotes a result on one of the 
2865 problems. Number of processors K ranges from 1 to 6. 



8, and even K = 4, and to remember that RSR-WG was charged for scheduling time, 
while its competitor constructors were not. 

Coarser granularity (indicated by a smaller B, which allocates longer intervals) im-
pacts the scheduling efficiency of RSR-WG, but the effectiveness of the resultant 
portfolio depends on the performance matrix entries for the neighbors of the testing 
problem. A smaller B does not necessarily reduce the effectiveness of the resultant al-
gorithm portfolio; if that were the case, a switching (or scheduling) portfolio would 
always be superior to algorithm selection. In addition to Table 5, where B = 1800, we 
tested RSR-WG with B = 20, 10, 5, 4, 3, 2, and 1. (This is equivalent to time alloca-
tions that, instead of 1 second on a processor, are 90, 180, 360, 450, 600, 900, or 1800 
seconds. Note that B = 1 is equivalent to racing one algorithm on each processor to 
address a problem.) In these granularity experiments, for K = 1 the number of solved 
problems peaked at B = 10. For 1 < K ! 8, no coarser granularity ever showed a sig-
nificant improvement; indeed, performance degraded slightly as B decreased. Both 
improvement on K = 1 and failure to improve when K > 1 were consistent across all 
neighbor set ratios reported here, with peaks at either B = 5 or B =10 when K = 1. 
  The success of RSR-WG algorithm portfolios relies heavily on the diversity of the 
performance of its constituent algorithms and the relevance of the extracted features. 
Typically, algorithm portfolio constructors select their algorithms and features based 
upon domain-specific knowledge. The reader may, for example, wonder how RSR-
WG would perform if it relied on the three solvers CPHYDRA used in CPAI’08. The 
difficulty here is that CPHYDRA included solvers from the 2006 competition, solvers 
that did not enter CPAI’08, and whose performance was therefore unavailable on the 
2008 problems. Although algorithm choice based on domain knowledge and feature 
selection can further enhance a portfolio’s performance, it could also make it vulnera-
ble to overfitting. When the number of features is larger, feature selection can be of 
considerable benefit to an algorithm portfolio constructor [13, 14], and we intend to 
explore it in future work. 
  Current work is proceeding in several directions. In practice, many algorithms may 
perform differently on the same problem in different runs, but still exhibit a certain 
level of consistency [3]. Indeed, in (sequential) CSP solver competitions, solvers typi-
cally fix their parameter values and introduce relatively little randomness to achieve 
stable performance. In that case, with coarse granularity (e.g., B = 10), a solver’s per-
formance is nearly deterministic. Greater randomness, however, could change solvers’ 
performance dramatically, and thereby potentially benefit parallel constraint solving. 
A generalization of RSR-WG is in process to handle such behavior. On the other hand, 
automatic parameter tuning could introduce much diversity, and should fare well in 
algorithm portfolios [32]. Specifically, one may view different configurations of an 
algorithm as different algorithms, and thereby combine parameter tuning and an algo-
rithm portfolio in the same framework. We are pursuing this avenue as well. 

The performance of any algorithm portfolio is, of course, bounded by that of an or-
acle. The combination of algorithms as black boxes eliminates any opportunity to im-
prove an individual algorithm. In contrast, parallelism can be achieved by a variety of 
problem decomposition methods (e.g., search space splitting), as discussed in Section 
3. Although the results of recent SAT solver competitions suggest that a well-
designed algorithm portfolio outperforms decomposition methods on a small number 



of processors [22], decomposition methods have shown their potential on many more 
processors (e.g., 64 cores or more in [19]). We will explore this in future work.  

9   Conclusions 

This paper presents WG, a constructor for non-parallel algorithm portfolios based on 
case-based reasoning and a greedy algorithm. It formulates parallel algorithm portfo-
lio construction as an integer-programming problem, and generalizes WG to RSR-
WG, a constructor for parallel algorithm portfolios based on a property of the optimal 
solution to the inherent integer-programming problem. To address a set of problems 
one at a time, RSR-WG creates portfolios of deterministic algorithms offline. Exper-
iments show that the parallel algorithm portfolios produced by RSR-WG are statisti-
cally significantly better than those produced by naïve parallel versions of popular 
portfolio constructors. Moreover, with only a few additional processors, RSR-WG 
portfolios are competitive with an oracle solver on a single processor.  
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